
Under review as a conference paper at ICLR 2022

WHEN TO GO, AND WHEN TO EXPLORE:
THE BENEFIT OF POST-EXPLORATION IN INTRINSIC
MOTIVATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Go-Explore achieved breakthrough performance on challenging reinforcement
learning (RL) tasks with sparse rewards. The key insight of Go-Explore was
that successful exploration requires an agent to first return to an interesting state
(‘Go’), and only then explore into unknown terrain (‘Explore’). We refer to such
exploration after a goal is reached as ‘post-exploration’. In this paper we present a
systematic study of post-exploration, answering open questions that the Go-Explore
paper did not answer yet. First, we study the isolated potential of post-exploration,
by turning it on and off within the same algorithm. Subsequently, we introduce
new methodology to adaptively decide when to post-explore and for how long
to post-explore. Experiments on a range of MiniGrid environments show that
post-exploration indeed boosts performance (with a bigger impact than tuning
regular exploration parameters), and this effect is further enhanced by adaptively
deciding when and for how long to post-explore. In short, our work identifies
adaptive post-exploration as a promising direction for RL exploration research.

1 INTRODUCTION

Go-Explore (Ecoffet et al., 2021) achieved breakthrough performance on challenging reinforcement
learning (RL) tasks with sparse rewards, most notably achieving state-of-the-art, ‘super-human’
performance on Montezuma’s Revenge, a long-standing challenge in the field. The key insight
behind Go-Explore is that proper exploration should be structured in two phases: an agent should
first attempt to get back to a previously visited, interesting state (‘Go’), and only then explore into
new, unknown terrain (‘Explore’). Thereby, the agent gradually expands its knowledge base, an
approach that is visualized in Fig.1. We propose to call such exploration after the agent reached a
goal post-exploration (to contrast it with standard exploration).

There are actually two variants of Go-Explore in the original paper: one in which we directly reset the
agent to an interesting goal (restore-based Go-Explore), and one in which the agent has to act to get
back to the proposed goal (policy-based Go-Explore). In this work, we focus on the latter approach,
which is technically part of the literature on intrinsic motivation, in particular intrinsically motivated
goal exploration processes (IMGEP) (Colas et al., 2020). Note that post-exploration does not require
any changes to the IMGEP framework itself, and can therefore be easily integrated into other existing
work in this direction.

While Go-Explore gave a strong indication of the potential of post-exploration, it did not structurally
investigate the benefit and possible extensions of the approach. First of all, Go-Explore was compare
to other baseline algorithms, but post-exploration itself was never switched on and off in the same
algorithm. Thereby, the isolated performance gain of post-exploration remains unclear. Second, it
also remains unclear when we should post-explore (Go-Explore does this at every trial) and for how
long we should post-explore (Go-Explore does this for a fixed number of steps).

Therefore, the present paper studies adaptive post-exploration. In particular, we make the decision
to post-explore a function of the novelty of the reached goal, and the depth of post-exploration a
function of the length of the goal-reaching part of the episode. Experiments in a range of MiniGrid
tasks show that post-exploration provides a strong isolated benefit over standard IMGEP algorithms,
which can be further enhanced by adaptively deciding when and for how long to post-explore. As

1

Under review as a conference paper at ICLR 2022

Figure 1: Conceptual illustration of post-exploration. Each box displays the entire state space, where
green and red denote the (currently) explored and unexplored regions, respectively. Left: Goal-based
exploration without post-exploration. The top graph shows the agent reaching a current goal, after
which the episode is terminated (or a next goal in the green area is chosen). Therefore, at the next
episode (bottom) the agent will again explore within the known (green) region), often leaving the
unknown (red) area untouched. Right: Goal-based exploration with post-exploration. The top figure
shows the agent reaching a particular goal, from which the agent now post-explores for several steps
(dashed lines). Thereby, the known area (green) is pushed outwards. On a next episode, the agent may
now also select a goal in the expanded region, gradually expanding its knowledge of the reachable
state space.

a smaller contribution, we also cast Go-Explore into the IMGEP framework, and show how it can
be combined with hindsight experience replay (HER) (Andrychowicz et al., 2017) to make more
efficient use of the observed data. In short, our work presents a systematic study of post-exploration,
and identifies adaptive post-exploration as a promising direction for future RL exploration research.

2 RELATED WORK

Go-Explore is a variant of a intrinsically motivated goal exploration processes (IMGEP) (surveyed
by Colas et al. (2020)) which generally consists of three phases: 1) defining/learning a goal
space, 2) sampling an interesting goal from this space, and 3) getting to the sampled goal based
on information from previous episodes. Regarding the first step, Go-Explore (Ecoffet et al., 2021)
uses a predefined goal space based on a downscaling of the state space. Other IMGEP approaches,
like Goal-GAN (Florensa et al., 2018) use a generative adversarial network to learn a goal space of
appropriate difficulty. As an alternative, AMIGo (Campero et al., 2021) trains a teacher to propose
goals for a student to reach. In this work, we largely follow the ideas of Go-Explore, and use a
predefined goal space, since our research questions are directed at the effects of post-exploration.

After a goal space is determined, we next need a sampling strategy to set the next goal. Example
strategies to select the next goal include novelty (Ecoffet et al., 2021; Pitis et al., 2020), learning
progress (Colas et al., 2019; Portelas et al., 2020), diversity (Pong et al., 2019; Warde-Farley et al.,
2019), and uniform sampling (Eysenbach et al., 2018). In this work, we follow the last approach,
since it 1) gave good performance and 2) puts pressure on the agent to adaptively decide when to
post-explore.

In the third IMGEP phase, we need to get back to the proposed goal. One variant of Go-Explore
simply resets the agent to the desired goal, but this requires an environment which can be set to an
arbitrary state. Instead, we follow the more generic ‘policy-based Go-Explore’ approach, which uses
a goal-conditioned policy network to get back to a goal. The concept of goal-conditioning, which
was introduced by Schaul et al. (2015), is also the common approach in IMGEP approaches. A
well-known addition to goal-based RL approaches is hindsight experience replay (Andrychowicz
et al., 2017), which allows the agent to make more efficient use of the data through counterfactual
goal relabelling. Although Go-Explore did not use hindsight in their work, we do include it as an
extension in our approach.

After we manage to reach a goal, most IMGEP literature samples a new goal and either resets
the episode or continues from the reached state. The main contribution of Go-Explore was the

2

Under review as a conference paper at ICLR 2022

Table 1: Overview of moment of exploration in IMGEP papers. Most IMGEP approaches, like
Goal-GAN (Florensa et al., 2018), CURIOUS (Colas et al., 2019), DIAYN (Pong et al., 2019), and
AMIGo (Campero et al., 2021), only explore during goal reaching. Restore-based Go-Explore, which
directly resets to a goal, only explore after the goal is reached. Our work, similar to policy-based
Go-explore, explores both during goal-reaching and after goal reaching.

Approach Exploration during goal reaching Post-exploration

IMGEP ! %
Restore-based Go-Explore % !

Policy-based Go-Explore + this paper ! !

introduction of post-exploration, in which case we temporarily postpone selection of a new goal
(Tab. 1). While post-exploration is a new phenomenon in reinforcement learning literature, it is a
common feature of most planning algorithms, where we for example select a particular node on the
frontier, go there first, and then unfold the search tree into unknown terrain.

3 BACKGROUND

We adopt a Markov Decision Processes (MDPs) formulation defined as the tuple M = (S,A, P,R, �)
(Sutton & Barto, 2018). Here, S is a set of states, A is a set of actions the agent can take, P
specifies the transition function of the environment, and R is the reward function. At timestep t,
the agent observes state st 2 S, selects an action at 2 A, after which the environment returns
a next state st+1 ⇠ P (·|st, at) and associated reward rt = R(st, at, st+1). We act in the MDP
according to a policy ⇡(a|s), which maps a state to a distribution over actions. When we unroll the
policy and environment for T steps, define the cumulative reward (return) of the resulting trace asPT

k=0 �
k · rt+k+1, where � 2 [0, 1] denotes a discount factor. Define the state-action value Q⇡(s, a)

as the expected cumulative reward under some policy ⇡ when we start from state s and action a, i.e.,

Q⇡(s, a) = E⇡,P

h TX

k=0

�k · rt+k|st = s, at = a
i

(1)

Our goal is to find the optimal state-action value function Q⇤(s, a) = max⇡ Q⇡(s, a), from which we
may at each state derive the optimal policy ⇡⇤(s) = argmaxa Q

⇤(s, a). A well-known RL approach
to solve this problem is Q-learning (Watkins & Dayan, 1992). Tabular Q-learning maintains a table
of Q-value estimates Q̂(s, a), collects transition tuples (st, at, rt, st+1), and subsequently updates
the tabular estimates according to

Q̂(st, at) Q̂(st, at) + ↵ · [rt + � ·max
a

Q̂(st+1, a)� Q̂(st, at)] (2)

where ↵ 2 [0, 1] denotes a learning rate. Under a policy that is greedy in the limit with infinite
exploration (GLIE) this algorithm converges on the optimal value function (Watkins & Dayan, 1992).

4 METHODS

We will first describe how we cast Go-Explore into the general IMGEP framework (Sec. 4.1),
and subsequently introduce our new methodology to adaptively decide when and for how long to
post-explore (Sec. 4.2).

4.1 IMGEP

Our work is based on the IMGEP framework shown in Appendix A.4, Alg 2. Since this paper
attempts to study the fundamental benefit of post-exploration, we try to simplify the problem setting
as much as possible, to avoid interference with other issues. We therefore choose to study tabular
RL problems, in which we define the goal space as the set of states we have observed so far. The

3

Under review as a conference paper at ICLR 2022

goal space G is initialized by executing a random policy for one episode, while new states in future
episodes augment the set.

For goal sampling we take uniform samples from the goal space, as for example also used by
Eysenbach et al. (2018). This approach empirically provided best performance, and also increases
the impact of the decision when to post-explore. Note that we could also use other methods, both
for defining the goal space and for sampling new goals (for example based on novelty or learning
progress), but these choices allow us to focus on the benefit of post-exploration.

To get (back) to a selected goal, we train a tabular goal-conditioned Q-learning agent. The update
rule of the value function is similar to the standard Q-learning update shown in Eq. 2, except that Q is
conditioned on the selected goal g, i.e., Q(s, a, g). Agents are trained on the goal-conditioned reward
function Rg, which is a one-hot indicator that fires when the agent manages to reach the specified
goal

Rg(s, a, s
0) = s0=g, (3)

Note that different goal-conditioned rewards functions, different back-up strategies and/or the use of
function approximation are of course possible as well.

4.2 POST-EXPLORATION

The general concept of post-exploration was already introduced in Figure 1. The main benefit of this
approach is that it increases our chance to step into new, unknown terrain. Based on this intuition, we
will now discuss new methodology to adaptively decide when to post-explore and for how long to
post explore.

When to post-explore As is directly visible from Figure 1, post-exploration is likely most beneficial
when performed from a state at the border of our currently explored region. After all, when we
perform post-exploration from a state in the middle of the known region, it will likely only waste
resources (and not discover anything new), while post-exploration from the border does have much
potential. We propose to use the novelty of the particular state as a measure of its location in the
explored region: when a state is only visited a few times, then it is more likely to reside at the border
of our explored region (although other measures, like a connectivity graph of the visited states, is
also possible).

We therefore propose to make the probability to post-explore in a particular reached goal g a function
of the number of times we have visited that particular goal. We therefore track the number of times
we visited a particular goal n(g), and specify the probability to post-explore (when to post-explore) as

ppe(g) =

✓
1

n(g)

◆�

,� 2 [0,1). (4)

Here, � is a temperature parameter that allow us to scale the amount of post-exploration. When � is
0, the agent will always post-explore after reaching the goal, while � !1 ensures the agent will
never post-explore.

How long to post-explore We will denote the number of steps an agent post-explores after reaching
a goal as npe. While Go-Explore always explored for a fixed number of steps (npe fixed), we
hypothesize that the duration of post-exploration may also influence performance. Intuitively, the
longer the path the agent took to reach the given goal, the more time it may want to spend in post-
exploration (since it is expensive to get back there). We therefore propose to let the agent post-explore
for a percentage ppe of the length of the whole trajectory:

npe = ppe · nep, (5)

where nep is the length of the goal-reaching part of the episode, and ppe is a hyperparameter of our
algorithm.

4

Under review as a conference paper at ICLR 2022

Figure 2: FourRooms, LavaCrossing and LavaGap. The latter two environments are procedurally
generated based on environment seeds.

Hindsight relabelling The agent in principle only observes a non-zero reward when it successfully
reaches the goal, which may not happen at every attempt. We may improve sample efficiency (make
more efficient use of each observed trajectory) through hindsight relabelling (Andrychowicz et al.,
2017). With hindsight, we imagine states in our observed trajectory were the goals we actually
attempted to reach, which allows us to extract additional information from them (‘if my goal had
been to get to this state, then the previous action sequence would have been a successful attempt’).
Pseudocode for hinsight relabelling is provided in Appendix A.4, Alg. 1. In particular, we choose
to always relabel 50% of the entire trajectory (goal reaching plus post-exploration), i.e., half of the
states in each trajectory are imagined as if they were the goal of that episode. We choose to always
relabel the full post-exploration part, because it likely contains the most interesting information, and
randomly sample the remaining relabelling budget from the part of the episode before the goal was
reached.

5 EXPERIMENTAL SETUP

We test our work on three MiniGrid environments (Chevalier-Boisvert et al., 2018), visu-
alized in Fig. 2. The MiniGrid-FourRooms-v0 only has a single lay-out, while the
MiniGrid-LavaCrossingS11N5-v0 and MiniGrid-LavaGapS7-v0 environments are
procedurally generated. Results on these latter two environments are averaged over 10 seeds, i.e.,
10 independently drawn instances of the task. For evaluation, we test the ability of the agent to
reach every possible state in the state space. This checks to what extend the goal-conditioned value
function is able to reach a given goal, when we execute the greedy policy (turn exploration off). All
our results report the total number of environment steps on the x-axis. Therefore, since an episode
with post-exploration takes longer, it will also contribute more steps to the x-axis (i.e., we report
performance against the total number of unique environment calls). Curves display mean performance
over time, including the standard error over 5 repetitions for each experiment. For all experiments, we
set ✏ = 0.1 (exploration during goal reaching), ✏pe = 1.0 (full exploration during post-exploration),
� = 0, and ppe = 0.5, unless otherwise noted. Full details on hyperparameters can be found in
Appendix. A.3.

6 RESULTS

We split our results up into five research questions: 1) does post-exploration work in general, 2) to
what extend should the agent also explore during goal reaching, 3) when should we post-explore,
4) for how long should we post-explore, and 5) is post-exploring also beneficial in continuing tasks,
where we sample a next goal without resetting the agent to an initial state. Each research questions
will be discussed below.

6.1 DOES POST-EXPLORATION WORK?

Fig. 3 compares an IMGEP agent with post-exploration to an IMGEP agent without exploration in
the three test environments. On all three environments the agent with post-exploration outperforms
the baseline agent significantly (on its average ability to reach an arbitrary goal in the state space).

5

Under review as a conference paper at ICLR 2022

Figure 3: IMGEP agents with (blue) and without (orange) post-exploration. Left: Performance on
FourRooms, with results average over three different values of ✏ (0, 0.1, 0.3). Middle: Performance
on LavaCrossing, averaged over 10 different environment seeds. Right: Performance in LavaGap,
averaged over 10 different environment seeds. Overall, agents with post-exploration outperform
agents without post-exploration.

Figure 4: Comparison of characteristic traces (a,b) and coverage (c,d) for agents without post-
exploration (a,c) and with post-exploration (b,d). Colour bars indicate the number of visitations,
green square indicates the selected goal in a particular episode. (a): Standard exploration towards
goal without post-exploration. (b): With post-exploration the agent manages to reach the next room.
(c): Coverage after 200k training steps without post-exploration. (d): Coverage after 200k training
steps with post-exploration. The boundary of the coverage with post-exploration clearly lies further
ahead.

A graphical illustration of the effect of post-exploration is provided in Fig. 4. Part a shows a
characteristic trace for an agent attempting to reach the green square without post-exploration, while
b shows a trace for an agent with post-exploration. In a, we see that the agent is able to reach the goal
square, but exploration subsequently stops, and the agent did not learn anything new. In part b, the
agent with post-exploration subsequently manages to enter the next room. This graph therefore gives
a practical illustration of our intuition from Fig. 1.

To further illustrate this effect, Fig. 4 c and d show a visitation heat map for the agent after 200k
training steps, without post exploration (c) and with post-exploration (d). The agent with post-
exploration (c) has primarily explored goals around the start region (in the bottom-right chamber).
The two rooms next to the starting room have also been visited, but the agent barely managed to get
into the top-left room. In contrast, the agent with post-exploration (d) has extensively visited the first
three rooms, while the coverage boundary has also been pushed into the final room already. This
effect translates to the increased goal-reaching performance of post-exploration visible in Fig. 3.

6.2 WHEN SHOULD THE AGENT EXPLORE?

Exploration and post-exploration play different roles in the IMGEP approach. Standard exploration
(during goal reaching) may help improve our ability to reach a particular goal, while post-exploration
especially helps to improve our ability to reach novel terrain. We therefore investigate whether
both types of exploration should be jointly present, and to what extend they contribute to overall
performance in our test environments.

Fig. 5, left, shows experiments on the FourRooms environments with (blue) and without (orange)
post-exploration, where we also vary the amount of exploration (✏ of an ✏-greedy policy) during goal
reaching. ✏ = 0 implies there is no exploration at all during goal reaching, while ✏ = 1 implies full
exploration (and therefore no exploitation at all during goal reaching).

6

Under review as a conference paper at ICLR 2022

In general, we see that post-exploration has a much stronger effect on performance than the amount of
exploration during goal reaching (the quantity that is typically tuned in (goal-based) RL experiments).
Only when we set ✏ = 1.0 (full exploration during goal reaching) do we lose performance, which of
course makes sense, since the agent then hardly manages to get back to the selected goal. Similar
results on other environments are shown in Appendix. A.

6.3 WHEN SHOULD THE AGENT POST-EXPLORE?

We next investigate when to actually post-explore, i.e., whether it is beneficial to make the probability
of post-exploration dependent on the novelty of a reached goal (Eq. 4). Results of these experiments
on the FourRooms environment are shown in Fig. 5, right. For clarity, � = 0 means that the agent
will always post-explore, while a higher value of � will decay the probability of post-exploration
with more visits, an effect that becomes stronger the further � increases.

We see that selective post-exploration (� = 0.01 and � = 0.05) slightly outperforms full post-
exploration (� = 0). This selective post-exploration decides to not post-explore when it is probably
not beneficial, and therefore saves it samples for a next episode. However, we should clearly not
overdo it, as a faster decrease in post-exploration probability (� = 1) clearly hurts performance. Note
that the curve of this agent becomes almost flat near the end, probably because the agent does not
post-explore anymore at all. Additional results on other environments are available in Appendix. A.

6.4 HOW LONG SHOULD THE AGENT POST-EXPLORE?

We next investigate whether the duration of post-exploration should be a fixed number (like in
Go-Explore), or should be a function of the duration of goal-reaching (Eq. 5). In the former case we
report a fixed npe (regardless of the length of the trajectory), while in the latter case we report the
used proportion ppe.

Fig. 6, left and middle, show the results of these experiments on FourRooms for different values of
npe and ppe. The left part of the graph shows the learning curves, in which we see that npe = 20 and
ppe = 0.8 achieve best performance, suggesting that both methods are on par. However, the middle
of Fig. 6, shows the total number of post-exploration steps (top) and total number of relabelling steps
(bottom) in each setting. This graph shows that ppe = 0.8 uses roughly as many post-exploration
steps as npe = 15, and way less than npe = 20. Therefore, the proportional post-exploration method
(ppe) does seem to be more effective at utilizing the post-exploration data.

6.5 DOES POST-EXPLORATION WORK IN CONTINUING ENVIRONMENTS?

Similar to Go-Explore, we investigated post-exploration primarily in the episodic setting (where
we reset an agent after a goal is reached, or after post-exploration has completed). However, many
specifications of goal-based RL assume a continuing task, in which there are no full resets, but the

Figure 5: Left: Performance of agents with different exploration factors ✏ with and without Post-
Exploration (PE) in the FourRooms environment. Adding slight exploration (✏ = (0.1, 0.3)) can
further improve the performance. Adding fully random exploration will lead to similar results with
ones without Post-Exploration. Right: Performance of agents with different � in the FourRooms
environment. � = 0 is always Post-Exploration. Selective Post-Exploration (� = (0.01, 0.05)) works
better than full Post-Exploration. Too aggressive � will hurt the performance.

7

Under review as a conference paper at ICLR 2022

Figure 6: Left: Two different ways for Post-Exploration in FourRooms Environment. Left: perfor-
mance of agents with different Post-Exploration methods. Blues are post-explore with percentage
of the whole trajectory (ppe) while oranges are post-explore certain steps (npe). Middle: the top
sub figure is total steps that agent post-explores with different Post-Exploration methods; the bot-
tom sub figure is the total steps of hindsight relabelling. Although we keep relabelling steps and
Post-Exploration steps similar for two methods, the percentage one performs better. For example,
ppe = 0.5 and npe = 10. Right: Performance of agents with and without post-exploration in the
non-episodic continuing FourRooms environment. Agents with post-exploration still outperform
agents without post-exploration, likely because the next goal directs agents back into known territory.

agent simply attempts to reach the next sampled goal from the current state. This does give the
standard agent (without post-exploration) the ability to make additional steps after reaching a goal,
but it will do so in the direction of an already set goal (which may direct it back into known territory,
instead of into new terrain). Fig. 6, right, shows results of these experiments. Again, post-exploration
outperforms the agent without post-exploration, although the effect is less pronounced compared to
the episodic setting. This confirms our hypothesis that setting a next goal is indeed not the same as
post-exploration, since the agent will likely just move back into known territory.

7 CONCLUSION AND FUTURE WORK

An intrinsically motivated agent not only needs to set interesting goals and be able to reach them, but
should also decide whether to continue exploration from the reached goal (‘post-exploration’). In
this work, we systematically investigated the benefit of post-exploration in the IMGEP framework.
Experiments in several MiniGrid environments show that post-exploration is beneficial, and may
even have a stronger effect on performance than tuning exploration during goal reaching (which is
usually tuned in RL experiments). According to our intuition, agent with post-exploration gradually
push the boundaries of their known region outwards, which allows them to reach a greater diversity
of goals. Moreover, we find that adaptive post-exploration, where we adjust when and for how long
we post-explore based on previous data, may further enhance this benefit. Finally, the benefit of
post-exploration is retained on continuing tasks, which shows that simply setting a next goal is not
the same as proper post-exploration.

The current paper studied post-exploration in the tabular setting, to better understand its basic
properties. In future work, post-exploration may be scaled up to higher-dimensional IMGEP problems
which require function approximation, a learned goal space, and more complex goal sampling
strategies. Moreover, our current implementation uses random post-exploration, which turned out
to already work reasonably well. Another interesting direction for future work is to post-explore in
a smarter way, for example by trying to set goals outside the known area, which was not possible
in the tabular setting, but would be possible when we use function approximation. Altogether,
post-exploration seems a promising direction for future RL exploration research.

8

Under review as a conference paper at ICLR 2022

REFERENCES

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay.
In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017.

Andres Campero, Roberta Raileanu, Heinrich Kuttler, Joshua B. Tenenbaum, Tim Rocktäschel,
and Edward Grefenstette. Learning with amigo: Adversarially motivated intrinsic goals. In
International Conference on Learning Representations, 2021.

Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic gridworld environment
for openai gym. https://github.com/maximecb/gym-minigrid, 2018.

Cédric Colas, Pierre Fournier, Mohamed Chetouani, Olivier Sigaud, and Pierre-Yves Oudeyer.
Curious: intrinsically motivated modular multi-goal reinforcement learning. In International
conference on machine learning, pp. 1331–1340. PMLR, 2019.

Cédric Colas, Tristan Karch, Olivier Sigaud, and Pierre-Yves Oudeyer. Intrinsically motivated
goal-conditioned reinforcement learning: a short survey. arXiv preprint arXiv:2012.09830, 2020.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. First return, then
explore. Nature, 590(7847):580–586, 2021.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning diverse skills without a reward function. 2018.

Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic goal generation for
reinforcement learning agents. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pp. 1515–1528. PMLR, 10–15 Jul 2018.

Silviu Pitis, Harris Chan, Stephen Zhao, Bradly Stadie, and Jimmy Ba. Maximum entropy gain
exploration for long horizon multi-goal reinforcement learning. In International Conference on
Machine Learning, pp. 7750–7761. PMLR, 2020.

Vitchyr H Pong, Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl, and Sergey Levine. Skew-fit:
State-covering self-supervised reinforcement learning. arXiv preprint arXiv:1903.03698, 2019.

Rémy Portelas, Cédric Colas, Katja Hofmann, and Pierre-Yves Oudeyer. Teacher algorithms for
curriculum learning of deep rl in continuously parameterized environments. In Conference on
Robot Learning, pp. 835–853. PMLR, 2020.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approximators.
In International conference on machine learning, pp. 1312–1320. PMLR, 2015.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

David Warde-Farley, Tom Van de Wiele, Tejas Kulkarni, Catalin Ionescu, Steven Hansen, and
Volodymyr Mnih. Unsupervised control through non-parametric discriminative rewards. In
International Conference on Learning Representations, 2019.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3):279–292, 1992.

9

https://github.com/maximecb/gym-minigrid

Under review as a conference paper at ICLR 2022

A APPENDIX

A.1 MORE RESULTS ON LAVACROSSING

Figure 7: Performance of agents with Post-Exploration with different exploration factor ✏ in
LavaCrossing. Adding exploration (✏ = 0.1) during goal reaching can improve the performance.
Each experiment in LavaCrossing is averaged over 10 different environment seeds and 5 repetitions.

Figure 8: Left: Performance of agents with different �. The selective Post-Exploration (� = 0.01)
slightly outperform full Post-Exploration (� = 0). Right: Performance of agents with different ppe.
More Post-Exploration steps lead to better performance.

A.2 MORE RESULTS ON LAVAGAP

Figure 9: Performance of agents with different exploration factors ✏ in LavaGap. Adding exploration
during goal reaching does not improve the overall performance. We think that’s because the LavaGap
environment is too small so that the exploration can barely bring the agent to new states. Each
experiment in LavaCrossing is averaged over 10 different environment seeds and 5 repetitions.

10

Under review as a conference paper at ICLR 2022

Figure 10: Left: Performance of agents with different �. Selective Post-Exploration (� = 0.01)
outperforms full Post-Exploration (� = 0). Right: Performance of agents with different ppe.

A.3 HYPER-PARAMETER SETTINGS

All hyper-parameters we used in this work are shown in Tab. 2. Learning rate ↵ and discount factor �
are for Q-learning update (Eq. 2). � is the temperature for selective Post-Exploration (Eq. 4). ✏ is the
exploration factor in ✏-greedy policy. ppe is the percentage of the whole trajectory that the agent will
Post-Explore. npe is the constant number of steps the agent will Post-Explore. Detailed explanation
of each parameters can be found in corresponding sections.

Parameters Values

learning rate 0.1
discount factor 0.99

� 0, 0.01, 0.05, 1
✏ 0, 0.1, 0.3, 1
ppe 0.1, 0.5, 0.8
npe 10, 15, 20

Table 2: All hyper-parameters we used in this work.

A.4 ALGORITHMS

Alg. 2 is the IMGEP framework we use in this work, where the red part indicates the extension with
post-exploration (without the red part, the algorithm simply reduces to standard IMGEP). Alg. 1
shows how we relabel the trajectory and perform update on the relabelled data.

Algorithm 1 Single hindsight relabelling
Initialize: Episode M = {g, s0, a0, r0, s1, a1...}, goal-conditioned value function Q(s, a, g),
learning rate ↵ 2 R+, total number of relabelled goals k.

repeat k times:
i set-index-to-label-as-goal() {avoid duplicates over repetitions}
g = si {set hindsight goal}
for t in 0 to (i� 1):

rt = st=g

Q̂(st, at, g) Q̂(st, at, g) + ↵ · [rt + � ·maxa Q̂(st+1, a, g)� Q̂(st, at, g)]

11

Under review as a conference paper at ICLR 2022

Algorithm 2 IMGEP Q-learning with post-exploration and hindsight (red part is post-exploration)

Initialize: Goal-conditioned value function Q̂(s, a, g), environment Env, episode memory M , goal
space G, the number of post-exploration steps npe, goal-conditioned reward function Rg(s, a, s0),
the probability distribution of a goal g being post-explored ppe(g), learning rate ↵ 2 R+, number
of hindsight relabels k.
while training budget left do

g ⇠ G {sample a goal g from G}
s ⇠ p0(s) {reset environment}
M {}
while s not terminal and g 6= s do

a e-greedy(Q̂(s, a, g))
s0 Env.step(a) {simulate environment}
r Rg(s, a, s0) {goal-conditioned reward}
Q̂(s, a, g) Q̂(s, a, g) + ↵ · [r + � ·maxa0 Q̂(s0, a0, g)� Q̂(s, a, g)]
M.append(hs, a, r, s0, gi)
G.update(s0) {Possibly augment goal space with new observation}
s s0 {� ⇠ Uniform[0,1]}

end while

if g is reached and �  ppe(g) then

for 1 to npe do

a = RandomAction() {Post-exploration has random action selection}
s0 = Env.step(a)
r = 0, g = None

M.append(hs, a, r, s0, gi)
s s0

end for

end if

Hindsight(M ,Q̂(s, a, g), ↵, k) { Alg. 1 }
end while

12

	Introduction
	Related Work
	Background
	Methods
	IMGEP
	Post-exploration

	Experimental Setup
	Results
	Does post-exploration work?
	When should the agent explore?
	When should the agent post-explore?
	How long should the agent post-explore?
	Does post-exploration work in continuing environments?

	Conclusion and Future Work
	Appendix
	More results on LavaCrossing
	More results on LavaGap
	Hyper-parameter Settings
	Algorithms

