
Connecting Sciences

H. Jaap van den Herik1, Aske Plaat1, Jan Kuipers2, Jos A.M. Vermaseren2

1Tilburg University, Tilburg center for Cognition and Communication, Warandelaan 2, 5037 AB Tilburg, The Netherlands
2Nikhef Theory Group, Science Park 105, 1098 XG Amsterdam, The Netherlands

jaapvandenherik@gmail.com

Keywords: Artificial Intelligence; High Energy Physics; Horner’s rule; Monte Carlo Tree Search; Go; chess

Abstract: Real progress in science is dependent on novel ideas. In Artificial Intelligence, for a long time (1950-1997)
a prevailing question was: can a computer chess program defeat the human World Champion? In 1997 this
turned out to be the case by using a supercomputer employing the minimax method with many enhancements,
such as opponent modeling. The next question was: can we use similar techniques to outperform the top
grandmasters in Go. After some ten years of intensive research the answer was that minimax could not be
successfully transferred to the game of Go. In the article, we will review briefly why this transfer failed.
Hence, a new method for Go was developed: MCTS (Monte Carlo Tree Search). The results for MCTS in Go
are rather promising. At first glance it is quite surprising that MCTS works so well. However, deeper analysis
revealed the reasons for this success.

Since the field of AI-research claims to be a fruitful test bed for techniques to be applied in other ar-
eas one might look in which areas minimax or MCTS are applicable. A possible and unexpected answer
is the application area of solving categories of high energy physics equations. In that area the derivation
of the formulas is often performed by the (open source) computer algebra system FORM developed by Jos
Vermaseren. The derivation is usually hand guided (human decisions are needed) and becomes difficult when
there are many possibilities of which only a few lead to a useful solution. The intriguing question is: can we
make the computer select the next step? Our idea is that the next step can be made by using MCTS.

In the article we show the first attempts which prove that this idea is realizable. It implies that games
and solving high energy physics equations are connected by MCTS. A first unexpected result is showing the
existence of connecting sciences. Equally unexpected is the second result. It is obtained by using MCTS
for the improvement of multivariate Horner schemes when converting large formulas to code for numerical
evaluation. From the viewpoint of MCTS this is an uncomplicated application and thus it is possible, by
varying parameters, to see how MCTS works. It shows that the new ideas can function as cross-fertilization
for two, and maybe more, research areas. Hence, the future lies in connecting sciences.

1 Introduction

In 1965, the Soviet mathematician Aleksandr Kro-
nrod called chess the Drosophila Melanogaster of Ar-
tificial Intelligence [26]. At that time, chess was a
convenient domain that was well suited for experi-
mentation. Moreover, dedicated research programs
all over the world created quick progress. In only
three decades the dream of beating the human world
champion was realized. On May 11, 1997 Garry Kas-
parov, the highest rated human chess player ever, was
defeated by the computer program DEEP BLUE, in a
highly publicized six game match in New York.

So, according to some, the AI community lost

their Drosophila in 1997, and started looking for a
new one. The natural candidate was an even harder
game: the oriental game of Go. Go is played on a
19× 19 board, see Fig. 1. Its state space is much
larger than the chess state space. The number of legal
positions reachable from the start of the game of Go
is estimated to be O(10171) [1], whereas for chess this
number is “just” O(1046) [14]. If chess is a game of
tactics, then Go is a game of strategy. The standard
minimax approach that worked so well for chess (and
for other games such as checkers, Awari and Oth-
ello) did not work well for Go. Therefore, Go was
well equipped to become the new Drosophila. For
decades, computer Go programs played at the level



Figure 1: A Go board

of weak amateur. After 1997, the research effort for
computer Go intensified. Initially, progress was slow,
but in 2006, a breakthrough occurred. This break-
through and some of its consequences, are the topic
of this article.

The remainder of this contribution is structured as
follows. First, the techniques that worked so well
in chess will be discussed briefly. Second, the new
search method that caused the breakthrough in play-
ing strength will be described. Third, an example of
transfer of this method to the domain of high energy
physics will be given. Then, a successful MCTS ap-
plication to Horner’s rule of multivariate polynomials
will be shown. We complete the article by a discus-
sion on the future of connecting sciences.

2 The Chess Approach

The heart of a chess program consists of two parts:
(1) a heuristic evaluation function, and (2) the min-
imax search function. The purpose of the heuristic
evaluation function is to provide an estimate of how
good a position looks, and sometimes of its chances
of winning the game [16]. In chess this includes items
such as the material balance (capturing a pawn is
good, capturing a queen is usually very good), mobil-
ity, and king safety. The purpose of the search func-
tion is to look ahead: if I play this move, then my
opponent would do this, and then I would do that, and
. . . , etc. By searching deeper than the opponent the
computer can find moves that the heuristic evaluation
function of the opponent mis-evaluates, and thus find
the better move.

Why does this approach fail in Go? Originally,

the main reason given was that the search tree is so
large. In chess, the opening position has 20 legal
moves (the average number of moves is 38 [17, 21].
In Go, this number is 361 (and thereafter it decreases
with one per move). However, soon it turned out that
an even larger problem was posed by the construc-
tion of a good heuristic evaluation function. In chess,
material balance, the most important term in the eval-
uation function, can be calculated efficiently and hap-
pens to be a good first heuristic. In Go, so far no good
heuristics have been found. The influence of stones
and the life and death of groups are generally con-
sidered to be important, but calculating these terms is
time consuming, and the quality of the resulting eval-
uation is a mediocre estimator for the chances of win-
ning a game.

Alternatives

Since a full-width look-ahead search is infeasible
most early Go programs used the knowledge-based
approach: (1) generate a limited number of likely
candidate moves, such as corner move, attack/defend
groups, connecting moves, and ladders, and (2) search
for the best move in this reduced state space [28]. The
Go heuristics can be generalized in move patterns,
which can be learned from game databases [37, 38].
A second approach was to use neural networks, also
with limited success [18].

3 Monte Carlo

In 1993, the mathematician and physicist Bernd
Brügmann was intrigued by the use of simulated an-
nealing for solving the traveling salesman problem.
If randomized local search could find shortest tours,
then maybe it could find good moves in Go. He wrote
a 9×9 Go program based on simulated annealing [7].
Crucially, the program did not have a heuristic eval-
uation function. Instead it played a series of random
moves until the end of the game was reached. Then
the final position was scored as either win or loss.
This was repeated many times, and the result was av-
eraged. So instead of searching a tree, Brügmann’s
program searched paths, and instead of using the min-
imax function to back-up the scores, the program took
the average of the final scores. The program had no
heuristics, except not to fill its own territory. Could
this program be expected to play anything but mean-
ingless random moves?

It turned out that it could. Although it certainly
did not play great or even good moves, the moves
looked better than random. Brügmann concluded that



by just following the rules of the game the average of
many thousands of plays yielded better-than-random
moves.

At the time, this attempt at connecting the sciences
of physics and artificial intelligence appeared to be a
curiosity. Indeed, the hand-crafted knowledge-based
programs performed significantly better. For the next
ten years not much happened with Monte Carlo Go.

Monte Carlo Tree Search

Then, in 2003, Bouzy and Helmstetter reported on
further experiments with Monte Carlo playouts, again
stressing the advantage of having a program that can
play Go moves without the need for a heuristic eval-
uation function [2, 5]. They tried adding a small 2-
level minimax tree on top of the random playouts, but
this did not improve the performance. In their con-
clusion they refer to other works that explored sta-
tistical search as an alternative to minimax [23, 33]
and concluded: “Moreover, the results of our Monte
Carlo programs against knowledge-based programs
on 9×9 boards and the ever-increasing power of com-
puters lead us to think that Monte Carlo approaches
are worth considering for computer Go in the future.”

They were correct.
Three years later a breakthrough occurred with

the introduction of MCTS and UCT. Coulom [15]
described Monte Carlo evaluations for tree based
search, specifying rules for node selection, expansion,
playout and backup. Chaslot et al. coined the term
Monte Carlo Tree Search or MCTS, in a contribution
that received the ICGA best publication award [11].
One year later Kocsis and Szepesvari [24] laid the
theoretical foundation for a selection rule that bal-
ances exploration and exploitation and that is guar-
anteed to converge to the minimax value. This selec-
tion rule is termed UCT, short for upper confidence
bounds for multi-armed bandits [4] applied to trees
(see Eqn. (4)). Gelly et al. [20] use UCT in a Go pro-
gram called MoGo, short for Monte Carlo Go, which
was instantly successful. Chaslot et al. [10] also de-
scribed the application of MCTS in Go, reporting that
it outperformed minimax, and mentioned applications
beyond Go.

Since 2006 the playing strength of programs im-
proved rapidly to the level of strong amateur/weak
master (2-3 dan). The MCTS breakthrough was con-
firmed when, for the first time, a professional Go
player was beaten in a single game. In August 2008
at the 24th Annual Go Congress in Portland, Oregon,
MOGO-TITAN, running on 800 cores of the Huygens
supercomputer in Amsterdam, beat 8P dan profes-
sional Kim MyungWan with a 9-stone handicap [13].

The main phases of MCTS are shown in Fig. 2.
They are explained briefly below.

There has been a large research interest in MCTS.
Browne et al. [8] provides an extensive survey, refer-
encing 240 publications.

MCTS basics

MCTS consists of four main steps: selection, expan-
sion, simulation (playout), and backpropagation (see
Fig. 2). The main steps are repeated as long as there
is time left. Per step the activities are as follows.

(1) In the selection step the tree is traversed from
the root node until we reach a node, where a child is
selected that is not part of the tree yet.

(2) Next, in the expansion step the child is added
to the tree.

(3) Subsequently, during the simulation step
moves are played in self-play until the end of the
game is reached. The result R of this—simulated—
game is +1 in case of a win for Black (the first player
in Go), 0 in case of a draw, and −1 in case of a win
for White.

(4) In the back-propagation step, R is propagated
backwards, through the previously traversed nodes.
Finally, the move played by the program is the child
of the root with the best win/visit count, depending on
UCT probability calculations (to be discussed briefly
below).

Crucially, the selection rule of MCTS allows it to
balance (a) exploitation of parts of the tree that are
known to be good with (b) exploration of parts of the
tree that have not yet been explored.

Where MCTS originally used moves in the play-
out phase that are strictly random, better results are
obtained by playing moves that use small amounts
of domain knowledge. Many programs use pattern
databases for this purpose [20]. The high levels of
performance that are currenlty achieved with MCTS
depend to a large extent on enhancements to the ex-
pansion strategy, simulation phase, and the paral-
lelization techniques. (So small amounts of domain
knowledge are needed after all, albeit not in the form
of a heuristic evaluation function.)

Applications

The striking performance of MCTS in Go has led re-
searchers to apply the algorithm to other domains.
The ability of MCTS to find “bright spots” in the state
space without relying on domain knowledge has re-
sulted in a long list of other applications, for exam-
ple, for proof-number search [34]. Moreover, MCTS



Figure 2: Monte Carlo Tree Search scheme

has been proposed as a new framework for game-
AI for video games [12], for the game Settlers of
Catan [36], for the game Einstein würfelt nicht [29],
for the Voronoi game [6], for Havannah [32], for
Amazons [30], and for single player applications [35].

4 High Energy Physics

One area where finding solutions is important, and
where good heuristics are hard to find, is equation
solving for high energy physics. In this field large
equations are needed to be solved quickly. Standard
packages such as Maple and Mathematica are often
too slow, and a specialized high-efficiency package
called FORM is used [31].

In particle physics and quantum field theory
(QFT) calculations are needed for a detailed compar-
ison between experimental data and theory. It is only
natural to demand that the theoretical results are at
least as accurate as the data, because usually the data
are much more expensive to obtain. One prominent
example here is the measurement and the Quantum
Electro Dynamics calculation of the electric dipole
moment of the electron (also called g−2) which gives
agreement between theory and data to almost 10 dig-
its [3]. In Quantum Chromodynamics (QCD), due to
its larger coupling constant and a larger number of
Feynman diagrams, currently the best accuracies are
in the few percent range. With the advent of the new
Large Hadron Collider (LHC) at CERN, which is ex-
pected to measure many reactions to the one percent
range, it is essential that the accuracy in QFT calcula-
tions is drastically improved beyond the current state
of the art.

Although there are nowadays successful nondi-
agrammatic methods for certain categories of reac-

tions, the standard method for calculations in QFT
is still by means of Feynman diagrams. These de-
scribe reactions pictorially, based on the terms that are
present in the formulas describing the theory. A per-
turbative expansion in terms of the strength of the in-
teractions corresponds to the number of closed loops
in the diagrams. Hence, a more accurate calcula-
tion will involve diagrams with more loops. Each
loop introduces a degree of freedom that is the four-
momentum of the loop.

The number of possible diagrams increases more
than exponentially with the number of loops and also
the degree of difficulty to calculate them depends very
strongly on the number of loops (Fig. 3).

There are various ways to calculate Feynman di-
agrams, all of which have a limited range of appli-
cation. For the type of computations we envisage
the best method is currently the integration-by-parts
method (IBP). The integration here is the integration
over the four-momenta related to the loops. As an
example, consider the calculation of a reaction that
was calculated in past years (1995-2004) [27]. This
calculation was needed for a more accurate determi-
nation of the distribution of quarks and gluons inside
the proton which in turn is needed by all precision cal-
culations of reactions at the LHC in Geneva. The cal-
culation involved O(10000) Feynman diagrams with
three loops, distributed over some 200 topologies. For
each topology 20-30 equations were determined that
related diagrams with different powers of the propa-
gators to each other. The next step was to combine
and apply these equations in such an order that the 14
parameters are reduced to either zero or one. Combin-
ing equations so that the new equations have fewer pa-
rameters, can result in rather lengthy equations (more
than 1000 lines) and thus this work was done by com-
puter, using the FORM program. The approach was as
follows.



Figure 3: Examples of Feynman diagrams with zero, one and two loops. The different types of lines represent different
particles.

1. The equations are generated by a FORM program.

2. The equations are inspected.

3. One of the equations to use is selected and a few
lines to the FORM program are added to substitute
it in the other equations.

4. The FORM program is run. This may take any-
where from a few seconds to up to many minutes
when we are working on the very last equations.

5. The output is inspected. If satisfactory, we con-
tinue with step 2, unless we are done already. If
the result is not satisfactory then the code of the
last phase has to be undone and another equation
must be tried. Maybe we have to backtrack by
much more than one phase. With bad luck we may
have to start over again.

Future Research

In many cases this approach led to a satisfactory so-
lution, even though the work for a single topology
might take anywhere from hours to weeks. Extend-
ing the same calculation to one additional loop would
increase the number of topologies to more than 1000,
the number of parameters would increase by 6 and the
number of equations would go to 30-40.

Without extra levels of automatization such cal-
culations are currently impossible. We believe that
MCTS can provide some of the needed levels of au-
tomization. Connecting the science of artificial intel-
ligence with physics is future research which we be-
lieve has a promising future ahead.

5 Horner’s rule for multivariate
polynomials

The research on MCTS in FORM was started with
work on improving the speed of the evaluation of mul-
tivariate polynomials. Applying MCTS to this prob-

lem resulted in an unexpected improvement, reported
in [25]. It is discussed here as an illustration of the
usefulness of Go as the Drosophila of AI, as in in-
triguing way of connecting the sciences of artificial
intelligence and mathematics. As part of this work a
sensitivy analysis of MCTS was performed, which is
reported here.

Polynomial evaluation is a frequently occurring
part of equation solving. Optimizing its cost is im-
portant. Finding more efficient algorithms for poly-
nomial evaluation is a classic problem in computer
science. For single variable polynomials, Horner’s
method provides a scheme for producing a computa-
tionally efficient form. It is due to Horner (1819) [19],
although references to the method go back to the 3rd
century Chinese mathematician Liu Hui. For multi-
variate polynomials Horner’s method is easily gen-
eralized but the order of the variables is unspeci-
fied. Traditionally greedy approaches such as us-
ing most-occurring variable first are used. This sim-
ple approach has given remarkably efficient results
and finding better approaches has proven difficult [9].
Horner’s rule is a convenient application to perform
experiments that provide insight into how MCTS
works.

For polynomials in one variable, Horner’s method
provides a computationally efficient evaluation form:

a(x) =
n

∑
i=0

aixi = a0 + x(a1 + x(a2 + x(· · ·+ x ·an))).

(1)
With this representation a dense polynomial of degree
n can be evaluated with n multiplications and n addi-
tions, giving an evaluation cost of 2n.

For multivariate polynomials Horner’s method
must be generalized. To do so one chooses a vari-
able and applies Eqn. (1), treating the other vari-
ables as constants. Next, another variable is chosen
and the same process is applied to the terms within
the parentheses. This is repeated until all variables
are processed. As an example, for the polynomial



a = y− 6x+ 8xz+ 2x2yz− 6x2y2z+ 8x2y2z2 and the
order x < y < z this results in the following expres-
sion

a = y+ x(−6+8z+ x(y(2z+ y(z(−6+8z))))). (2)

The original expression uses 5 additions and 18 multi-
plications, while the Horner form uses 5 additions but
only 8 multiplications. In general, applying a Horner
scheme keeps the number of additions constant, but
reduces the number of multiplications.

After transforming a polynomial with Horner’s
method, the code can be further improved by perform-
ing a common subexpression elimination (CSE). In
Eqn. (2), the subexpression −6 + 8z appears twice.
Eliminating the common subexpression results in the
code

T =−6+8z
a = y+ x(T + x(y(2z+ y(zT )))), (3)

which uses only 4 additions and 7 multiplications.
Horner’s rule reduces the number of multiplica-

tions, CSE also reduces the number of additions.
Finding the optimal order of variables for the

Horner scheme is an open problem for all but the
smallest polynomials. Different orders impact the
cost evaluating the resulting code. Simple variants
of local search have been proposed in the literature,
such as most-occurring variable first, which results in
the highest decrease of the cost at that particular step.

MCTS is used to determine an order of the vari-
ables that gives efficient Horner schemes in the fol-
lowing way. The root of the search tree represents
that no variables are chosen yet. This root node has n
children. Each representing a choice for variables in
the trailing part of the order. n equals the depth of the
node in the search tree. A node at depth d has n− d
children: the remaining unchosen variables.

In the simulation step the incomplete order is com-
pleted with the remaining variables added randomly.
This complete order is then used for Horner’s method
followed by CSE. The number of operators in this op-
timized expression is counted. The selection step uses
the UCT criterion with as score the number of opera-
tors in the original expression divided by the number
of operators in the optimized one. This number in-
creases with better orders.

In MCTS the search tree is built in an incremental
and asymmetric way, see Fig. 4. During the search
the traversed part of the search tree is kept in mem-
ory. For each node MCTS keeps track of the number
of times it has been visited and the estimated result
of that node. At each step one node is added to the
search tree according to a criterion that tells where
most likely better results can be found. From that
node an outcome is sampled and the results of the

node and its parents are updated. This process is il-
lustrated in Fig. 2.

Selection During the selection step the node
which most urgently needs expansion is selected.
Several criteria are proposed, but the easiest and most-
used is the UCT criterion [24]:

UCTi = 〈xi〉+2Cp

√
2logn

ni
. (4)

Here 〈xi〉 is the average score of child i, ni is the num-
ber of times child i has been visited and n is the num-
ber of times the node itself has been visited. Cp is
a problem-dependent constant that should be deter-
mined empirically. Starting at the root of the search
tree, the most-promising child according to this crite-
rion is selected and this selection process is repeated
recursively until a node is reached with unvisited chil-
dren. The first term of Eqn. (4) biases nodes with pre-
vious high rewards (exploitation), while the second
term selects nodes that have not been visited much
(exploration). Balancing exploitation versus explo-
ration is essential for the good performance of MCTS.

Expansion The selection step finishes with a node
with unvisited children. In the expansion step one of
these children is added to the tree.

Simulation In the simulation step a single possi-
ble outcome is simulated starting from the node that
has just been added to the tree. This simulation can
consist of generating a complete random outcome
starting from this node or can be some known heuris-
tic for the search problem. The latter typically works
better if specific knowledge of the problem is avail-
able.

Backpropagation In the backpropagation step the
results of the simulation are added to the tree, specifi-
cally to the path of nodes from the newly-added node
to the root. Their average results and visit count are
updated.

This MCTS cycle is repeated a fixed number of
times or until the computational resources are ex-
hausted. After that the best result found is returned.

Sensitivity to Cp and N

The performance of MCTS-Horner followed by CSE
has been tested by implementing in FORM [31].
MCTS-Horner was tested on a variety of different
multivariate polynomials, against the currently best
algorithms. For each test, polynomial MCTS found
better variable orders, typically with half the number
of operators than the expressions generated by pre-
vious algorithms. The results are reported in detail
in [25].



0

20

21 22 23 24 25 26 27 28 29 30 31 32 33 34

21

20 22 23

22

20 21

23

20 21

24

20 21 22

25

20 21 22 23 24

20

26

20

27

20

28

20 21

29 30 31

20

32 33 34

20

26

20 21 22 23

27

20 21 22 23 24 25

28

20 21 22 23 24 25 26 27 29 30 31 32 33

29

20

21

21 22 23

20

24

20

25 26 27

20

28

20

30

20

31 32 33 34

30

20

21

21

20

22

20

23

20

24

20

25

20

26

20

27

20 21 22

28 29

20

21 22 23

21

20 22 23

22 23

20

24

20 21 22 23

25

20 21 22

26

20 21

27

20

28

20 21

31

20 21 22

32

20

21 22 23 24

21 22

25 26

21

27

21

28

21

31

21 22

33

21

34

21

21

20 22 23

22

20 21

23

20 21

24

20

21 22

21 22

20

23

20

25

20 21 22

26

20 21

27

20

28

20 21 22

31

20 21 22

33

20 21

34

20 21 22

25

20

21

21

20

22 23

20

24

20 21

26

20

27

20

28

20

31

20 21 22

33

20 21 22

34

20

26

20 21 22 23 24 25 27

27

20 21 22 23

28

20 21 22 23

31

20

21 22 23

21

20 22

22

20

23

20

24

20 21 22

25

20 21 22 23

26

20 21

27

20

28

20 21

33

20 21 22

34

20 21

33

20

21

22

22

21

23

21

24

21 22

25

21

26

21 22

27

21

28

21 22

31

21 22 23

34

21

21

20 22 23

22

20 21 23 24

23

20 21 22 24

24

20

21

21 22

20

23 25

20 21 22

26

20 21

27

20

28

20 21

31

20 21 22

34

20

25

20

21

21

20

22

20

23 24

20

26

20

27

20

28

20 21

31

20 21

34

20

26

20

21

21

20

22 23 24 25

20

27 28 31 34

27

20 21 22

28

20

21 22

21

20 22

22

20

23 24

20 21

25

20

26

20 21

27

20

31

20 21

34

20 21

31

20

21

22 23

22

24

22

25

22

26

22

27

22

28

22

34

22

22

21 23

21

24

21

25

21

26 27 28 34

23

21 22

21

24

21

25 26

21

27 28 34

24

21

22 23

22

21

23

21

25

21 22

26

21 22

27

21

28

21 22

34

21

25

21

22

22

21

23

21

24

21 22

26

21 22

27

21

28

21 22

34

21

26

21

22

22

21

23

21

24

21 22

25

21

27

21

28

21 22

34

21

27

21

22

22 23 24 25

21

26

21

28

21

34

21

28

21

22 23

22

21

23

21

24

21 22

25

21 22

26

21 22

27

21

34

21

34

21

22

22

21

23 24

21

25

21

26

21

27 28

21

21

20

22 23

22

20

23

20

24

20 22

25

20

26

20 22

27

20

28

20 22

34

20

22

20 21 23 24 25 26 27 28 34

23

20 21 22 24 25 26 27 28 34

24

20

21 22 23 25

21

26

21

27 28

21

34

21

20 22 23 25 26

22

20 21 23 25

23

20 21 22 25 26

25

20

21

21 22 23 26

20

27

20

28 34

26

20 21 22 23 25

20

27 28 34

27

20 21 22 23

28

20 21

20

22 23 25 26

20

27 34

34

20 21 22 23 25 26

25

20

21 22 23 24

21

26

21

27 28

21

34

21

20 22 23 24 26 27

22

20 21 23 24

23

20 21 22 24

24

20

21

21

20

22 23 26

20

27 28

20

34

26

20 21 22 23 24 27 28 34

27

20 21 22 23 24

28

20

21

21 22 23 24 26

20

27 34

34

20 21 22 23 24 26

26

20

21 22 23 24 25 27

21

20 22 23

22

20 21

23

20 21

24

20 21 22 23 25

25

20 21 22 23 24

27

20 21 22

28

20 21 22 23 24

34

20 21 22 23

27

20

21

21

20

22 23

20

24

20

25

20

26

20

28

20

34

20

28

20

21 22 23 24 25 26 27

21

20 22 23

22

20 21 23

23

20 21

24

20 21 22 23 25 26 27

25

20 21 22 23 24 26 27

26

20 21 22 23 24 25 27

27

20 21 22 23

34

20 21 22 23

34

20

21 22 23

21

20 22

22

20

23

20

24

20 21 22

25

20 21 22

26

20 21

27

20 21

28

20 21 22

34

20 21 22 23

34

20 21 22 23

33

20 21 22 23

34

20 21

31

20 21 22

32

20 21 22

33 34

20 21

31

20 21 22 23 24

32

20 21

20

22 23

20

24 25 26

20

27

20

28

20

29

20 21

30

20 21 22

31 33 34

33

20 21 22 23 24 25 26

34

20 21 22 23 24 25 26

Figure 4: The asymmetric search through a MCTS search tree during the search for an efficient Horner scheme.

The experiments showed that the effectiveness of
MCTS depends heavily on the choice for the exploita-
tion/exploration constant Cp of Eqn. (4) and on the
number of tree expansions (N).

When Cp is small, MCTS favors parts of the tree
that have been visited before because the average
score was good (“exploitation”). When Cp is large,
MCTS favors parts of the tree that have not been vis-
ited before (“exploration”).

Horner is an application domain that allows rela-
tively quick experimentation. To gain insight into the
sensitivity of the performance in relation to Cp and
to the number of expansions a series of scatter plots
have been created, which give some explanatory in-
sight into the nature of this relatively new search al-
gorithm.

The results of MCTS followed by CSE, with dif-
ferent numbers for tree expansions N as a function of
Cp are given in Fig. 5 for a large polynomial from
HEP, called HEPpoly. For equal values of Cp differ-
ent results are produced because of different seeds of
the Monte Carlo random number generator. On the y-
axis of each graph the number of operations of the re-
sulting expression is plotted. The lower this value, the
better the algorithm performs. The lowest value found
for this polynomial by MCTS+CSE is an expression
with slightly more than 4000 operations. This min-
imum is achieved in the case with 3000 tree expan-
sions for a value of Cp of between 0.7 and 1.2. Dots
above this minimum represent a sub-optimal search
result.

For small values of the numbers of tree expan-
sions MCTS cannot find a good answer. With 100
expansions the graph looks almost random. Then,
as we move to 300 tree expansions per data point,
some clearer structure starts to emerge, with a min-
imum emerging at Cp ≈ 0.6. With more tree expan-
sions the picture becomes clearer, and the value for Cp
for which the best answers are found becomes higher,
the picture appears to shift to the right. For really low
numbers of tree expansions there is no discernible ad-

vantage of setting the exploitation/exploration param-
eter at a certain value. For slightly larger numbers of
tree expansion, but still low, MCTS needs to exploit
each good result that it obtains. As the number of
tree expansions grows larger, MCTS achieves better
results when its selection policy is more explorative.
It can afford to look beyond the narrow tunnel of ex-
ploitation, to try a few exploration beyond the path
that is known to be good, to try to get out of local
optima. For the graphs with tree expansions of 3000,
10000 and 30000 the range of good results for Cp be-
comes wider, indicating that the choice between ex-
ploitation/exploration becomes less critical.

For small values of Cp, such that MCTS behaves
exploitatively, the method gets trapped in one of the
local minima as can be seen from scattered dots that
form “lines” in the left-hand side of the figure. For
large values of Cp, such that MCTS behaves explo-
ratively, many of the searches do not lead to the global
minimum found as can be seen from the cloud of
points on the right-hand side. For intermediate val-
ues of Cp ≈ 1 MCTS balances well between exploita-
tion and exploration and finds almost always a Horner
scheme that is very close to the best one known to us.

The results of the test with HEPpoly for different
numbers of tree expansions are shown in Fig. 6, re-
produced from [25]. For small numbers of tree expan-
sions low values for the constant Cp should be chosen
(smaller than 0.5). The search is then mainly in ex-
ploitation mode. MCTS quickly searches deep in the
tree, most probably around a local minimum. This
local minimum is explored quite well, but the global
minimum is likely to be missed. With higher num-
bers of tree expansions a value for Cp in the range
[0.5,2] seems suitable. This range gives a good bal-
ance between exploring the whole search tree and ex-
ploiting the promising nodes. Very high values of Cp
appear to be a bad choice in general, proven nodes are
not exploited anymore so frequently. Here we note
that these values hold for HEPpoly, and that different
polynomials give different optimal values for Cp and



0.01 0.1 1 10

4000

5000

6000

N
u
m
b
er

of
op

er
at
io
n
s

Cp
0.01 0.1 1 10

4000

5000

6000

N
u
m
b
er

of
op

er
at
io
n
s

Cp

0.01 0.1 1 10

4000

5000

6000

N
u
m
b
er

of
op

er
at
io
n
s

Cp
0.01 0.1 1 10

4000

5000

6000
N
u
m
b
er

of
op

er
at
io
n
s

Cp

0.01 0.1 1 10

4000

5000

6000

N
u
m
b
er

of
op

er
at
io
n
s

Cp
0.01 0.1 1 10

4000

5000

6000

N
u
m
b
er

of
op

er
at
io
n
s

Cp

Figure 5: Six scatterplots for different numbers of expansions: n=100, 300, 1000, 3000, 10000, 30000, left to right, top to
bottom



0.01 0.1 1 10
4000

5000

6000

N
u
m
b
er

of
op

er
at
io
n
s

Cp

Best value found

N=100
N=300
N=1000
N=3000
N=10000
N=30000

Figure 6: The performance of MCTS Horner as function of
the exploitation/exploration constant Cp and the number of
tree expansions N. For N = 3000 (green dots) the optimum
is Cp ≈ 1.

N. The different values for Cp are so far determined
by trial and error. Automatic tuning of Cp is part of
ongoing research.

6 Discussion

From the beginning of AI in 1950, chess has been
called the Drosophila of AI. It was the testbed of
choice. Many of the findings from decades of com-
puter chess research have found their way to other
fields, such as protein sequencing, natural language
processing, machine learning, and high performance
search [22]. After DEEP BLUE had defeated Garry
Kasparov, research attention shifted to Go.

For Go, no good heuristic evaluation function
seems to exist. Therefore, a different search paradigm
was invented: MCTS. The two most prevailing char-
acteristics are: no more minimax, no need for a
heuristic evaluation function. Instead, MCTS uses (1)
the average of random playouts to guide the search,
and (2) by balancing between exploration and ex-
ploitation, it appears to be able to detect by itself
which areas of the search tree contain the green
leaves, and which branches are dead wood. Having
a “self-guided” (best-first) search, without the need
for a domain dependent heuristic, can be highly use-
ful. For many other application domains the con-
struction of a heuristic evaluation function is an ob-
stacle, too. Therefore we expect that there are many
other domains that could benefit from this technol-
ogy, and, indeed, many other applications have al-

ready been found their way (see, for example, [6, 12,
29, 30, 32, 34–36]). In this paper two links have been
discussed, viz. (1) with High Energy Physics, and (2)
with Horner’s rule. Finding better variable orders for
the classic multivariate Horner’s scheme algorithm is
an exciting first result [25].

In summary, scientific research has branched out
into many fields and subfields. As we see communi-
cation between disparate subfields can result in fertile
cross pollination. Thus our conclusion unavoidably
is that a new Drosophila was born out of a connec-
tion between physics and artificial intelligence. It is
a Drosophila that now connects the sciences of High
Energy Physics, Mathematics, and Artificial Intelli-
gence.

REFERENCES

[1] Victor Allis (1994). Searching for Solutions in
Games and Artificial Intelligence (Ph.D. thesis).
University of Limburg, Maastricht, The Nether-
lands.

[2] Ingo Althöfer. “The origin of dynamic komi,”
ICGA Journal, volume 35, number 1, March
2012, pp. 31-34

[3] T. Aoyama, M. Hayakawa, T. Kinoshita and M.
Nio, e-Print: arXiv:1110.2826 [hep-ph]

[4] P. Auer, N. Cesa-Bianchi, and P. Fischer:
“Finite-time Analysis of the Multiarmed Bandit
Problem,” Mach. Learn., vol. 47, no. 2, pp. 235-
256, 2002

[5] Bruno Bouzy and Bernard Helmstetter. “Monte-
Carlo Go developments.” H.J. van den Herik, H.
Iida, E.A. Heinz (eds.), 10th Advances in Com-
puter Games conference (AGC-10). pp. 159-
174, 2003

[6] Bruno Bouzy, Marc Métivier, Damien Pellier:
“MCTS experiments on the Voronoi Game,”
Advances in Computer Games 2011, Tilburg,
The Netherlands, pp. 96-107, 2012

[7] Bernd Brügmann. “Monte-Carlo Go.”
AAAI Fall symposium on Games:
Playing, Planning, and Learning
http://www.cgl.ucsf.edu/go/Programs/Gobble.html
1993

[8] C.B. Browne, E. Powley, D. Whitehouse, S.M.
Lucas, P.I. Cowling, P. Rohlfshagen, S. Tavener,
D. Perez, S. Samothrakis, S. Colton: “A survey
of Monte Carlo Tree Search Methods,” IEEE
Transactions on Computational Intelligence and



AI in Games, March 2012, Volume 4, issue 1,
pages 1-43, 2012

[9] M. Ceberio, V. Kreinovich, ACM SIGSAM
Bull. 38 pp. 8–15, 2004

[10] G. M. J.-B. Chaslot, S. de Jong, J.-T. Saito,
and J. W. H. M. Uiterwijk, “Monte-Carlo Tree
Search in Production Management Problems,”
in Proc. BeNeLux Conf. Artif. Intell., Namur,
Belgium, pp. 91-98, 2006

[11] G.M.J-B. Chaslot, M.H.M. Winands, J.W.H.M.
Uiterwijk, H.J. van den Herik, and B. Bouzy.
“Progressive Strategies for Monte-Carlo Tree
Search.” In P. Wang et al., editors, Proceed-
ings of the 10th Joint Conference on Information
Sciences (JCIS 2007), pages 655-661. World
Scientific Publishing Co. Pte. Ltd., 2007; also
in: New Mathematics and Natural Computation,
4(3):343-357.

[12] G.M.J-B. Chaslot, S. Bakkes, I. Szita, and P.
Spronck: “Monte-Carlo Tree Search: A new
framework for Game AI.” In. M. Mateas and
C. Darken, eds, Proceedings of the 4th Artifi-
cial Intelligence and Interactive Digital Enter-
tainment Conference. AAAI Press, Menlo Park,
CA, 2008

[13] Chaslot, G. M. J.-B., Hoock, J.-B., Rimmel, A.,
Teytaud, O., Lee, C.-S., Wang, M.-H., Tsai, S.-
R., and Hsu, S.-C. (2008a). “Human-Computer
Go Revolution 2008.” ICGA Journal, Vol. 31,
No. 3, pp. 179-185.

[14] S. Chinchalkar, “An Upper Bound for the Num-
ber of Reachable Positions.” ICCA Journal, Vol.
19, No. 3, pp. 181-182, 1996

[15] Remi Coulom. “Efficient Selectivity and
Backup Operators in Monte-Carlo Tree
Search.” In H.J. Van den Herik, P. Ciancarini
and H.H.L.M. Donkers, editors, Proceedings of
the 5th International Conference on Computers
and Games, Turin, Italy, pp. 72-83, 2006

[16] H.H.L.M. Donkers, H.J. van den Herik,
J.W.H.M. Uiterwijk, “Selecting Evaluation
Functions in Opponent Model Search.” Theoret-
ical Computer Science (TCS), Vol 349, No. 2,
pp. 245-267, 2005

[17] A.D. de Groot. “Het denken van den schaker,”
Ph. D. thesis in dutch 1946; translated in 1965
as “Thought and Choice in chess.” Mouton
Publishers, The Hague (second edition 1978).
Freely available as e-book from Google.

[18] M. Enzenberger. “Evaluation in Go by a Neural
Network Using Soft Segmentation” In Proceed-

ings of the 10th Advances in Computer Games
Conference, Graz, Austria, 2003.

[19] Horner, William George (July 1819). “A new
method of solving numerical equations of all or-
ders, by continuous approximation.” Philosophi-
cal Transactions (Royal Society of London): pp.
308-335. Reprinted with appraisal in D.E.Smith:
A Source Book in Mathematics, McGraw-Hill,
1929; Dover reprint, 2 vols 1959

[20] S. Gelly, Y. Wang, R. Munos, and O. Teytaud:
“Modification of UCT with Patterns in Monte-
Carlo Go,” Inst. Nat. Rech. Inform. Auto. (IN-
RIA), Paris, Tech. Rep., 2006

[21] D. Hartmann, “How to Extract Relevant Knowl-
edge from Grandmaster Games. Part 1: Grand-
master have insights—the problem is what to in-
corporate into Practical Problems.” ICCA Jour-
nal, Vol. 10, No. 1, pp 14-36, 1987

[22] H.J. van den Herik, “Informatica en het
Menselijk Blikveld.” Inaugural address Rijk-
suniversiteit Limburg, Maastricht, The Nether-
lands, 1988

[23] Junghanns, A: “Are there Practical Alternatives
to Alpha-Beta?” ICCA Journal, Vol. 21, No. 1,
pp. 1432, 1998

[24] L. Kocsis and C. Szepesvàri: “Bandit based
Monte-Carlo Planning,” in Euro. Conf. Mach.
Learn. Berlin, Germany: Springer, pp. 282293,
2006

[25] Jan Kuipers, Jos A.M. Vermaseren, Aske Plaat,
H. Jaap van den Herik, “Improving multivariate
Horner schemes with Monte Carlo tree search,”
arXiv 1207.7079, July 2012

[26] Evgenii Mikhailovich Landis and I.M. Yaglom,
“About Aleksandr Semenovich KronRod” Rus-
sian Math. Surveys 56:993-1007, 2001

[27] S.A. Moch, J.A.M. Vermaseren, A. Vogt:
Nucl.Phys. B688 (2004) 101-134, B691 (2004)
129-181, B724 pp. 3-182, 2005

[28] Müller, Martin. “Computer Go,” Artificial Intel-
ligence 134: p151, 2002

[29] Richard Lorentz: “An MCTS Program to Play
Einstein Würfelt nicht!” Advances in Computer
Games 2011, Tilburg, The Netherlands, pp. 52-
59, 2012

[30] Julien Kloetzer: “Monte Carlo Opening books
for Amazons.” Computers and Games 2010,
Kanazawa, Japan, pp. 124-135, 2011

[31] J. Kuipers, T. Ueda, J.A.M. Vermaseren,
J. Vollinga, “FORM version 4.0,” preprint
arXiv:1203.6543 (2012)



[32] Richard Lorentz: “Experiments with Monte
Carlo Tre Search in the Game of Havannah.”
ICGA Journal, Vol 34, no 3, 2011

[33] Rivest, R: “Game-tree searching by min-max
approximation,” Artificial Intelligence, 1988
Vol. 34, No. 1, pp. 77-96, 1988

[34] J-T. Saito, G.M.J-B. Chaslot, Jos. W.H.M.
Uiterwijk, and H.J. van den Herik: “Monte-
Carlo Proof-Number Search.” In Computers and
Games, 2007

[35] Maarten Schadd, Mark H.M. Winands, H.Jaap
van den Herik, Guillaume Chaslot, Jos W.H.M.
Uiterwijk: “Single Player Monte Carlo Tree
Search.” In: Computers and Games 2008: pp.
1-12, 2008

[36] I. Szita, G.M.J-B. Chaslot, and P. Spronck:
“Monte-Carlo Tree Search in Settlers of
Catan.” In Proceedings of the 12th Interna-
tional Advances in COMputer Games Confer-
ence (ACG’09), Pamplona, Spain, May 11-13,
2009

[37] Erik C.D. van der Werf, H. Jaap van den Herik
and Jos W.H.M. Uiterwijk. “Learning to score
final positions in the game of Go.” Theoretical
Computer Science. Vol. 349. No. 2. pp. 168-183,
2005

[38] Erik C.D. van der Werf, Mark H.M. Winands
and H. Jaap van den Herik, Jos W.H.M. Uiter-
wijk. “Learning to predict Life and Death
form Go game records.” Information Sciences.
Vol.175, No. 4. pp. 258-272, 2005


