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Abstract—The LOFAR radio telescope creates Petabytes of1

data per year. This data is important for many scientific projects.2

The data needs to be efficiently processed within the timespan3

of these projects in order to maximize the scientific impact.4

We present a workflow orchestration system that integrates5

LOFAR processing with a distributed computing platform. The6

system is named Automated Grid-enabled LOFAR Workflows7

(AGLOW). AGLOW makes it fast and easy to develop, test and8

deploy complex LOFAR workflows, and to accelerate them on a9

distributed cluster architecture. AGLOW provides a significant10

reduction in time for setting up complex workflows: typically,11

from months to days. We lay out two case studies that process12

the data from the LOFAR Surveys Key Science Project. We13

have implemented these into the AGLOW environment. We also14

describe the capabilities of AGLOW, paving the way for use15

by other LOFAR science cases. In the future, AGLOW will16

automatically produce multiple science products from a single17

dataset, serving several of the LOFAR Key Science Projects.18
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I. INTRODUCTION22

Data sets in radio astronomy have increased 1000-fold over23

the past decade [1]. It is no longer feasible to move, store and24

process these data sizes at university clusters, nor to process25

these data manually. LOFAR, the Low-Frequency Array [2] is26

a modern and powerful radio telescope that creates more than 527

Petabytes of data per year. At present, the majority of LOFAR28

time is allocated to several Key Science Projects (KSPs) [3].29

These projects need to process hundreds or thousands of ob-30

servations. Typical observations produce approximately 14 TB31

of archived data. Obtaining high fidelity images from this data32

requires complex processing steps. To manage and automate33

the data processing, workflow management software is needed.34

This software needs to accelerate LOFAR processing on a35

High Throughput Computing (HTC) cluster while ensuring it36

is easy to prototype, test, and integrate future algorithms and37

pipelines.38

To automate LOFAR data processing, we have worked with39

the LOFAR Surveys KSP (SKSP). Together, we designed40

a software suite that integrates LOFAR software [4] with41

the Dutch grid infrastructure [5]. This software, based on42

Apache Airflow∗, makes it easy to add future science cases, 43

extend and modify pipelines, include data quality checks, and 44

rapidly prototype complex pipelines. For the SKSP use cases, 45

AGLOW achieves a significant reduction in development time: 46

from months to days, allowing researchers to concentrate on 47

data analysis rather than management of processing. Addition- 48

ally, and perhaps more importantly, the software versions and 49

repositories used are defined within the workflow. This makes 50

reproducibility an integral part of the AGLOW software. 51

Finally, the software is built to leverage an HTC cluster by 52

seamlessly submitting the processing jobs through the cluster’s 53

job submission system [6]. The work presented here builds on 54

our previous work parallelizing single LOFAR jobs [7] on a 55

distributed environment. The majority of processing was done 56

at SURFsara at the Amsterdam Science Park [8], which is one 57

of the sites used by the LOFAR Long Term Archive (LTA)†. 58

Ongoing efforts include scheduling and processing data at 59

clusters in Poznaǹ in Poland and Jülich in Germany. 60

Contributions: The main features of the AGLOW software 61

are the following: 62

• Integration of the Grid middleware with Apache Airflow, 63

allowing us to dynamically define, create, submit and 64

monitor jobs on the Dutch national e-infrastructure. 65

• Integration of the LOFAR (LTA) utilities in Airflow, facil- 66

itating pipeline developers to automate staging (moving 67

from tape to disk) and retrieval of LOFAR data. 68

• Integration of the SURFsara storage with Airflow, making 69

LOFAR pipelines aware of the storage layer available at 70

the Dutch national e-infrastructure. 71

• Ease of creating simple software blocks, with which users 72

can integrate and test their pipelines. 73

• Storing all software versions and script repositories as 74

part of the workflow to make LOFAR processing repro- 75

ducible and portable. 76

Outline: The organization of this manuscript is as follows: 77

We provide background on data processing in radio astron- 78

omy and why LOFAR science requires complex workflows 79

∗https://airflow.apache.org/
†https://lta.lofar.eu



and cover workflow management algorithms and capabilities80

(section II). We discuss related work in workflow management81

(section III). In section IV, we introduce our software and two82

use cases. Both of our use cases require acceleration at an HTC83

cluster and automation by a workflow orchestration software.84

We follow these examples with details on the integration85

between LOFAR software, LOFAR data and the resources at86

SURFsara in Amsterdam in section IV-B2. Finally, we discuss87

our results (sect. V) and look ahead to the demands of future88

LOFAR projects and upcoming telescopes in section VI.89

II. BACKGROUND90

This work lies at the intersection of Radio Astronomy91

and Computer Science. The goal of the study is to leverage92

the flexibility of an industry standard workflow management93

software and use CERN’s Worldwide Computing Grid∗ at94

SURFsara [9] to accelerate reproducible processing of LOFAR95

data.96

A single LOFAR surveys observation is recorded in distinct97

frequency chunks (henceforth called ‘subbands’), each of98

which is uploaded to the LTA as a separate file. Some of99

the processing steps require the entire frequency information,100

while others can run independently and operate on a single101

subband. The latter steps can be easily accelerated on an HTC102

cluster by taking advantage of the data level parallelism.103

Multiple scientific projects may desire to run different104

processing steps on a single LOFAR observation. To minimize105

time spent on retrieving data from the LTA and eliminate re-106

processing of data, pipelines for multiple science cases need107

to be integrated together. This integration should be done by108

a software that encodes the dependencies between different109

steps and automatically executes processing steps once their110

dependencies have been met. Software packages that solve111

these challenges are called ‘workflow management software’112

(see, e.g., [10]–[12].)113

III. RELATED WORK114

A workflow is described by a set of tasks. The dependencies115

between these tasks are encoded in a Directed Acyclic Graph116

(DAG) [13]. This data structure imposes a strict dependency117

hierarchy between the tasks [14]. This means that there exists118

a well-defined execution order and a well-defined list of119

dependencies for each task. The execution order is typically120

determined by algorithms such as Kahn’s algorithm [15] or a121

depth-first search [16].122

Workflow management software is used in various fields123

from research to industry. In biology, gene sequencing and124

analysis pipelines require automation of multiple processing125

steps. In gene sequencing, Toil† has been successfully used126

to automate RNA sequence analysis [17]. Additionally, many127

software teams in biotech develop their own in-house work-128

flow management software [18].129

∗http://wlcg.web.cern.ch/
†https://toil.readthedocs.io

Currently, we can parallelize a single processing step of the 130

pipeline using the Grid LOFAR Tools (GRID LRT‡) [7]. The 131

LOFAR Surveys science cases incorporate multiple steps with 132

inter-linked dependencies. Resolving these dependencies can 133

be done efficiently by a comprehensive workflow orchestration 134

software. The purpose of such software is to resolve dependen- 135

cies between the multiple tasks in a workflow, execute these 136

tasks, and track the status, logs, output, and runtime of each 137

task. 138

In astronomy, workflow systems have been developed that 139

are telescope specific, such as ESOReflex [19] by the European 140

Southern Observatory. Other projects, such as astrogrid§ and 141

’Workflow 4Ever’¶, have either been completed or are no 142

longer supported. The astrogrid project, for example, was a 143

collaboration to create standards, infrastructure, and software 144

for distributed astronomical processing. Its operation phase 145

spanned 2008-2010. Workflow4Ever, likewise, has been out 146

of support since 2013. To ensure continuing support for 147

the LOFAR workflows, we have decided to use a leading 148

enterprise workflow management software, Airflow. 149

Airflow is an open source Python software package devel- 150

oped by Airbnb‖ to manage complex workflows. It encodes 151

workflows in Python and makes it easy to re-use, re-arrange, 152

schedule and execute blocks in a user-defined workflow. 153

Airflow is capable of scheduling and executing workflows by 154

resolving the dependencies between tasks and scheduling these 155

tasks for execution. The software uses a metadata database∗∗ 156

to retain metadata such as task state, execution date, and 157

output. While Airflow allows building workflows easily from 158

Python and bash functions, it can easily be extended to support 159

custom processing scenarios. Additionally, Airflow conforms 160

to the Common Workflow Language (CWL) [20] standard 161

using the cwl-airflow package [21], meaning it can execute 162

CWL workflows as well. Finally, Airflow is part of the Apache 163

incubator and upon certification will receive continual support 164

by the Apache software foundation††. 165

IV. AGLOW 166

Complex astronomical pipelines are time consuming to 167

develop and operate. Furthermore, they may evolve rapidly 168

to incorporate new processing techniques or requirements. 169

Migrating these pipelines to a distributed, high throughput 170

environment is often justified, or even required, in order to 171

meet the timelines set by scientific projects. The time saved 172

by running on a cluster must be balanced by the flexibility 173

and development time required to implement or update the 174

scientific pipelines. To address these concerns, we have devel- 175

oped a software package, Automated Grid-enabled LOFAR 176

Workflows (AGLOW)‡‡. AGLOW is based on Airflow and 177

‡https://github.com/apmechev/GRID LRT
§http://www.astrogrid.org
¶http://wf4ever.github.io/ro/
‖https://www.airbnb.com/
∗∗In our case implemented by Postgresql
††https://www.apache.org/
‡‡https://github.com/apmechev/AGLOW



the LOFAR software and addresses issues with automation178

and acceleration of LOFAR processing.179

With AGLOW, we can translate LOFAR pipelines into180

DAGs. We provide the tools that enable users to easily imple-181

ment their LOFAR science pipelines and execute them on a182

distributed architecture. Using these tools, the data processing183

required by various LOFAR science cases is automated and184

accelerated.185

A. AGLOW: Case Study186

For our case-study, we have chosen two ways to process187

LOFAR Surveys data: coverage and depth. The Surveys Key188

Science Project (SKSP) [3] is an ambitious project to map189

the northern sky at low frequencies using the Dutch LOFAR190

stations. These maps will help understand the formation and191

evolution of massive black holes, galaxies, clusters of galaxies192

and large-scale structure of the Universe.193

The LOFAR surveys observations consist of several tiers194

with the widest Tier (Tier 1) covering the whole sky visible195

from the Northern Hemisphere with 3168 observations of 8196

hours each [3]. The other tiers (Tier 2, Tier 3) consist of197

much longer observations of smaller sections of the sky and198

can collect hundreds of hours of data for a single direction.199

The deepest single field being analyzed, in collaboration with200

the EoR group, is the North Celestial Pole (NCP) field which201

has ∼1700 hrs of observations to date. Processing this data202

will create an image with an unprecedented resolution and203

sensitivity. Here we have implemented processing pipelines204

for both the Tier 1 data and Tier 2 data into AGLOW.205

The scientific importance of these two examples, as well as206

the large processing requirements, make them ideal candidates207

for acceleration and automation with AGLOW.208

1) Surveys Project: All Sky Survey: The main driver for209

the development of AGLOW and its constituent packages has210

been the LOFAR SKSP Project. A typical 8-hour observation211

produces 14 TB of data. This data is eventually reduced to212

several hundred gigabytes. Data needs to be processed by two213

pipelines: first by the Direction Independent (DI) pipeline, and214

then by the Direction Dependent (DD) pipeline.215

We have split the DI pipeline into four stages, and the DD216

pipeline into two subsequent stages. Splitting up the pipelines217

in stages allows speedup through parallelization for the stages218

that can benefit from data-level parallelism. Additionally, this219

setup allows fault tolerance and easy re-processing. Current220

SKSP processing is easily started by launching a new DAG-221

run in Airflow. Importantly, with AGLOW, adding new func-222

tionality to the pipeline is easy and can be done at any time223

without disrupting current processing.224

2) Deeper Surveys Fields: To create deep images of a225

single field, minor modifications were made to the process-226

ing pipeline described in the previous section. Scripts were227

included to re-align the data in the frequency axis, and the228

DD processing steps include an extra final combination step229

that stacks multiple observations. Being able to rapidly test230

alternative processing strategies is crucial to creating a deep231

image of the NCP field. With the success of this project,232

future deep LOFAR observations will be processed with these 233

pipelines. 234

B. AGLOW: Implementation 235

AGLOW combines the LOFAR software, the Grid LOFAR 236

Tools (GRID LRT), and Airflow to allow automation and 237

makes large-scale LOFAR processing easily reproducible. The 238

components of the AGLOW software are shown in Fig. 1. 239

In this section, we will discuss these components and their 240

functions. 241

Fig. 1. Design of the AGLOW software, incorporating Airflow, the
GRID LRT package [7] and custom operators designed to integrate LOFAR
software, Grid middleware and dCache storage. GRID LRT is a software
package developed to parallelize single LOFAR jobs at SURFsara. It contains
several modules to help set up, and launch jobs on an HTC cluster at
SURFsara. Airflow is a stand-alone package by Airbnb, which is extended
with several classes that couple Airflow with the Grid infrastructure. These
classes are collectively named the AGLOW operators/sensors.

1) GRID LOFAR Tools and LOFAR software: We have pre- 242

viously developed tools to create LOFAR jobs and launch them 243

on a distributed infrastructure [7]. These tools have matured to 244

a point where it is easy to both plug and play existing scripts 245

and extend the framework to add more complex pipelines. 246

These steps make it possible for a user to batch execute bash 247

or Python scripts on their LOFAR data in parallel. After the 248

scripts are executed, the results are uploaded to shared dCache 249

storage [22] at SURFsara [8]. 250

More complex steps use additional Github repositories, such 251

as the prefactor∗ for direction independent calibration or DDF- 252

pipeline† for direction-dependent calibration and imaging. The 253

sequence of steps is encoded in parameter-set files (parsets), 254

which can be modified and dropped into AGLOW depending 255

on the processing requirements. 256

With AGLOW, we can easily include the DDF-pipeline and 257

prefactor repositories, as well as any other scripts. Since these 258

scripts are tracked by git [23], a full commit and branch 259

history of the scripts is available. We use this history to make 260

processing reproducible, by using the same git-commit for all 261

LOFAR datasets. 262

In addition to these script repositories, we have integrated 263

the most common software packages used to process LOFAR 264

data with AGLOW. These are the Default Pre-Processing 265

Pipeline (DPPP) [4], the LOFAR Solutions Tool (LoSoTo), 266

∗https://github.com/lofar-astron/prefactor



WSclean [24], AOflagger [25], CASA [26], pyBDSF [27],267

DDFacet [28] and KillMS [29], [30].268

2) Extending Airflow: Two types of modifications were269

made to Airflow to allow processing on a Grid environment.270

First, functions were added to check the number of files271

located in intermediate grid storage. We use this to decide272

whether to stage files, or whether enough files have been273

successfully processed by a previous task.274

Second, more complex tasks were implemented as Airflow275

operators or sensors (Figure 2). These tasks include creating276

job description files, setting up job scripts, launching jobs277

using the gLite workload management system and monitoring278

the status of these jobs. Future additions will include operators279

that evaluate the current cluster workload and make decisions280

on location to launch the data processing. With the AGLOW281

package, such tasks are easy to implement without modifying282

or interrupting processing. This leads to an easily reproducible,283

intelligent scientific processing that is also efficiently executed284

and requires minimal interaction. The operators and sensors285

added to Airflow are shown in Fig. 2.286

Using AGLOW to accelerate the execution of a pipeline287

requires deciding how to split the processing to benefit from288

parallelization. Once the steps to be parallelized are selected,289

users can add git repositories of scripts to the configuration290

file. Next, each step is added to a Python script called the DAG291

file. This file is placed in the Airflow’s dags folder, which adds292

it to AGLOW. To migrate LOFAR workflows to a new server,293

the DAG and configuration files need to be transferred to the294

new AGLOW instance.295

Fig. 2. Airflow Operators for Staging LOFAR data, creating job descriptions
and submitting jobs to the Dutch grid. On the left is the input given to each
operator. ‘SRM lists’ are lists of links to data at the LOFAR LTA or located
on the SURFsara dCache storage. Parsets are files specific to ‘prefactor’ and
‘DDF-pipeline’ and define the processing for each pipeline step. Finally, the
‘Sandbox’ and ‘Token’ operators read their parameters from a configuration
file. The use of a scripts sandbox and job description tokens is detailed in our
previous work [7].

C. AGLOW: Jobs296

Once LOFAR observations are downloaded from the LTA,297

they are typically processed with several packages before298

producing a science ready dataset. We have integrated these299

†https://github.com/mhardcastle/ddf-pipeline. DDF-pipeline is a leading
example of a Direction Dependent calibration pipeline used for LOFAR data.
It uses DDFacet [28], KillMS [29] and to create high quality images.

packages with Airflow to make it easy to create complex 300

LOFAR workflows. 301

Each of the processing steps above requires extra set-up 302

to process on the Dutch Grid infrastructure. The job scripts 303

setup, job description, and job submission are done by the 304

GRID LRT package [7]. With AGLOW, we automate this 305

setup, enabling users to focus on developing more compre- 306

hensive data processing pipelines. Below we outline several 307

possible steps a user can use in their pipeline. 308

1) DPPP Parset: The DPPP software is used extensively 309

in LOFAR data processing. It has many capabilities such as 310

flagging bad data, averaging data in time and frequency, and 311

calibrating the data with a sky-model. 312

The input parameters of this software are stored in a text 313

file called a parset. The input data and the DPPP parset 314

are sufficient to define a DPPP execution step. As noted in 315

section II, LOFAR data is split in frequency into subbands. 316

Much of the DPPP processing, such as averaging and flagging, 317

can be done independently for each subband, thus they can 318

be processed on independent machines. This parallelization 319

makes these steps a perfect candidate for an HTC cluster. For 320

a dataset that is split into 244 subbands, 244 jobs are launched 321

concurrently. 322

In Airflow, the DPPP parset task is encoded in a DAG (Fig. 323

3). The DPPP DAG is a linear workflow that consists of the 324

’sandbox’ setup, creation of the job-description documents, up- 325

loading of the DPPP parset and job launching and monitoring. 326

2) WSclean Job: The WSClean [24] package is used to 327

create an image from a LOFAR dataset. This software has a 328

very wide range of parameters options, however, it cannot take 329

a parset file as an input. Instead, the parameters are specified in 330

the command line. In the AGLOW implementation, we parse 331

all the command-line parameters from a text file, referred to as 332

the ’wsclean parset’. This file is added to the jobs in the same 333

way as the DPPP parset, i.e. using the Token Uploader Opera- 334

tor. The DAG for the wsclean software uses the same blocks as 335

the DPPP DAG, with different configuration and parset files. 336

The reuse of Airflow operators makes maintainability of all 337

tasks easier. 338

D. Shell/Python Script 339

Users that require the run of multiple software packages on 340

a single dataset can craft a custom shell or Python script that 341

executes these steps using the LOFAR tools during a single 342

distributed job. This option increases flexibility and minimizes 343

the overhead associated with scheduling and running multiple 344

jobs in sequence. At the workflow orchestration level, we use 345

the same Airflow operators as the above tasks. The script 346

is uploaded to the job description database using the Token 347

Uploader Operator. It is executed once the jobs are launched. 348

Currently only the LOFAR Spectroscopy project uses cus- 349

tom shell scripts to process LOFAR data. A recent study 350

of carbon recombination lines used a custom bash script to 351



Fig. 3. Render of the DPPP parset DAG in the Airflow User Interface. This
view shows the setup and submission steps. Even this simple DAG can include
branching options such as the branch_if_staging_needed task which
checks if the data is not staged and stages it. All of the operators in this
figure are part of the AGLOW software. Their inputs and outputs are shown
in Fig. 2. Using configuration files, the NDPPP DAG can be used by different
users for different science cases making it portable and maintainable. These
features make reproducible science with LOFAR data easy.

calibrate and image LOFAR data on the SURFsara GINA∗352

cluster [31].353

E. Prefactor parset354

The input to the prefactor pipeline software is a parset355

file which describes a linear workflow. The description of356

this workflow consists of a list of processing steps and357

their associated parameters. The ‘prefactor’ package uses the358

LOFAR software to do the direction-independent calibration359

of the archived LOFAR datasets. Prefactor steps are executed360

by the generic pipeline framework [4]. While this framework361

can run a sequential pipeline, it is not capable of conditional362

branching nor parallelization on all cluster architectures. The363

original goal of the GRID LRT software was to tackle the364

∗The GINA cluster is an HTC cluster located at SURFsara integrated with
the Dutch Grid initiative. It supports massively parallel processing which is
required to efficiently process LOFAR data with prefactor.

parallelization challenge while AGLOW solves the additional 365

challenge of pipeline management. 366

We have already processed more than 50 datasets through 367

the ‘prefactor’ DAG using AGLOW. The full ‘prefactor’ 368

pipeline is shown in figure 4. This DAG shows the four 369

processing steps as well as additional Python operators that 370

manage the staging and result verification. 371

F. DDF-pipeline 372

The final AGLOW DAG is the implementation of the DDF- 373

pipeline repository which is a pipeline that is extensively used 374

by the LOFAR surveys KSP and is described in detail in [3]. 375

This pipeline operates on the products of the prefactor pipeline 376

and consists of a series of calibration and imaging loops with 377

the objective of creating a final science quality image. For each 378

of these loops the majority of the processing time is spent in 379

DDFacet [28] and KillMS [29], [30] steps that perform the 380

direction-dependent imaging and calibration respectively. 381

In total, DDF-pipeline takes ∼4 days of processing to 382

complete. As DDF-pipeline creates large intermediate files we 383

have so far not divided the pipeline into too many steps to 384

avoid filling the storage on the GINA cluster. However, we 385

have split the pipeline into two steps and there is further 386

potential for parallelization that will be implemented in the 387

future. 388

G. Linking Multiple Jobs 389

Pre-processing of LOFAR SKSP data can be done by a 390

single DPPP task, with 244 jobs running in parallel. More 391

complex LOFAR pipelines will include multiple processing 392

tasks as well as tasks responsible for job setup. Therefore, 393

it is important to facilitate running multi-step pipelines with 394

AGLOW. 395

Creating workflows by defining dependencies between tasks 396

is a core Airflow capability. We use this functionality to link 397

multiple steps of a LOFAR pipeline together. In the SKSP 398

pipeline, we take advantage of the data level parallelism for 399

the initial processing steps for the calibrator and target. The 400

other two steps are run as a single grid job. Switching the 401

parallelization for each step is done by changing the number 402

of datasets per node parameter in the configuration file for 403

each step. 404

V. RESULTS AND DISCUSSIONS 405

The implementation of AGLOW makes it possible to effi- 406

ciently process LOFAR data with minimal user interaction. 407

The scheduling algorithm automatically launches pipelines, 408

meaning that there is little time spent between runs. Addition- 409

ally, controlling/fixing the version of the scripts is done by 410

specifying the commit of each script repository. This makes 411

data processing easily reproducible. Once the dependencies 412

of multiple science pipelines have been encoded in a DAG, 413

Airflow efficiently executes this DAG, running tasks in parallel 414

where possible. 415

The first LOFAR processing pipeline integrated with 416

AGLOW was a single linear workflow, with only one sub- 417

mission to the compute cluster. This workflow is used to 418



reduce the data size making data retrieval to research institutes419

less time consuming. We offer this workflow as a service to420

LOFAR users who do not have a high-bandwidth connection421

to the LOFAR Archive.422

A more complex pipeline was implemented: the LOFAR423

direction independent calibration pipeline (‘prefactor’). The424

scientific importance and complexity of this pipeline make425

it a good case study for the capabilities of the AGLOW426

software. We show that AGLOW’s design allows integration427

of more complex data processing workflows with the Dutch428

Grid resources. These workflows can be either used by PIs429

of LOFAR projects or offered as a processing service to the430

wider astronomical community.431

An important feature of AGLOW is the loose coupling432

between pipeline logic, software versions, pipeline parame-433

ters, and datasets. The goal of this decoupling is to give434

users complete control over all the processing variables. With435

AGLOW, one can develop the pipeline logic independently of436

the LOFAR software versions and conversely update the LO-437

FAR software and script repositories independently from the438

pipeline logic. Finally, the Airflow operators are themselves439

decoupled from the scientific pipelines. As these operators440

are reused, this decoupling makes them easy to maintain and441

extend.442

In large part thanks to their flexibility, automation, and Grid443

integration, AGLOW and GRID LRT have become a standard444

part of the Direction Independent processing for the LOFAR445

SKSP project.446

VI. CONCLUSIONS447

In this work, we have detailed a comprehensive workflow448

management software for processing radio astronomy data on449

a distributed infrastructure. We leverage an industry standard450

workflow management software, Airflow. Using its capabili-451

ties, we make it possible to build, test, automate and deploy452

LOFAR pipelines on short timescales, generally from months453

to days. With the flexibility of Airflow’s Python and Bash454

operators, users can design their own workflows, as well as455

co-ordinate more complex science cases. In this way, AGLOW456

facilitates reproducible processing of scientific data. In the457

future, AGLOW will support additional LOFAR science cases458

including Long Baselines and Spectroscopy. In this article,459

we have described our implementation of the data processing460

pipelines used by the LOFAR Surveys Key Science Project.461

Future work includes further de-coupling of the Grid-setup462

and pipeline logic. We will do this by creating ‘sub-dags’463

(details in VI-A) for each type of LOFAR jobs. Using these464

sub-dags will reduce the complexity of scientific workflows465

while also making the code even more reusable and thus easier466

to maintain and upgrade. Efforts to integrate processing at467

the other two LTA sites, (Jülich and Poznań) have already468

started with ‘prefactor’ runs being performed on Jülich using469

a modified version of the SKSP workflow. The software also470

currently works on the Eagle cluster at Poznań. Combining471

the Jülich and SURFsara workflows will be done in the future472

so that AGLOW can track and start processing at multiple 473

clusters. 474

Finally, AGLOW can be used as a ‘LOFAR As A Service’ 475

model. In this model, users only provide an observation ID 476

and processing parameters and receive the final results upon 477

job completion. This model will build upon previous success 478

offering LOFAR processing to users without login to the 479

GINA cluster [32]. This previous work was already useful 480

for studying radio absorption in Cassiopeia A [33] and a 481

‘data-to-images’ service will be valuable to the whole LOFAR 482

community. 483

Our experience with automating LOFAR scientific work- 484

flows on a distributed architecture will be valuable when 485

setting up data processing for future Radio Telescopes such 486

as the Square Kilometer Array [34] . 487

APPENDIX 488

The LOFAR SKSP workflow is shown in Figure 4. This 489

figure shows how reuse of the staging, setup operators, and 490

glite-wms sensors makes maintainability easy and allows rapid 491

prototyping of complex pipelines. 492

This workflow additionally takes advantage of Airflow’s 493

PythonOperator to check if the LOFAR data is on disk at the 494

archive and whether all final products were uploaded by each 495

step. AGLOW also allows for staging the calibrator and target 496

files concurrently. When the data is staged, Airflow continues 497

with the processing of that data. 498

A. Sub-DAG 499

Airflow allows developers to include entire DAGs as a single 500

task in their workflow. Airflow can trigger a DAG execution 501

based on parameters provided by the parent DAG. This feature 502

makes it possible to concatenate short, commonly used tasks 503

into DAGs and call them in a parent workflow. Using sub- 504

DAGS makes the code more maintainable and easy to use, 505

while it makes workflows simpler. For LOFAR, Sub-DAGs 506

are used to automate job submission, making the resulting 507

scientific workflows simpler. 508
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and Université dOrléans, France; BMBF, MIWF-NRW, MPG,530

Germany; Science Foundation Ireland (SFI), Department of531

Business, Enterprise and Innovation (DBEI), Ireland; NWO,532

The Netherlands; The Science and Technology Facilities533

Council (STFC), UK534

REFERENCES535

[1] J Sabater, S Sánchez-Expósito, J Garrido, JE Ruiz, PN Best, and536

L Verdes-Montenegro. Calibration of radio-astronomical data on the537

cloud. LOFAR, the pathway to SKA. In Highlights of Spanish Astro-538

physics VIII, pages 840–843, 2015.539

[2] MP Van Haarlem, MW Wise, AW Gunst, George Heald, JP McKean,540

JWT Hessels, AG De Bruyn, Ronald Nijboer, John Swinbank, Richard541

Fallows, et al. LOFAR: The low-frequency array. Astronomy &542

astrophysics, 556:A2, 2013.543
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Chilton, Michael Heuer, Andrey Kartashov, Dan Leehr, Hervé Ménager, 603
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