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Abstract. The general problem in this paper is vertex (node) subset se-
lection with the goal to contain an infection that spreads in a network. In-
stead of selecting the singlemost important node, this paper dealswith the
problem of selectingmultiple nodes for removal. As compared to previous
work on multiple-node selection, the trade-off between cost and benefit is
considered. The benefit is measured in terms of increasing the epidemic
thresholdwhich is ameasure of howdifficult it is for an infection to spread
in a network. The cost is measured in terms of the number and size of
nodes to be removed or controlled. Already in its single-objective instance
with a fixed number of k nodes to be removed, the multiple vertex im-
munisation problems have been proven to be NP-hard. Several heuristics
have been developed to approximate the problem. In this work, we com-
pare meta-heuristic techniques with exact methods on the Shield-value,
which is a sub-modular proxy for the maximal eigenvalue and used in the
current state-of-the-art greedy node-removal strategies.We generalise it to
the multi-objective case and replace the greedy algorithm by a quadratic
program (QP), which then can be solved with exact QP solvers. The main
contribution of this paper is the insight that, if time permits, exact and
problem-specific methods approximation should be used, which are of-
ten far better than Pareto front approximations obtained by general meta-
heuristics. Based on these, it will be more effective to develop strategies
for controlling real-world networks when the goal is to prevent or contain
epidemic outbreaks.Wewould like to encourage you to list your keywords
within.
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1 Introduction

The overarching goal of this paper is to find methods that help to make net-
works more robust against virus attacks (SIS type epidemics). This is done by
? Michael Emmerich ackknowledges support by the EU2020 RISE SMA Project.



selecting nodes from the network to immunise or to remove such that the largest
eigenvalue is reduced and thereby the epidemic threshold is improved [2]. In
this paper, we derive a quadratic programming version of the problem of reduc-
ing the largest eigenvalue of a complex network (represented by the Netshield
proxy-function [3]) and compare the new exact method with heuristic meth-
ods ([?,8]). This strategy is proposed for solving the bi-objective cost-benefit
optimization problem, and we discuss for the first time the exact Pareto front
obtained by our new method for different example networks.

The problem that we discuss may for instance arise when combating or pre-
venting the spread of viruses such as recently Ebola or SARS variants [12]. To
evaluate solutions an appropriate vulnerability measure is necessary. For this
paper the eigenvalue drop (abbreviated with ’eigen-drop’) is used which is in-
versely proportional to the epidemic threshold. More precisely, the eigenvalue
dropmeasures the decrease of themaximum eigenvalue of the adjacencymatrix
of a network and the inverse relationship to the increase of the epidemic thresh-
old , under the SIS epidemic model. [2] [7]. The epidemic threshold is a criti-
cal value inherent to the given networks that determines the contagiousness a
virus requires to infect the entire network (exponential growth) or to disappear
(exponential decay). The SIS model, a is a special case of the so-called contact
process where a virus can spread from an infected node to any of its suscepti-
ble nod neighbours and infect those neighbours. At some later point in time the
infected nodes recover and become susceptible to infection again.

A network or graph G consists a pair (V,E). Here V is a set of nodes V =
(v1, . . . , vn). E ⊆ V × V is a set of edges representing connections between
the nodes. A graph can also be represented as an adjacency matrix A(V,E) ∈
{0, 1}n×n with aij = 1 if (vi, vj) ∈ E or aij = 0 if (vi, vj) /∈ E. The first or max-
imum eigenvalue of this graph will be denoted with λ and the corresponding
eigenvector with u.

Note, that there that in the literature various strategies for reducing the vul-
nerability of a complex network to virus attacks have been suggested. Examples
are, for instance, random immunisation, acquaintance immunisation, and tar-
get immunisation. Many of these strategies can be seen as heuristics and do not
specifically relate to the spread dynamics of viruses in real world networks. In
Chakrabarti et al. [2] it is argued that it is of paramount importance to take
into account the dynamics of the contact process and to chose an appropriate
measure with respect to the global structure of the complex networks. Local
measures, such as the degree of a vertex, do in general lead to mediocre perfor-
mance and can be even misleading. For example targeted immunisation would
choose the nodes with the highest degrees (hubs). To focus the strategy, at least
partially, on lower degree nodes, may seem counter-intuitive. However, it is not
always the case that the immunisation of the highest degree nodes will reduce
the vulnerability of the network. In contrast, it has been shown that focusing on
the reduction of the largest eigenvalue of the adjacency matrix of the graph is a
effective way to reduce the epidemic threshold which determines whether the
number of infections grows exponentially or decreases exponentially. In partic-



ular in the early stages of an outbreak there is a broad consensus of the effec-
tiveness of this strategy. In [2] the authors provide the example of the barbell
graph (see Fig 1) that demonstrates this, where node 13 is of crucial importance
although it has low degree.
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Fig. 1. A small version of the “bar-bell” graph. Two cliques of the same size connected
with a bridge. Using this graph, it can be demonstrated that targeted immunization, that
is focusing on the removal of high degree nodes, is not always the best strategy in immu-
nization. Adapted from [2].

Definition 1. Given a networkG and a networkG′ whereG′ is a sub-graph ofG with
some its nodes and adjacent edges removed, ∆λ or eigen-drop is defined as the differ-
ence between the maximum eigenvalue of the adjacency matrix of G and the maximum
eigenvalue of the adjacency matrix of G′.

Definition 2. The k-node immunisation problem: Given a graph G = (V,E) and
k∈ N, the k-node immunisation problem aims in finding is finding a set of nodes S ⊆ V
with |S| = k, such that the removal of these nodes fromGmaximises the eigen-drop∆λ.

It has been shown in [3] that this problem is NP-hard. Therefore heuristic
methods have been suggested for solving this problem such as the NetShield
and NetShield+ algorithms in [3] and a problem specific genetic algorithm in
[8]. The drawback of these heuristics is that they are designed for the k-node
immunisation problem which requires that a good value of k is known in ad-
vance. In addition, the heuristics treatthis problem as if every node requires the
same effort to remove. Therefore in this paper, we reformulate the k-node im-
munisation problem to amulti-objective one. This is similar to [7], where multi-
objective optimisation using an evolutionary optimisation heuristic was used to
take into account the cost of removal. Indeed, the nodes with maximal eigen-
drop do not coincide with the nodes with a high degree, as is seen in Figure
2. Node 13 in the earlier discussed barbell graph has only a degree of 2 but it
significantly reduces the Eigenvalue.

Definition 3. The multi-objective immunisation problem given a graph G = (V,E),
a cost denoted with Cost(v) for each v ∈ V and S ⊆ V reads

f1(S) = ∆λ→ max (1)



Fig. 2. Table with eigen-drops vs. degrees of extended barbell graph

f2(S) =
∑
v∈S

Cost(v)→ min (2)

This formulation requires no value for k to be known a-priori and takes the
cost of removal in account. As this is a multi-objective problem we are now in-
terested in finding the efficient set and its corresponding Pareto front. To ap-
proximate this Pareto front we use and evaluate four different methods. The
first two extend the NetShield and NetShield+ algorithms by substituting the
first objective with the heuristic used by these methods and then applying the
ε-constraintmethod. The second two are two different genetic algorithms specif-
ically designed for multi-objective optimisation problems.

2 Multi-Objective NetShield

The first method for approximating the Pareto front of the multi-objective im-
munisation problem is based on the NetShield and NetShield+ algorithms de-
signed by ChenC̃hen et al. [3]. These methods are designed for the k-node im-
munisation problem and are briefly discussed here. Core to the design of these
algorithms is a function called Shield-value.

Definition 4. Given the adjacency matrix A of a graph G(V,E), its first eigenvalue
λ, the corresponding eigenvector u and an input set of nodes S ⊆ V , the Shield-value
function is defined as:

Sv(S) =
∑
i∈S

2λu2i −
∑
i,j∈S

2uiujAij (3)



The Shield-value function gives an approximation of ∆λ if all nodes in the
set S were to be removed from the graph. The NetShield algorithm then finds a
set of k nodes that approximates the maximization of this function via greedy
selection.

As the cardinality of S grows, the Shield-value function becomes less accu-
rate. The NetShield+ algorithm therefore introduces an extra parameter called
the batch size. Instead of finding k nodes at once, a set of b nodes is found and
added to the solution. Then these nodes are removed from the network. The
new network is used to compute a new Shield-value function, that is againmax-
imized for a set of b nodes. These are then again added to the solution set and
this process continues until k nodes have been removed from the network.

To extend these algorithms to work with the multi-objective immunisation
problem, we substitute the eigen-drop objective with the Shield-value function.
Furthermore, we define the problem as a quadratic multi-objective program by
representing the solution with a binary vector x. If the node i is in the solution
set, xi will be 1. Otherwise xi will be 0:

Definition 5. Given the adjacency matrixA of a graphG(V,E), its first eigenvalue λ,
and the corresponding eigenvector u, the Shield-value function with cost objective is:

f1(x) =

m∑
i=1

2λu2ixi −
m∑
i=1

m∑
j=i+1

2uiujAijxixj → max (4)

f2(x) =

m∑
i=1

xiCost(i)→ min (5)

Subject to:
x ∈ {0, 1}m (6)

To approximate the Pareto front the ε-constraint method can be applied [10].
For this method, one of the objectives is transformed into a constraint smaller or
equal than ε. In this case it will be the second cost objective.

Definition 6. Given the adjacency matrix A of a graph G(V,E), its first eigenvalue
λ, the corresponding eigenvector u, and some value of ε, the Shield-value function with
cost constraint is:

f1(x) =

m∑
i=1

2λu2ixi −
m∑
i=1

m∑
j=i+1

2uiujAijxixj → max (7)

Subject to:

f2(x) =

m∑
i=1

xiCost(i) ≤ ε (8)

x ∈ {0, 1}m (9)



By choosing a concrete value of ε, the problem is transformed into a quadratic
program with a linear constraint. Problems such as these can be solved with
a quadratic problem solver via branch-and-bound based methods. By solving
multiple programswith different values of ε, the Pareto front of themulti-objective
Shield-value problem can be found. As the Shield-value is an approximation of
∆λ, this Pareto front should therefore also be an approximation of the original
problem.

This method can be extended analogously to how the original NetShield al-
gorithm can be extended to NetShield+. Instead of finding a set of nodes that
maximises the Shield-value objective at once, an extra batch size parameter b can
be introduced. Then a solution that maximises the Shield-value function with
only b nodes can be found. These nodes are then added to the complete solu-
tion and removed from the network. A new quadratic program can be created
with a new Shield-value function computed from the newnetwork. This process
continues, adding b nodes to the solution set at every step. This process stops
when no more nodes can be added. This occurs when either all nodes have al-
ready been added to the solution set, or if any of the nodes not yet added would
violate the cost constraint.

3 Genetic Algorithms

The advantage of using genetic algorithms over the NetShield based methods
described in the previous section, is that they can be made to work directly on
the eigen-drop. This sidesteps the need of using a possible inaccurate approx-
imation of the eigen-drop. In addition, by sampling the search space in an ef-
ficient manner, genetic algorithms can also consider more candidate solutions
that the NetShield methods will. Therefore, it is possible that better Pareto front
approximations can be found by these meta-heuristics. The GAs used in this pa-
per are specifically designed for multi-objective problems. They use specialised
selection operators that aim for both convergence to the Pareto front and spread
over the Pareto front. The GAs used are NSGA-II [4] and SMS-EMOA [5]. In ad-
dition to this, it is also possible to hybridise theGAswith theNetShieldmethods.
This is done by initialising the GAs with the solutions found by the NetShield
methods. This can cut out the potentially large search effort by the GAs to con-
verge on the Pareto front by starting them from what already is a good approx-
imation. Then the GAs may further refine the solutions using their advantages
over the NetShield methods.

4 Experiments and Results

A specific cost function is required to define f2. This cost function should be a
good local measure for the effort required for the removal of a node. The cost
function we used is the degree of each node, as a highly connected node is likely
to be more difficult to remove from the network than a node with less incoming
and outgoing edges.



All of the GAs were run 5 times under each configuration, both when the
population was initialised at random and when it was initialised with the Net-
Shield solutions. The populations were set to a size of 100 for the random initial-
isation. The mutation probability pm was set to 1/n, with n being the number
of vertices of the graph. Crossover probability pc was set to 0.75. All GAs were
run with 10000 iterations of the main loop. All results of the GAs are plotted as
the first attainment curve [6]. All points on these curves are weakly dominated
by only 1 run out of the 5 and are therefore a best case scenario of the GAs

Both the NetShield and NetShield+ methods with the ε-constraint method
were tested. For the NetShield+method, the batch size was set to 1. The resolu-
tion of the Pareto front approximation depends on how many different values
of ε are sampled. As the cost function chosen uses only non-negative integers, it
is possible to get the best possible resolution by sampling only a finite amount
of points: from 0 to the sum of all degrees increasing ε by 1 every step. The
quadratic program solver used is Gurobi[1].

All results shown are for the following set of four graphs:

1. Pandemic: Based on the Pandemic board game in which a global virus out-
break is fought. The graph connects 27 cities in the world to each other with
93 edges. [8]. See Figure 3 (right).

2. Conference Day 1: Interactions between members of a conference on the
first day. Only the largest connected components has been selected from this
graph. The graph consists of 190 nodes and 703 edges. See Figure 3 (left).
Taken from www.sociopatterns.org/datasets/infectioussociopatterns.

3. Erdős-Rényi graph: Graph sampled from the Erdős-Rényi random graph
model. This graph has 100 nodes and 294 edges.

4. Barabási-Albert graph: Graph sampled from theBarabási-Albert graphmodel.
This graph also has 100 nodes and 294 edges. See Fig. 6

4.1 NetShield with ε-constraints and GAs

The results of both the NetShieldmethods and the randomly initialised GAs are
plotted in Figure 4 for the Pandemic and Conference day graph and in Figure 5
for the Erdős-Rényi and Barabási-Albert graph. When comparing the NSGA-II
algorithm to the SMS-EMOA algorithm, no clear differences show. It changes
from graph to graph which algorithm finds the better Pareto front approxima-
tion and they consistently lie very closely together.

Difference do show when comparing the NetShield with the NetShield+
method. Sometimes the difference are large, such as for the Conference day 1
graph and Pandemic graph. For the Barabási-Albert and Erdős-Rényi graphs
the differences are smaller, but the NetShield+ method still tends to give the
better results. This is likely due to the Shield-Value losing accuracy when the
number of nodes removed increases. Initially the performance of NetShield is
very similar to NetShield+. When the allowed cost increases and consequently
more nodes can be selected, the NetShield+ method can find solutions that are
significantly better.



Fig. 3. Conference Day 1 and Pandemic Network.

At the rightmost extremes however, the NetShield method sometimes finds
some solutions that dominate those found by the NetShield+ method. See, for
example, the Erdős-Rényi graph and the Barabási-Albert graph. This may be be-
cause the NetShield+ method with a batch size of 1 is more greedy than the
NetShield method. With a batch size of 1, the NetShield+ method selects at
every step the node with the highest eigenscore that would not violate the ε-
constraint when added to the solution. It then recomputes a new Shield-value
function with the node removed. The NetShield method however, only com-
putes the Shield-value function at the beginning and selects multiple nodes at
once to optimise this function. In this way it can take a more global view of the
problem. If the Shield-Value then happens to still be a good approximation of the
eigen-drop, better solution may be found. A possible approach is to repeat the
NetShield+method several times with different batch sizes if time allows. Then
all results can be combined for the most accurate Pareto front approximation.

When comparing both the NetShield methods with the GAs, the GAs give
very competitive performance when the networks have relatively few nodes.
This means the search space is smaller and the GAs have enough time to con-
verge on the Pareto front. This results in some parts of the Pareto front being
approximated better by the GAs, because they can work directly on the eigen-
drop. This is most notably the case for the Pandemic graph. Here bothNetShield
method and the NetShield+ method to a lesser degree have difficulty approx-
imating the Pareto front. This is likely caused by this graph having a low max-
imum degree. This means that the Shield-value approximation loses accuracy
quickly [3].



The results also show that the Pareto fronts do not form a single distinctive
shape. The Pareto front for the Erdős-Rényi graph is mostly linear. At the right-
most extreme however, two solutions are foundwhere large gains in eigen-drop
can be made with a comparatively small cost increase. This results in the Pareto
front having a concave section at the end. This is the opposite for the Pareto front
for the Conference day 1 graph. For this graph there is a clear case of diminish-
ing returns: it costs increasingly more to get the same improvement in terms of
eigen-drop the further the eigen-drop increases.

The Barabási-Albert graph Pareto front consists of several sections that are
mostly linear, but with gaps in between this sections. At these gaps, large in-
creases in eigen-drop are suddenly gained for low costs. This is the result of the
preferential attachment model used to generate this graph. At those points the
value of ε allows replacing a larger selection of smaller cost nodes with one of
the highly connected hub nodes. While these nodes have high cost, their im-
pact on eigen-drop is still disproportionate to their cost. Two solutions with this
graph are visualised in figure 6: one at the left side of a gap and one at the right
side.

Fig. 4. Results GAs and NetShield(+) with ε-constraint method

4.2 Hybrid GA approach

The results with the GAs initialised from the results from the NetShield meth-
ods for the Pandemic and Barabási-Albert graph are shown in Figure 7. They
are shown together with the initialisation sets. The most notable improvements
found by the GAs are for the Pandemic graph. Here the results of the inaccura-
cies of the Shield-value have been corrected. It appears that in these cases, the
GAs have the ability to repair such issues. The improvements for the Barabási-
Albert graph are more minor. Either the initialisation sets are already close to
the Pareto fronts or there may not be enough diversity in the initial populations
for the GAs to find better solutions.



Fig. 5. Results GAs and NetShield(+) with ε-constraint method

Fig. 6. Selected nodes are red and denoted with×. Nodes have been scaled with degree.
Left: 6 selected nodes, cost of 36, ∆λ of 0.975. Right: 1 selected node, cost of 37, ∆λ of
1.455

Fig. 7. Results hybrid GAs



5 Conclusion

In this paper, it is shown that the NetShield and NetShield+ algorithms can be
extended with an ε-constraint method, using an exact quadratic programming
solver (here: Gurobi). In this manner, a multi-objective variant of the node im-
munisation problem can be solved with a cost function added which is propor-
tional to the effort of the node removal. The performance is mostly equivalent
or better than two multi-objective genetic algorithms specifically designed for
multi-objective optimisation, except for cases where the Shield-value function
is inaccurate due to characteristics of the network. In general the NetShield+
method is more robust than the NetShield method, but there are exceptions.
Combining the GAs with the NetShield algorithm as initial population only
provided small further improvements. Therefore, if time permits and the most
accurate Pareto front approximation is required, a valid approach would be to
use all methods and combine the end results. The results also show that there
does not appear to be a typical shape to the Pareto fronts resulting from this
problem. They are dependent on both the topology of the network and on the
cost function.

A main contribution of this paper is the insight that, if time permits, exact
and problem-specific methods approximation should be used, which are often
far better than Pareto front approximations obtained by general meta-heuristics.
Based on these insight, it will be more effective to develop strategies for con-
trolling real-world networks when the goal is to prevent epidemic outbreaks.
It should be noted, however, that we focused solely on the eigen-value drop.
While this is an effective measure under the SIS infection model, the properties
of real world epidemics may not be fully captured by this model. Such addi-
tional aspects are mentioned, for instance, in [12]. In addition, we also assume
that any nodes in the network can be immunised. This also may not translate
well to real world scenarios. Therefore, future work should also take a broader
view of the problem than further improving the eigen-drop via the process of
node removal.

A note of precaution shall be provided here,when applying themodel to epi-
demics in a late stage. A crucial assumption is that the epidemic is in an earlier
stage, which will imply that it is likely many neighboring nodes of an infected
node are not yet infected. In a late stage of an epidemic this can no-longer be as-
sumed. Moreover, the dynamics are of the susceptible-infected-suceptible (SIS)
type, and not of the susceptible-infected-recovered (SIR) type, which would be
also a common real-world model, e.g., because it would be applicable to the
recent SARS-CoV2 pandemic. It is conjectured, that also in the SIR dynamics
the largest eigenvalue is an important value to focus on when dampening or
preventing a virus outbreak. When it comes to more realistic and fine grained
models of network dynamics, it is probably not straightforward anymore to use
a single indicator, such as the eigen-drop, and more complex simulation mod-
els are required such as the event-based simulation model in [9]. For an excel-
lent overview various epidemicmodels and dynamics on complex networks the
reader is referred to [11].



Whereas in our study exact QP solvers were applicable due to the quadratic
equations in the objective function, in themore general setting thiswill no longer
be the case and black-box optimization, such as SMS-EMOAwill be very useful.

Software* : All source code (Python) of algorithm implementations and network
data of this study is made free available under:
https://github.com/joostnibbeling/node-immunisation

References

1. B. Bixby. The gurobi optimizer, 2011.
2. D. Chakrabarti, Y. Wang, C. Wang, J. Leskovec, and C. Faloutsos. Epidemic thresh-

olds in real networks. ACM Transact. on Information and System Security (TISSEC),
10(4):1, 2008.

3. C. Chen, H. Tong, B. A. Prakash, C. E. Tsourakakis, T. Eliassi-Rad, C. Faloutsos, and
D. H. Chau. Node immunization on large graphs: Theory and algorithms. IEEE
Transact. on Knowledge and Data Engineering, 28(1):113–126, 2016.

4. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Transact. on Evolutionary Computation, 6(2):182–
197, 2002.

5. M. Emmerich, N. Beume, and B. Naujoks. An EMO algorithm using the hypervol-
ume measure as selection criterion. In International Conference on Evolutionary Multi-
Criterion Optimization, pages 62–76. Springer, 2005.

6. C. M. Fonseca and P. J. Fleming. On the Performance Assessment and Comparison
of Stochastic Multiobjective Optimizers. In H.-M. Voigt, W. Ebeling, I. Rechenberg,
and H.-P. Schwefel, editors, Parallel Problem Solving from Nature—PPSN IV, Lecture
Notes in Computer Science, pages 584–593, Berlin, Germany, 1996. Springer-Verlag.

7. C. Li, H. Wang, and P. Van Mieghem. Epidemic threshold in directed networks.
Physical Review E, 88(6):062802, 2013.

8. A. Maulana, M. Kefalas, and M. T. M. Emmerich. Immunization of networks using
genetic algorithms andmultiobjective metaheuristics. In 2017 IEEE Symposium Series
on Computational Intelligence (SSCI), pages 1–8. IEEE, 2017.

9. K. Michalak. Evolutionary graph-based v+ e optimization for protection against
epidemics. In International Conference on Parallel Problem Solving from Nature, pages
399–412. Springer, 2020.

10. K. Miettinen. Nonlinear multiobjective optimization, volume 4. Springer Science &
Business Media, 2012.

11. R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and A. Vespignani. Epidemic
processes in complex networks. Reviews of modern physics, 87(3):925, 2015.

12. A. Plaat. Data science and ebola. Inaugural Lecture, 2015.


