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Abstract

In current Java implementations, Remote Method Invocation is slow. On a
Pentium Pro/Myrinet cluster, for example, a null RMI takes 1228 µs using Sun’s
JDK 1.1.4. This paper describes Manta, a Java system designed to support efficient
communication. On the same Myrinet cluster, Manta achieves a null RMI latency
of 35 µs. Manta is based on a native Java compiler. It achieves high communi-
cation performance mainly through the following techniques: removal of copying
in the network sub system, compiler-generation of specialized marshaling code,
and Optimistic Active Messages, a technique that avoids thread creation in mes-
sage handlers for small methods. Our work shows that techniques from other high
performance RPC based systems also work in Java, making RMI, originally de-
signed for distributed programming, a viable mechanism for parallel programming
as well.

1 Introduction
There is a growing interest in using Java for high-performance parallel applications
(see, for example, the Java Grande initiative at http://www.javagrande.org/ ). Java’s
clean and type-safe object-oriented programming model together with its support for
parallel and distributed computing make it an attractive environment for writing reli-
able, large-scale parallel programs. At the same time, many existing Java implemen-
tations have inferior performance of both sequential code and communication primi-
tives. Much effort is being invested in improving sequential performance by replacing
the original interpreted byte code with just-in-time compilers, native compilers, and
specialized hardware [15, 26, 20].
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For parallel programming on a cluster of workstations, Java’s Remote Method Invo-
cation (RMI) provides a convenient paradigm. RMI’s design goal is to support highly
flexible programming of distributed applications. In current implementations this flex-
ibility comes at the price of a large amount of overhead, a serious impediment for high
performance cluster computing.

On modern workstation clusters, existing implementations of RMI are one or more
orders of magnitude slower than the communication mechanisms of other parallel lan-
guages. On a Pentium Pro/Myrinet cluster, Sun’s JDK 1.1.4 implementation of RMI
obtains a two-way null-latency of 1228 µsec, compared to 30 µsec for a Remote Pro-
cedure Call protocol in C, using a modern user-level communication library. Almost
all of the RMI overhead is in software, so the relative overhead increases as networks
become faster.

The purpose of this paper is to study why Java RMI is so slow, and to see how close
its performance can be brought to that of other parallel languages. The goal of our
work is to obtain an order-of-magnitude performance improvement over existing Java
RMI implementations. We therefore designed our Java system from scratch, rather
than enhance an existing system. Manta uses an optimizing native Java compiler rather
than a just-in-time compiler or an interpreter. The Manta run time system is written
in C and was designed from scratch to implement method invocation efficiently, in
cooperation with the compiler. The compiler generates information that the run time
system uses to speed up RMI serialization, thread management, and garbage collection.
For example, a major source of serialization overhead is determining the type of objects
to be serialized at run time. In Manta, when the type of an object is known, the compiler
generates a specialized serializer and inserts a direct call to it. Furthermore, when the
compiler can determine that an upcall handler is small and will not block, no new thread
is created, but the code is executed on the caller’s stack. At the lowest layer, the run
time system is implemented on top of an efficient user-level communication layer for
Myrinet (rather than on top of TCP), to avoid expensive traps to the operating system.

With these optimizations, the latency obtained by the Manta system on Myrinet is
35 µsec for a null-RMI (an RMI with no arguments and no return value). The best
throughput of our system is 20.6 MByte/s. Table 1 shows the two-way null-RMI la-
tencies of Manta (a native Java compiler), Sun’s JDK (a byte code interpreter), Sun’s
JIT (a just-in-time byte code compiler), and Panda (a conventional RPC in C), on three
different processors and two different networks. The table shows that Manta is orders
of magnitude faster than Sun’s RMI, and close to the Panda RPC lower bound.

For most of our optimizations we use insights from earlier work on efficient user-
level communication, such as Active Messages [29]. Manta’s compiler generated mar-
shaling is similar to Orca’s marshaling [2]. The buffering and dispatch scheme is
similar to the friendly upcall model [17]. Another optimization is to run small, non-
blocking, procedures in the interrupt handler, to avoid expensive thread switches. This
technique is first described for Optimistic Active Messages [31]. Instead of kernel-level
TCP/IP, Manta uses Panda on top of LFC, a highly efficient user-level communication
substrate [4].

The contribution of our work is to show that RMI does not have to be slow. The
performance improvement for a null-RMI on Myrinet is a factor of 35, from 1228 to
35 µsec. Manta shows that remote method invocation can be implemented efficiently
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System Version Processor Network Latency (µs)
Sun JDK 1.1.3 143 MHz Sparc Ultra 1 Fast Ethernet 3190
Sun JIT 1.1.6 143 MHz Sparc Ultra 1 Fast Ethernet 2240
Sun JDK 1.1.3 300 MHz Sparc Ultra 10 Fast Ethernet 1630
Sun JIT 1.1.6 300 MHz Sparc Ultra 10 Fast Ethernet 1160
Sun JDK 1.1.4 200 MHz Pentium Pro Fast Ethernet 1905
Manta 200 MHz Pentium Pro Fast Ethernet 230
Panda 3.0 200 MHz Pentium Pro Fast Ethernet 222
Sun JDK 1.1.4 200 MHz Pentium Pro Myrinet 1228
Manta 200 MHz Pentium Pro Myrinet 35
Panda 3.0 200 MHz Pentium Pro Myrinet 30

Table 1: Two-way Null-RMI Latency

on high speed networks, making it a suitable technique for high performance parallel
computing on a cluster of workstations.

The current version of Manta does not support the full Sun RMI specification. The
Java RMI system is designed for distributed computing and has elaborate support for
naming and binding to running processes, as well as for security, heterogeneity, and
handling of network errors. High performance parallel applications have different re-
quirements than distributed applications. Manta is designed for parallel computing on
a homogenous cluster machine, and Manta’s RMI does not support Sun’s protocol for
binding, versioning, security, heterogeneity, and dynamic loading of remote classes.
On the other hand, Manta does have the same syntax of a method call and declaration,
and has the same call-by-value/call-by-reference semantics of standard and remote ob-
jects as Sun’s RMI. Support for serialization, multithreading, synchronized methods,
and garbage collection is the same (only faster). In addition, we have found it useful
to add support for remote creation of new threads and objects, for a different decla-
ration syntax of remote classes, and to relax Sun’s stringent rules for the catching of
communication exceptions.

The rest of the paper is structured as follows. In Section 2 we first look at related
work. An analysis of overhead in RMI is given in Section 3. The implementation is
discussed in Section 4. In Section 5 we give a detailed performance analysis of our
techniques, using a 128 node Pentium Pro cluster.

2 Related Work
Java supports multiple threads of execution for writing parallel programs on a shared
address space machine [18]. In addition, version 1.1 of Java has support for distributed
(client/server) programming. Through the RMI mechanism, a program running on one
virtual machine can invoke a method of a program running on a different virtual ma-
chine [10], similar to a Remote Procedure Call [5]. With RPC the parameter types of
a remote procedure typically has to be known at compile time; RMI is more flexible
in that it allows subtyping at run time [30] (not yet supported by Manta). The RMI
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mechanism can also be used for parallel programming. Unfortunately, existing imple-
mentations of RMI are too slow to be useful for parallel programming. In this paper
we attempt to remedy this.

There are many research projects for parallel programming in Java. Titanium [32]
is a Java based language for high-performance parallel scientific computing. It extends
Java with features like immutable classes, fast multidimensional array access and an
explicitly parallel SPMD model of communication. The Titanium compiler translates
Titanium into C. Titanium supports both shared-memory and distributed-memory ar-
chitectures, and is built on the Split-C/Active Messages back-end.

The JavaParty system [22] is designed to ease parallel cluster programming in Java.
In particular, its goal is to run multi-threaded programs with as little change as possi-
ble on a workstation cluster. It allows the methods of a class to be invoked remotely
by adding a keyword to the class declaration, removes the need for elaborate
exception catching of remote method invocations, and, most importantly, allows ob-
jects and threads to be created remotely. Manta’s programming model is similar to the
JavaParty model. The difference is that our system is designed from scratch for high
performance. JavaParty is implemented on top of Java RMI, and thus suffers from the
same performance problem as RMI. JavaParty supports object migration, a feature for
which we found no need in our experience, and which Manta does not support.

IceT [9] enables users to share Java Virtual Machines across a network. A user can
upload a class to another virtual machine using a PVM-like interface. By explicitly
calling send and receive statements, work can be distributed among multiple JVMs.
IceT thus provides separate communication primitives, whereas Java RMI (and Manta)
use object invocation for communication.

Java/DSM [33] implements a JVM on top of ThreadMarks [14], a distributed shared
memory system. No explicit communication is necessary, all communication is han-
dled by the underlying DSM. This has the advantage of transparency, but it does not
allow the programmer to make decisions about the parallelism in the program. No
performance data for Java/DSM were available to us.

Other related projects are ARMI [23], SPAR [27] and Charlotte [13]. None of these
systems, however, are specifically designed to improve the performance of RMI. Our
system differs by being designed from scratch to provide high performance, both at the
compiler and run time system level. Lessons learned from the implementation of other
languages for cluster computing were found to be quite useful. These implementations
are built around user level communication primitives, such as Active Messages [29].
Examples are Concert [12], CRL [11], Orca [1, 2], Split-C [8], and Jade [24]. Opti-
mistic Active Messages is described in [31]. The heart of Manta’s RTS is based on
our experience with fast marshaling and dispatch. Much of this experience has been
gathered while porting the Orca system to Myrinet [2].

3 Categories of Overhead in RMI
RMI was designed for distributed programming rather than for high-performance par-
allel computing. Distributed applications typically run over a slow network (an Eth-
ernet or the Internet) that has a latency of many milliseconds. The popularity of Java
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has stimulated researchers to investigate whether the RMI model can also be used for
parallel programming. On modern hardware, parallel computing is characterized by
finer granularity communication, and latencies on the order of microseconds rather
than milliseconds.

We will now analyze the performance of Sun’s JDK 1.1.4 RMI implementation
in order to understand its performance problems. Our cluster of 128 Pentium Pros
(running at 200 MHz) is connected by 1.2 Gbit/sec switched Myrinet and 100 Mbit/sec
hubbed Fast Ethernet. We have ported the JDK to this system both on kernel-level
TCP/IP over Fast Ethernet and on user-level Fast Messages [21] over Myrinet. The
source code has been instrumented with timing calls to determine the main sources
of overhead of the JDK. Table 2 shows the results for 3 different methods, on Fast
Ethernet. The first method takes no parameters; the second one takes an empty object as
parameter; the third one takes an object containing an array of 10 Kbytes as parameter.
The total overhead of timing calls is less than 10 per cent.

empty 1 object 2 object 3 object
Serialization - 686.62 881.41 1120.84
RMI Streams and dispatch 907.255 1140.90 1127.23 1098.71
TCP/IP + kernel 809.242 830.94 814.85 819.64
Total 1719.87 2661.66 2826.84 3042.46

Table 2: Sun JDK 1.1.4, Pentium Pro, FastEthernet; times in µs

The table summarizes the measurements into the three main sources of overhead in
the JDK. First and foremost is the serialization method. The RMI serialization code is
written in Java, and uses run time object inspection to determine the type of an object. It
then traverses the Java Native Interface a number of times to call the actual serializers.
The second major source of overhead is due to dispatching, the management of streams
and the copying of data between buffers. The JDK is structured around four stream
layers (an ObjectStream, a DataStream, a FileStream, and a SocketStream), with their
associated copying of data and calling of virtual methods. A third significant source
of overhead concerns the low-level primitives: the kernel and network overhead of
TCP/IP and the context switches required to service incoming and outgoing messages.

4 Design and Implementation of Manta
The previous section identified three major areas of overhead: serialization, RMI stream
management and method dispatch, and low level network. The overhead is caused by
byte code interpretation, JNI boundary crossings, copying, software organization, vir-
tual method calls, run time type lookup, and context switching, most of which are elim-
inated in our scheme by using a compiler. Below we will describe the implementation
of our efficient method invocation system in more detail, for each of the three major
overhead categories of serialization, RMI streams and dispatch, and low level network.
The main idea for serialization is to determine the types of remote objects statically
by the compiler, and then to generate specialized serializers. The main idea for RMI
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dispatch is to use a simpler protocol consisting of fewer stream layers, resulting in less
copying and virtual method calls. The main idea for the lowest layer is to use Panda,
a highly efficient user-level communication library, instead of TCP/IP, resulting in less
copying and context switching.

We will now describe the layers in more detail, starting at the lowest layer. Subse-
quently, we discuss the Manta compiler and the restrictions of our current implemen-
tation.

4.1 Low-level Communication
Most Java RMI implementations are built on top of TCP/IP, which was not designed
for parallel processing. Manta is built on top of the Panda communication library
[1, 25]. Panda provides efficient communication primitives (message passing, Remote
Procedure Call, and broadcast) using an interface that is independent of the underlying
machine. The library has been implemented on a variety of platforms. Panda was
designed in a modular way, allowing it to exploit low-level primitives of the target
machine (e.g., reliable message passing) [25].

On Myrinet, Panda is implemented on top of an efficient network interface pro-
tocol called LFC [3, 4], which provides reliable, flow-controlled communication. To
avoid the overhead of operating system calls, LFC and Panda run completely in user-
space. The Myrinet network device is accessed directly from LFC library primitives.
The current implementation of LFC does not provide protection between different user
processes: it allows only a single user process to access the network at a given time.
(Techniques for protected user-level access do exist, however, and have been imple-
mented in other Myrinet protocols [3].) On Fast Ethernet, Panda is implemented on
top of UDP. In this case, the network interface is managed by the kernel. The Panda
RPC protocols run in user-space.

The Panda RPC interface is based on an upcall model: conceptually a new thread
of control is created when a message arrives, which will execute a handler for the
message. The interface has been designed to avoid thread switches in simple cases.
Unlike active message handlers [29], upcall handlers in Panda are allowed to block
(e.g., at a critical section), but a handler is not allowed to wait for another message
to arrive. This restriction allows the implementation to handle all messages using a
single thread and to avoid context switches for handlers that execute without blocking
[16]. We exploit this feature to implement remote invocations of simple Java methods
efficiently, as discussed later.

On Myrinet, Panda and LFC also cooperate to reduce the overhead of interrupts
for incoming messages. Interrupts (signals) have a high overhead on most operating
systems; on our system the overhead is 24 µsec. The optimization we apply is to
generate interrupts only if the host processor is busy. When the host is idle (e.g., when
it is waiting for an RPC reply) it extracts messages from the network using polling,
which has much less overhead than interrupts. LFC allows the host to turn off interrupts
from the network interface, which Panda uses to disable network interrupts when the
thread scheduler has no runnable threads.
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Figure 1: Structure of Sun and Manta RMI

4.2 The RMI Protocol
The Manta RMI protocol is implemented on top of Panda’s Remote Procedure Call
primitive. The run time system is written entirely in C. It was designed to minimize
sources of marshaling and dispatch overhead, such as copying, buffer management,
fragmentation, thread switching, and indirect method calls.

Figure 1 gives an overview of the layers in our system and compares it with the
layering of the JDK system. The shaded layers denote compiled code, while the white
layers are interpreted Java. As can be seen, Manta avoids the stream layers of the
JDK. Manta does support programmer’s use of Java’s stream-classes, but it does not
use them for RMI, unless the programmer explicitly writes to them. Instead, RMIs
are marshalled directly into a buffer. Moreover, in the JDK these stream layers are
written in Java and their overhead thus depends on the quality of the interpreter or JIT.
In Manta, all layers are either implemented as compiled C code or compiler generated
native code. Also, Manta uses a simple interface from the (compiled) Java application
to the RMI implementation (in C), instead of the less efficient JNI interface.

At the sending side, Manta builds a Panda message, which is a contiguous buffer
containing an RMI header and the (marshalled) parameters of the invocation. The lay-
out of the buffer is shown in Figure 2. It contains the destination processor, the method
to be called (represented as an index into a virtual method table) and a reference to a
local stub of the remote object. The opcode field is used by the protocol to distinguish
different types of messages (e.g., remote invocation, reply from a remote invocation, or
creation of a new remote object). Finally, the header contains a flag that is determined
by the compiler and that indicates whether a new thread should be created to execute
the invocation at the receiving side (see Section 4.4). This technique was first described
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Figure 2: The lay-out of a call message

for OAM [31].
The parameters of the invocation are copied into the buffer (after the header). The

protocol marshals the parameters directly into the message buffer, without making any
intermediate copies.

At the receiving side, Panda invokes an upcall handler to execute the request. The
handler is either invoked from a user-level interrupt (Unix signal handler) or through
polling, as described above. The handler first checks whether a new thread of control
must be created, by inspecting the create thread flag in the RMI header. Next, the
handler function or the new thread will unmarshal the parameters, invoke the method,
and return a reply to the sending machine.

The RMI protocol cooperates with the garbage collector to keep track of references
across machine boundaries. Manta uses a local garbage collector based on a simple
mark-and-sweep algorithm. Each machine runs this local collector, using a dedicated
thread that is activated by the run time system or the user. The distributed garbage col-
lector is implemented on top of the local collectors, using a reference counting mecha-
nism for remote objects.

Sun’s implementation is designed for flexibility, allowing run time loading of new
classes. Currently this is not supported in Manta; we trade off some flexibility for ef-
ficiency. We are working on compiler support for on demand loading of new classes.
Manta already allows dynamic loading of bytecodes, which is implemented by compil-
ing bytecodes dynamically to C and subsequently to binary code. Full interoperability
also requires generation of marshaling code, and an interface to Sun’s object layout and
network protocol.

4.3 The Serialization Protocol
The top layer performs the serialization, or marshaling, of method arguments. It is
an important source of overhead of existing RMI implementations. Serialization takes
Java objects and converts (serializes) them into an array of bytes. The JDK serialization
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protocol is written in Java and uses reflection to determine the type of each object dur-
ing run time. With Manta, all serialization code is generated by the compiler, avoiding
the overhead of dynamic inspection.

The protocol performs several optimizations for simple objects. An array whose
elements are of a primitive type, for example, is serialized by doing a direct memory-
copy into the message buffer, which saves traversing the array. In order to detect du-
plicate objects, the serialization code uses a hash table containing objects that have
already been serialized. If the method does not contain any parameters that are objects,
however, the hash table is not created, which again makes simple methods faster. Also,
the hash table itself is not transferred over the network; instead, the table is rebuilt
on-the-fly by the receiver. Compiler generation of serialization is one of the major
improvements of Manta. It has been used before in Orca [1].

4.4 The Compiler
The Manta system uses a native compiler that translates Java directly to executable
code, without generating bytecode first. The structure of the Manta compiler is shown
in Figure 3. An intermediate code called Gasm is used to obtain portability. Gasm
is a stack-based low-level intermediate language, extended with registers. The Manta
front-end compiles Java into Gasm. Several optimizations are performed on Gasm. Op-
timizations include: peepholing on intermediate and target language, method inlining
by analyzing the class hierarchy, copy and constant propagation, dead-store elimina-
tion, jump-to-jump elimination and aggressively replacing stack positions by registers
(register promotion). A back-end generates assembly code from Gasm. At present, we
have implemented back-ends for the Intel x86 and the Sparc.

The compiler performs several tasks to speed up RMIs. As stated before, all the
serialization code is generated by the compiler, to avoid the overhead of run time in-
spection. Also, the compiler determines for each remote method whether it can be ex-
ecuted without creating a new thread, and whether serialization hash tables are needed.
Recall that the Panda RPC interface does not allow upcall handlers to wait for other
incoming messages or block on condition synchronization (see Section 4.1). For Java,
this restriction implies that the handler should not invoke another remote method, since
method invocations are synchronous (blocking). At present, the Manta compiler is
conservative and only executes methods in the same thread if the method does not do
any method calls at all. Methods are allowed to be synchronized.

To acomplish fast marshaling with correct Java semantics, a shadow vtable is gener-
ated by the compiler. For every method in the normal method vtable, a method pointer
is maintained here to dispatch to the right unmarshaller for that method. A similar trick
is used for objects: every object has two pointers in its vtable to the serializer and dese-
rializer for that object. When a particular object is to be serialized the method pointer is
extracted from the objects vtable and called. On deserialization the same procedure is
reapplied for every last deserialized object. The serialization and deserialization code
(in C) is generated by the compiler and thus has complete information about fields and
their types. When a class to be serialized/deserialized is marked “final”, the cost of
the virtual function call to the right serializer/deserializer is optimized away, since the
correct function pointer can be determined at compile time.
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The Manta compiler is described further in [28].

4.5 Limitations of the Manta RMI Protocol
Our implementation of remote method invocations is designed for high performance
on homogeneous cluster computers. Our approach therefore has been to support RMI
features that are needed for parallel programming (such as automatic serialization, mul-
tithreading, synchronized methods, and garbage collection) and to omit functionality
that may decrease performance and is not required for parallel cluster computing. We
now discuss in more detail how our RMI system differs from standard Java RMI.

The programming model provided by Manta is similar to that of JavaParty. The
main addition to Sun’s RMI is that we have direct support for the creation of remote
objects and threads (that is, may create an instance on a different JVM). This makes
it easier to write parallel programs in a multi-threaded style, where Sun’s original RMI
is more amenable for client/server-style programs.

In Manta, remote classes can be annotated by a new keyword , in addition
to implementing the predefined interface ( ). Exception handling in
Manta is less strict than with Sun’s RMI. As in JavaParty, the programmer may choose
to omit exception handlers for all invocations, in which case communication exceptions
become fatal errors. This is easier on the programmer and probably adequate for most
programs running on parallel clusters.

The Manta system uses a native compiler, which translates Java directly into exe-
cutable code, without using bytecodes. Manta has its own object layout and network
protocol, making it incompatible with Sun’s RMI. Manta does not adhere to Java’s
“write once, run anywhere” model. It is not yet possible to dynamically load remote
methods as described in [30]. Also, in Manta all participating processes must be started
at the same time; binding to existing processes is not (yet) supported. Most of the opti-
mizations we apply to improve RMI performance could also be implemented in a JIT.
Some of our optimizations, however, require that information is passed from the com-
piler to the run time system (e.g., serialization routines, information for the garbage
collector, and the “create thread” flag). Furthermore, Manta does not support Java’s
heterogeneity and security model. Adding security managers, however, would add
overhead only during the initialization of communication channels, not during their
further use.

5 Performance Measurements
In this section, the performance of Manta is compared against the Sun JDK 1.1.4.
Experiments are run on a homogenous cluster of 128 Pentium Pro processor. Each
node contains a 200 MHz Pentium Pro, 128 MByte of EDO-RAM and a 2.5 GByte
IDE disk. All boards are connected by two different networks: 1.2 Gbit/sec Myrinet [6]
and Fast Ethernet (100 Mbit/sec Ethernet). The system runs the BSD/OS (Version 3.0)
operating system from BSDI. Both Manta and Sun’s JDK run over Myrinet and Fast
Ethernet. We have created a small user-level layer that implements socket functionality
in order to run JDK RMI over Myrinet.
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For comparison, we have also run tests on Solaris with the Sun JIT 1.1.6 just-in-
time byte code compiler and the Sun JDK 1.1.3 byte code interpreter. These tests were
run on two 300 MHz Ultra 10 Sparc’s running Solaris 2.5.1 connected by 100 Mbit/s
Fast Ethernet. We were unable to run Sun’s JIT on BSD/OS.

5.1 Remote Invocation
We first discuss two low-level benchmarks that measure the latency and throughput of
RMIs.

5.1.1 Latency

For the first benchmark, we have made a breakdown of the time spent in remote method
invocations, using zero to three (empty) objects as parameters, and no return value. The
measurements were done by inserting timing calls, using the Pentium Pro performance
counters. These counters have a granularity of 5 nanoseconds. The results are shown
in Table 3. For comparison, Tables 4, 5 and 6 show the same breakdown for Sun’s JDK
and JIT on 300 MHz Sparcstations with Fast Ethernet. We have not yet performed a
detailed breakdown for Sun’s JDK on Myrinet. The empty call times differ slightly
from those in table 1, since for these tables more (due to JNI relatively expensive,
native) timing calls were inserted. The times are averages over 100,000 RMIs, and are
highly consistent.

empty 1 object 2 objects 3 objects
Serialization 2.6 5.1 7.1 8.8
RMI Overhead 2.6 5.6 9.0 11.9
Panda 30.0 30.0 30.0 30.0
Total 35.2 40.7 46.1 50.7

Table 3: Manta, Pentium Pro, Myrinet; times in µs

empty 1 object 2 objects 3 objects
Serialization - 686.62 881.41 1120.84
RMI Overhead 907.255 1140.90 1127.23 1098.71
TCP/IP + kernel 809.242 830.94 814.85 819.64
Total 1719.87 2661.66 2826.84 3042.46

Table 4: Sun JDK 1.1.4, Pentium Pro, FastEthernet; times in µs

The tables show how expensive Sun’s RMI serialization and stream and dispatch
overhead are, compared to Manta. Even on Fast Ethernet, the software overhead sig-
nificantly exceeds the network latency.

The simplest case is an empty method without any parameters, the null-RMI. On
Myrinet, a null-RMI takes about 35 microseconds. Only 5 microseconds are added to
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empty 1 object 2 objects 3 objects
Serialization - 564.18 748.78 893.25
RMI Overhead 726.14 758.39 768.04 815.54
TCP/IP + kernel 883.74 917.24 948.27 873.72
Total 1612.67 2242.85 2468.54 2585.83

Table 5: Sun JDK 1.1.3, Sparc Ultra 10, FastEthernet; times in µs

empty 1 object 2 objects 3 objects
Serialization - 303.66 403.91 432.17
RMI Overhead 707.84 732.71 766.71 738.07
TCP/IP + kernel 499.91 473.32 496.18 510.97
Total 1210.14 1513.30 1670.48 1685.30

Table 6: Sun JIT 1.1.6, Sparc Ultra 10, FastEthernet; times in µs

the latency of the Panda RPC, which is 30 microseconds. When passing primitive data
types as a parameter to a remote call, the latency grows with less than a microsecond
per parameter, regardless of the type of the parameter. With an empty call, the Manta
serializer performs a small amount of bookkeeping of 2.6 µs. For the Sun JDK and JIT
the serialization process is organized differently, and takes less than a microsecond for
an empty call.

When one or more objects are passed as parameters in a remote invocation, the la-
tency increases considerably. The reason is that a table must be created by the run time
system to detect possible cycles and duplicates in the objects. Separate measurements
show that almost all time that is taken by adding an object parameter is spent at the
remote side of the call, deserializing the call request (not shown). The marshaling of
the request on the calling side, however, is affected less by the object parameters.

We also measured the time to create a new thread for an incoming invocation re-
quest, which is required for methods that potentially block (see Section 4.4). Starting a
new thread for an invocation costs 16.0 microseconds with the Manta run time system,
so a remote call that is executed by a new thread costs at least 51 microseconds. Our
optimization for simple methods (that may be synchronized, but may not call )
thus is useful.

We also analyzed the performance of Manta RMI over Fast Ethernet. A null-RMI
for Manta over Fast Ethernet takes 230.2 microseconds, while Java RMI takes 1905
microseconds, so Manta RMI is about 8 times faster. On Myrinet, a null-RMI with the
Java JDK takes 1218 microseconds, while Manta takes 35 microsecond, so Manta is a
factor 35 faster. The relative Java RMI serialization overhead becomes more significant
when the latency of the network decreases.
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System Version Processor Network Throughput (MByte/s)
Sun JDK 1.1.3 143 MHz Sparc Ultra 1 Fast Ethernet 0.40
Sun JIT 1.1.6 143 MHz Sparc Ultra 1 Fast Ethernet 1.00
Sun JDK 1.1.3 300 MHz Sparc Ultra 10 Fast Ethernet 1.00
Sun JIT 1.1.6 300 MHz Sparc Ultra 10 Fast Ethernet 4.11
Sun JDK 1.1.4 200 MHz Pentium Pro Fast Ethernet 0.97
Manta 200 MHz Pentium Pro Fast Ethernet 7.3
Panda 3.0 200 MHz Pentium Pro Fast Ethernet 8.1
Sun JDK 1.1.4 200 MHz Pentium Pro Myrinet 4.66
Manta 200 MHz Pentium Pro Myrinet 20.6
Panda 3.0 200 MHz Pentium Pro Myrinet 26.1

Table 7: Throughput

5.1.2 Throughput

The second benchmark we use is a Java program that measures the throughput for a
remote method invocation with an array of a primitive type as argument, and no return
type. The reply message is empty, so the one-way throughput is measured. In Manta,
all arrays of primitive types are serialized with a memcpy(), so the actual type does not
matter. The resulting measurements are shown in Table 7.

The table also shows the measured throughput of the Panda RPC protocol, with
the same message size as the remote method invocation. Panda achieves a throughput
of 37 MByte/s on Myrinet, if no additional copying to use the message is performed.
Manta’s protocol makes two additional copies of the data: one at the sending side
(during serialization) and one at the receiving side (deserialization). Since memory-
copies are expensive on a Pentium Pro [7], they decrease the throughput. The table
shows Panda throughput when extra copies are performed. As can be seen, Manta RMI
achieves a comparable throughput as a Panda RPC that does two extra memcopies.
The remaining difference is caused by the overhead of packing and unpacking the
call headers and the creation of the Java array object. The measurements also show
that for larger array sizes, the memory-to-memory copies have a larger impact on the
performance. For array sizes of one megabyte, the throughput is more than halved by
the two memory copies.

For the Sun JIT throughput is significantly worse, and even more so for the JDK.

5.2 Compiler versus RTS
An interesting question is whether most of the gain in speed could have been achieved
with either the compiler or the run time system.

The large difference in performance between the interpreter and the just-in-time
compiler indicates that executing an RMI involves a large amount of Java code. Much
of the work that Sun’s RMI system performs at run time, Manta does at compile time.
The boundary between run time system and compiler has been shifted. This indicates
that the answer to the question where most of Manta’s gain comes from, is besides the
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point: A Manta RMI is fast because of the ultra light run time system; but the run time
system could be made so thin because most of the functionality is now done by the
compiler. The answer has to be that the one needs the other, and, no, the gain in speed
could not have been achieved with either the compiler or the run time system.

5.3 Application Performance
In addition to the low-level latency and throughput benchmarks, we have also used
three parallel applications to measure the performance of our system. The applica-
tions are Successive Overrelaxation, a numerical grid computation, Travelling Sales-
person, a combinatorial optimization program, and Iterative Deepening A*, a search
program. The applications are described in [19]. We have implemented the programs
with TCP/IP sockets, Sun RMI, and JavaParty, and Manta RMI. As can be expected
from the low-level benchmarks, Manta’s speedup scales better when the number of pro-
cessors grows. (With constant problem scaling, as the number of processors grows, the
proportion of communication time relative to total run time increases, causing a sys-
tem with a low communication overhead per processor to scale better.) Since Manta
has also the best single processor execution times (by a factor of three to seven), Manta
consistently has the best parallel execution times by a wide margin.

JavaParty’s and Manta’s ability to create new remote threads was found to be quite
useful, leading to cleaner code and shorter programs than a strict client-server style.

The size of our programs is rather small, a few thousands lines of code in total. So
far our application experience confirms the low-level results, although more experience
is needed to assess the full impact of faster RMI at application level.

6 Discussion and Conclusion
The low level and application measurements show that Manta’s RMI implementation
is substantially faster than the Sun JDK and JIT: on Fast Ethernet, the null-latency is
improved from 1905 µs to 230 µs, on Myrinet from 1228 µs to 35 µs.

Manta is substantially faster than other implementations at all three layers, serial-
ization, RMI dispatch, and low level communication. Manta uses a new compiler as
well as a new run time system. An interesting question is whether most of the gain
in speed could have been achieved with either of them—a standard JIT with a better
run time system, or a native compiler for Sun’s standard RMI sub system. Our mea-
surements showed both elements to be important. Especially the cooperation between
compiler and run time system for serialization is of great importance for efficiency.

The focus of our work is on parallel programming on a cluster of workstations,
using Java’s RMI primitive. RMI is originally designed for distributed (client/server)
computing, not for parallel computing. Sun’s implementation is designed for flexibility,
not for speed.

Other parallel-Java-for-cluster systems are typically ports of existing packages (for
example, Java/PVM), or focus on new constructs for better programmability. We focus
on speed for an existing Java construct. The low-level benchmarks show that RMI
can be as efficient as the best conventional RPC implementations. The preliminary
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experience with applications has confirmed that the programming model of invoking
methods remotely is well suited for parallel programs, especially when the feature of a
remote is added.

It turns out that with the right combination of user level messaging and compiler
techniques Java’s RMI can be made almost as fast as the best C-based RPC implemen-
tation. Of these techniques, the three most important are: removing redundant copying
in software layers (as our compiler does as much as possible); generating marshaling
by the compiler; and using user level communication and Optimistic Active Messages.

Although Manta’s RMI is quite usable for writing parallel programs, we would also
like to support the distributed programming aspects of Sun’s RMI specification. We are
currently extending Manta’s support for dynamic loading of byte code files, and plan
to support binding to existing processes, heterogeneity, and security in the future.

We conclude that remote method invocation can be made to work as fast as other
RPC implementations, making Java a viable alternative for high performance parallel
programming on a cluster of workstations.
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