Parallel Computing on Wide-Area Clusters: the Albatross Project

Henri E. Bal
Jason Maassen

Aske Plaat
Rob van Nieuwpoort

Thilo Kielmann
Ronald Veldema

Department of Computer Science, Vrije Universiteit, Amsterdam, The Netherlands

{bal,aske,kielmann,jason,rob,rveldema}@Qcs.vu.nl

http://www.cs.vu.nl/albatross/

Abstract

The aim of the Albatross project is to study ap-
plications and programming environments for wide-
area cluster computers, which consist of multiple
clusters connected by wide-area networks. Paral-
lel processing on such systems is useful but chal-
lenging, given the large differences in latency and
bandwidth between LANs and WANs. We apply
application-level optimizations that exploit the hier-
archical structure of wide-area clusters to minimize
communication over the WANs. In addition, we
use highly efficient local-area communication pro-
tocols. We illustrate this approach using a high-
performance Java system that is implemented on a
collection of four Myrinet-based clusters connected
by wide-area ATM networks. The optimized ap-
plications obtain high speedups on this wide-area
system.

1 Introduction

As cluster computers become more widely available,
it becomes feasible to run parallel applications on
multiple clusters at different geographic locations.
By using several clusters for a single application,
computationally challenging problems can be solved
and a better usage may be made of the available
resources. Wide-area cluster computing thus is a
form of metacomputing [7, 14]. To enable wide-area
cluster computing, however, many problems have to
be solved. Foremost, a suitable software infrastruc-
ture has to be built, which deals with issues like se-
curity, heterogeneity, fault tolerance, and account-
ing. Legion and Globus are examples of such in-
frastructures [6, 8]. In addition, research is required
on algorithms, applications, and programming envi-
ronments for wide-area systems, since their perfor-
mance model is quite different from local clusters.

The Distributed ASCI Supercomputer (DAS) is an

Delft Leiden
- | -G T [JK_JiK__J
- - T - - T
- - - - - T
- | -G T [J_JiK__J
a e e — | D | ;D -
- - - - - -
- -G T [J_JiK__J
- - - - - -
24 24

VU Amsterdam

UvA Amsterdam

s

s
|

i

(8]
= 00000000

9
*

Figure 1: The wide-area DAS system.

experimental system that was built for doing re-
search on wide-area cluster computing (see Fig-
ure 1). It consists of four Myrinet-based cluster
computers located at four Dutch universities that
participate in the ASCI research school.! This pa-
per briefly describes one of the projects being done
with the DAS system. The goal of this project,
called Albatross, is to study applications and pro-
gramming environments for wide-area cluster com-
puters.

An assumption in our project is that wide-area clus-
ters will be structured hierarchically and will consist
of local clusters connected by wide-area networks.
Communication within a cluster is fast, typically
with latencies of 1-100 microseconds. Wide-area
communication is much slower, with millisecond la-
tencies. The DAS system is one example of such a
hierarchical system. Our algorithms and program-
ming systems exploit this hierarchical structure by
reducing the amount of communication over the
wide-area links. This is similar to locality optimiza-
tions for NUMA machines, except that the perfor-
mance gap between the local and wide-area network
is much larger; with a NUMA, the gap typically is

1The ASCI research school is unrelated to, and came into
existence before, the Accelerated Strategic Computing Ini-
tiative.

a factor of 3-5, whereas with wide-area clusters it
often is orders of magnitude.

The optimized wide-area applications succeed in
minimizing the communication traffic over the wide-
area links [2, 10, 13, 15]. As a result, most commu-
nication of the programs is local, and it often also is
important to optimize intra-cluster communication
over the local area network. Our research therefore
focuses on two issues:

e efficient communication protocols and runtime
systems for local cluster computers, and

e efficient algorithms and programming environ-
ments for wide-area cluster computers.

The communication software we use is based on the
Panda library [1]. Panda provides multithreading
and communication primitives (point-to-point mes-
sage passing, RPC, and broadcast) for implement-
ing runtime systems of various parallel languages.
The programming environments developed in the
Albatross project are implemented on top of the
Panda interface. Panda is implemented on Myrinet
using LFC [3], a highly efficient, user-space commu-
nication substrate similar to active messages. For
wide-area communication, Panda uses the TCP /IP
protocol.

We have implemented several wide-area parallel
programming systems on top of Panda. Orca is
a parallel language that provides an object-based
distributed shared memory model [1]. We have
implemented Orca on the wide-area DAS system
and we have successfully optimized several Orca
applications [2, 13]. MagPIe [10] is an MPT li-
brary (based on MPICH [9]) whose collective com-
munication primitives have been optimized for wide-
area hierarchical systems. MPI applications that
mainly use collective operations can be run effi-
ciently on a wide-area system just by relinking with
the MagPle library. Finally, we are implementing
a high-performance wide-area Java system, called
Manta [11, 15].

In the rest of this paper, we will use the Manta
system to illustrate the research issues addressed
in the Albatross project. The advantages of us-
ing Java for wide-area parallel programming are its
clean, object-oriented programming model, support
for distributed polymorphism, security, and garbage
collection [5, 17]. Below, we first describe the Manta

system. Next, we discuss how we implemented
Manta on the DAS and used it for wide-area cluster
computing.

2 The Manta system

Manta is a high-performance Java system. Unlike
most other Java implementations, it uses a native
compiler that generates executable code rather than
byte code. An important advantage of Manta is its
highly efficient implementation of Remote Method
Invocation. Manta’s RMI model is similar to that of
JavaParty, which is somewhat more flexible for par-
allel programming and easier to use than the origi-
nal Java RMI model [12]. We use RMI for commu-
nication both within a cluster and between clusters,
so its performance is crucial. Other RMI implemen-
tations (e.g., the Sun JDK 1.1) have a large soft-
ware overhead, mainly due to slow serialization and
communication protocols. With Manta, all serial-
ization routines are generated by the compiler, so
no runtime inspection (reflection) is used. Manta
uses its own, light-weight RMI protocol, written
in C. Finally, Manta is implemented on top of highly
efficient communication layers (Panda and LFC),
whereas other RMI implementations use TCP /IP.
As a result, the null latency of Manta’s RMI over
Myrinet is less than 40 microseconds, a factor of 35
improvement over the JDK [11]. Manta obtains a
throughput close to 40 Mbyte/sec over Myrinet.

The most difficult issue in the design of Manta is
how to interoperate with other Java implementa-
tions (JVMs). To solve this problem, a Manta node
can also communicate through a JDK-compliant
RMI protocol. Thus, two Manta nodes communi-
cate through Manta’s own fast RMI protocol, while
communication with non-Manta JVMs follows the
standard protocol. A related problem is that Manta
nodes must be able to exchange byte codes with
other Java nodes, because RMIs in Java are poly-
morphic [16]. (The parameters or result value of an
RMI may be of a subclass of the class specified in
the declaration, and this subclass may not yet be
present at the sending or receiving machine.) To
support polymorphic RMIs, Manta is able to ac-
cept byte codes from JVMs; this byte code is com-
piled during runtime to object code, which is linked
into the executable program using the dlopen() dy-
namic linking interface. A more detailed description
of these techniques is given in [11].

3 Wide-area computing in Java

We have implemented Manta on the wide-area
DAS system, to create an environment for exper-
imental research on wide-area parallel program-
ming. DAS consists of four clusters, located at
four Dutch universities. The cluster at the Vrije
Universiteit has 128 processors, the other clus-
ters have 24 nodes each. FEach node contains a
200 MHz Pentium Pro and has 64-128 MByte mem-
ory. The machines run RedHat Linux version 2.0.36.
The nodes within each cluster are connected by
Myrinet [4]. The four clusters are fully connected
through dedicated 6 Mbit/sec wide-area ATM net-
works. The DAS system is described in more detail
on http://www.cs.vu.nl/das/ .

The Manta system on wide-area DAS uses one ded-
icated gateway machine per cluster. The gateways
implement the Panda library, but (unlike normal
nodes) support communication over both Myrinet
and ATM, using LFC and TCP/IP respectively.
Since the Manta RMI protocol is implemented on
top of Panda, the RMI protocol does not have to
be aware of the different underlying communication
protocols. Applications often have to be optimized
to take the hierarchical structure of the wide-area
system into account, so Manta exposes this struc-
ture to the application.

The null latency of Manta RMI over the wide-area
ATM network is at most 5.6 msec (between the clus-
ters at VU Amsterdam and TU Delft). The mea-
sured throughput is 0.55 MByte/sec. The latency
and throughput over ATM are roughly two orders of
magnitude worse than those over Myrinet, making
parallel processing a challenging task.

So far, we have implemented four parallel applica-
tions in Java and optimized them for wide-area sys-
tems. The applications are: Successive Overrelax-
ation (SOR), the All-pairs Shortest Paths problem
(ASP), the Traveling Salesperson Problem (TSP),
and Iterative Deepening A* (IDA*). The applica-
tions and the optimizations are described in [15].
The performance results (taken from [15]) are shown
in Figure 2. The figure shows the speedups (rela-
tive to a sequential Java program) on 40 proces-
sors distributed over 4 clusters. For comparison, it
also gives speedups on a single cluster of 10 or 40
nodes. Comparing the second and third bar for each
application shows that the speedups on 4 ATM-
connected clusters of 10 nodes are close to those

50 4 10 nodes, 1 cluster
m 40 nodes, 4 clusters

m 40 nodes, 1 cluster

IDA*

40 -

30—-
20—-
10—-
0 _-_
SOR ASP TSP

Figure 2: Speedups of four Java applications on
three different cluster configurations.

speedup

on a 40-node Myrinet cluster. Hence, we succeeded
in reducing the communication overhead over the
wide-area network. Also, the figure shows that sig-
nificant gains can be obtained by running the ap-
plications on multiple 10-node clusters instead of a
single 10-node cluster.

To obtain this good performance, we had to op-
timize the applications in various ways. Several
applications (SOR and ASP) require asynchronous
communication, to overlap wide-area communica-
tion with computations. Java’s RMI, however, is
synchronous. To solve this problem, we invoke the
wide-area RMIs from a separate thread, allowing
the computation thread to continue. For local RMIs
over Myrinet, thread-switching overhead outweighs
the performance gains. We therefore only do the op-
timization for inter-cluster RMIs and not for intra-
cluster RMIs, although this is awkward to express.
Another limitation of RMI is the lack of a broadcast
primitive. For performance reasons, ASP requires
broadcasting, so we implemented broadcasting on
top of RMI; again, this was awkward to express. For
TSP and IDA*, the hardest problem was to find a
work distribution scheme that minimized wide-area
communication while still avoiding load imbalances.
The schemes we used (job queues and work stealing)
were easy to express in Java.

4 Conclusions

The work in the Albatross project so far has shown
that it is feasible to efficiently run parallel appli-
cations on multiple cluster computers connected by
wide-area networks. An important insight is to ex-
ploit the hierarchical structure of such wide-area
clusters and minimize the amount of communication
over the WAN (or overlap the communication with
computation). For many parallel applications, the
overhead of wide-area communication can be made
sufficiently small. As a result, optimizing local-area
communication also becomes important. In our re-
search, we combine efficient local communication
software with application-level wide-area optimiza-
tions. In this paper, we applied this strategy to
Java. We have briefly described an efficient imple-
mentation of Java RMI and we have discussed op-
timizations for several applications. In other pa-
pers, we have described similar experiences with
different programming systems and their applica-
tions [2, 10, 13]. Also, we have performed a sensi-
tivity analysis [13] on a wide-area emulation system,
showing that many optimized applications can even
tolerate very high latencies and low bandwidths.

The next step in the Albatross project is to develop
programming support that eases wide-area parallel
programming. Many of the application-level opti-
mizations we implemented for Java and other lan-
guages are complicated to express. For MPI, our
MagPle library already is an important step for-
ward, as it hides the wide-area optimization inside a
library. For example, a parallel ASP program writ-
ten in MPI can be run unmodified on the wide-area
DAS system and obtain excellent speedups [10]. A
restriction of MagPlIe, however, is that it is only ef-
fective for applications that are dominated by collec-
tive operations. In the near future, we will therefore
also study other communication paradigms. Finally,
the usage of Java for wide-area parallel computing
is attractive, given Java’s advantages for distributed
programming.

Acknowledgements

This work is supported in part by a SION grant from
the Dutch research council NWO, and by a USF grant
from the Vrije Universiteit. The wide-area DAS system
is an initiative of the Advanced School for Computing

and Imaging (ASCI). We thank Raoul Bhoedjang, Rut-
ger Hofman, Ceriel Jacobs, and Cees Verstoep for their
contributions to this research. We thank Cees Verstoep
and John Romein for keeping the DAS in good shape,
and Cees de Laat and the University of Utrecht for get-
ting the wide area links of the DAS up and running.

References

[1] H. Bal, R. Bhoedjang, R. Hofman, C. Jacobs,
K. Langendoen, T. Riihl, and F. Kaashoek. Per-
formance Evaluation of the Orca Shared Object
System. ACM Transactions on Computer Systems,
16(1):1-40, February 1998.

[2] H.E. Bal, A. Plaat, M.G. Bakker, P. Dozy, and
R.F.H. Hofman. Optimizing Parallel Applications
for Wide-Area Clusters. In International Paral-
lel Processing Symposium, pages 784-790, Orlando,
FL, April 1998.

[3] R. A. F. Bhoedjang, T. Riihl, and H. E. Bal. User-
Level Network Interface Protocols. IEEE Com-
puter, 31(11):53-60, November 1998.

[4] N.J. Boden, D. Cohen, R.E. Felderman, A.E.
Kulawik, C.L. Seitz, J.N. Seizovic, and W. Su.
Myrinet: A Gigabit-per-second Local Area Net-
work. IEEE Micro, 15(1):29-36, February 1995.

[6] B. Christiansen, P. Cappello, M. F. Ionescu, M. O.
Neary, K. E. Schauser, and D. Wu. Javelin:
Internet-Based Parallel Computing Using Java.
Concurrency: Practice and Ezperience, 1997.

[6] 1. Foster and C. Kesselman. Globus: A Metacom-
puting Infrastructure Toolkit. Int. Journal of Su-
percomputer Applications, 11(2):115-128, Summer
1997.

[7] 1. Foster and C. Kesselman, editors. The GRID:
Blueprint for a New Computing Infrastructure.
Morgan Kaufmann, 1998.

[8] A.S. Grimshaw and Wm. A. Wulf. The Legion Vi-
sion of a Worldwide Virtual Computer. Comm.
ACM, 40(1):39-45, January 1997.

[9] William Gropp, Ewing Lusk, Nathan Doss, and
Antony Skjellum. A High-performance, Portable
Implementation of the MPI Message Passing Inter-
face Standard. Parallel Computing, 22(6):789-828,
1996.

[10] T. Kielmann, R.F.H. Hofman, H.E. Bal, A. Plaat,
and R.A.F. Bhoedjang. MAGPIE: MPI’s Col-
lective Communication Operations for Clustered
Wide Area Systems. In ACM SIGPLAN Sympo-
stum on Principles and Practice of Parallel Pro-
gramming, Atlanta, GA, May 1999.

[11]

[12]

[13]

[14]

[15]

J. Maassen, R. van Nieuwpoort, R. Veldema, H.E.
Bal, and A. Plaat. An Efficient Implementation of
Java’s Remote Method Invocation. In ACM SIG-
PLAN Symposium on Principles and Practice of
Parallel Programming, Atlanta, GA, May 1999.

M. Philippsen and M. Zenger. JavaParty—
Transparent Remote Objects in Java. Concurrency:
Practice and Ezperience, pages 12251242, Novem-
ber 1997.

A. Plaat, H. Bal, and R. Hofman. Sensitivity
of Parallel Applications to Large Differences in
Bandwidth and Latency in Two-Layer Intercon-
nects. In Fifth International Symposium on High-
Performance Computer Architecture, pages 244—
253, Orlando, FL, January 1999. IEEE CS.

L. Smarr and C.E. Catlett. Metacomputing. Com-
munications of the ACM, 35(6):44-52, June 1992.

R. van Nieuwpoort, J. Maassen, H.E. Bal, T. Kiel-
mann, and R. Veldema. Wide-Area Parallel Com-
puting in Java. In ACM 1999 Java Grande Con-
ference, Palo Alto, CA, June 1999.

J. Waldo. Remote procedure calls and Java Remote
Method Invocation. IEEE Concurrency, pages 57,
July—September 1998.

A. Wollrath, J. Waldo, and R. Riggs. Java-Centric
Distributed Computing. IEEE Micro, 17(3):44-53,
May/June 1997.

