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Abstract. After the recent groundbreaking results of AlphaGo, we have
seen a strong interest in reinforcement learning in game playing. General
Game Playing (GGP) provides a good testbed for reinforcement learn-
ing. In GGP, a specification of games rules is given. GGP problems can
be solved by reinforcement learning. Q-learning is one of the canonical
reinforcement learning methods, and has been used by (Banerjee & S-
tone, IJCAI 2007) in GGP. In this paper we implement Q-learning in
GGP for three small-board games (Tic-Tac-Toe, Connect Four, Hex), to
allow comparison to Banerjee et al. As expected, Q-learning converges,
although much slower than MCTS. Borrowing an idea from MCTS, we
enhance Q-learning with Monte Carlo Search, to give QM-learning. This
enhancement improves the performance of pure Q-learning. We believe
that QM-learning can also be used to improve performance of reinforce-
ment learning further for larger games, something which we will test in
future work.

Keywords: Reinforcement Learning, Q-learning, General Game Play-
ing, Monte Carlo Search

1 Introduction

Traditional game playing programs are written to play a single specific game,
such as Chess, or Go. The aim of General Game Playing [1] (GGP) is to cre-
ate adaptive game playing programs; programs that can play more than one
game well. To this end, GGP applies a so-called Game Description Language
(GDL) [2]. GDL-authors write game-descriptions that specify the rules of a game.
The challenge for GGP-authors is to write a GGP player that will play any game
well. GGP players should ensure that a wide range of GDL-games can be run
efficiently. Comprehensive tool-suites exist to help researchers write GGP and
GDL programs, and an active research community exists [3–5].

The GGP model follows the state/action/result paradigm of reinforcement
learning [6], a paradigm that has yielded many successful problem solving al-
gorithms. For example, the recent successes of AlphaGo are based on two rein-
forcement learning algorithms, Monte Carlo Tree Search (MCTS) [7] and Deep
Q-learning (DQN) [8, 9]. MCTS, in particular, has been successful in GGP [10].
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The AlphaGo successes have also shown that for Q-learning much compute
power is needed, something already noted in Banerjee [11], who reported slow
convergence for Q-learning. Following Banerjee, in this paper we address the
convergence speed of Q-learning. We use three 2-player zero-sum games: Tic-
Tac-Toe, Hex and Connect Four, and table-based Q-learning. Borrowing an idea
from MCTS, we then create a new version of Q-learning,1 inserting Monte Carlo
Search (MCS) into the Q-learning loop.

Our contributions can be summarized as follows:

1. We evaluate the classical Q-learning algorithm, finding (1) that Q-learning
works in GGP, and (2) that classical Q-learning converges slowly in compar-
ison to MCTS.

2. To improve performance, and in contrast to [11], we enhance Q-learning by
adding a modest amount of Monte Carlo lookahead (QMPlayer) [12]. This
improves the rate of convergence of Q-learning.

The paper is organized as follows. Section 2 presents related work and re-
calls basic concepts of GGP and reinforcement learning. Section 3 provides the
design of a player for single player games. We further discuss the player to play
two-player zero-sum games, and implement such a player (QPlayer). Section 4
presents the player, inserting MCS, into Q-learning (QMPlayer). Section 5 con-
cludes the paper and discusses directions for future work.

2 Related Work and Preliminaries

2.1 GGP

A General Game Player must be able to accept formal GDL descriptions of
a game and play games effectively without human intervention [4]. A Game
Description Language (GDL) has been defined to describe the game rules [13].
An interpreter program [5] generates the legal moves (actions) for a specific board
(state). Furthermore, a Game Manager (GM) is at the center of the software
ecosystem. The GM interacts with game players through the TCP/IP protocol
to control the match. The GM manages game descriptions and matches records
and temporary states of matches while the game is running. The system also
contains a viewer interface for users who are interested in running matches and
a monitor to analyze the match process.

2.2 Reinforcement Learning

Since Watkins proposed Q-learning in 1989 [14], much progress has been made
in reinforcement learning [15, 16]. However, only few works report on the use

1 Despite the success of deep-learning techniques in the field of game playing, we
consider it to be valuable to develop more light-weight, table-based, machine learning
techniques for smaller board games. Such light-weight techniques would have the
advantage of being more accessible to theoretical analysis and of being more efficient
with respect to computational resources.
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of Q-learning in GGP. In [11], Banerjee and Stone propose a method to create
a general game player to study knowledge transfer, combining Q-learning and
GGP. Their aim is to improve the performance of Q-learning by transferring
the knowledge learned in one game to a new, but related, game. They found
knowledge transfer with Q-learning to be expensive. In our work, instead, we
use Monte Carlo lookahead to get knowledge directly, in a single game.

Recently, DeepMind published work on mastering Chess and Shogi by self-
play with a deep generalized reinforcement learning algorithm [18]. With a series
of landmark publications from AlphaGo to AlphaZero [9, 17, 18], these works
showcase the promise of general reinforcement learning algorithms. However,
such learning algorithms are very resource intensive and typically require spe-
cial GPU hardware. Further more, the neural network-based approach is quite
inaccessible to theoretical analysis. Therefore, in this paper we study perfor-
mance of table-based Q-learning.

In General Game Playing, variants of MCTS [7] are used with great suc-
cess [10]. Méhat et al. combined UCT and nested MCS for single-player general
game playing [19]. Cazenave et al. further proposed a nested MCS for two-player
games [20]. Monte Carlo techniques have proved a viable approach for searching
intractable game spaces and other optimization problems [21]. Therefore, in this
paper we combine MCS to improve performance.

2.3 Q-learning

A basic distinction of reinforcement learning methods is that of ”on-policy” and
”off-policy” methods. On-policy methods attempt to evaluate or improve the
policy that is used to make decisions, whereas off-policy methods evaluate or
improve a policy different from that used to make decisions [6]. Q-learning is
an off-policy method. The reinforcement learning model consists of an agent, a
set of states S, and a set of actions A of every state s, s ∈ S [6]. In Q-learning,
the agent can move to the next state s′, s′ ∈ S from state s after following
action a, a ∈ A, denoted as s

a−→ s′. After finishing the action a, the agent gets
a reward, usually a numerical score, which is to be maximized (highest reward).
In order to achieve this goal, the agent must find the optimal action for each
state. The reward of current state s by taking the action a, denoted as Q(s, a),
is a weighted sum, calculated by the immediate reward R(s, a) of moving to the
next state and the maximum expected reward of all future states’ rewards:

Q(s, a) = R(s, a) + γ(maxa′Q(s′, a′)) (1)

where a′ ∈ A′, A′ is the set of actions under state s′. γ is the discount factor
of maxQ(s′, a′) for next state s′. Q(s, a) can be updated by online interactions
with the environment using the following rule:

Q(s, a)← (1− α)Q(s, a) + α(R(s, a) + γ(maxa′Q(s′, a′))) (2)

where α ∈ [0, 1] is the learning rate. The Q-values are guaranteed to converge
by some schemas, such as exploring every (s, a), which should be ensured by a
suitable exploration and exploitation method (such as ε-greedy).
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3 Classical Q-learning

3.1 Exploration/Exploitation: ε-greedy

As our baseline we use ε-greedy Q-learning [15] to balance exploration and ex-
ploitation. In order to find a better baseline player, we create ε-greedy Q-learning
players(α = 0.1, γ = 0.9) with fixed ε=0.1, 0.2 and dynamically decreasing
ε ∈ [0, 0.5] to play 30000 matches against Random player, respectively. During
these 30000 matches, dynamic ε decreases from 0.5 to 0, fixed ε are 0.1, 0.2,
respectively. After 30000 matches, fixed ε is also set to 0 to continue the compe-
tition. Results in Fig.1 show that dynamically decreasing ε performs better. We
see that the final win rate of dynamically decreasing ε is 4% higher than fixed
ε=0.1 and 7% higher than fixed ε=0.2.

 

Fig. 1. Win Rate of Fixed and Dynamic ε Player vs Random in Tic-Tac-Toe. In the
white part, the player uses ε-greedy to learn; in the grey part, all players set ε=0 (stable
performance)

To enable comparison with previous work, we compare TD(λ), the baseline
learner of [11](α = 0.3, γ = 1.0, λ = 0.7, ε = 0.01), and our baseline learner(α =
0.1, γ = 0.9, ε ∈ [0, 0.5], Algorithm 1). For Tic-Tac-Toe, from Fig.2, we find that
although the TD(λ) player converges more quickly initially (win rate stays at
about 75.5% after 9000th match), our baseline performs better when the value
of ε-greedy decreases dynamically with the learning process.
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Fig. 2. Win Rate of ε-greedy Q-learning and [11] Baseline Player vs Random in Tic-
Tac-Toe. In the white part, the player uses ε-greedy to learn; in the grey part, all
players set ε=0 (stable performance)

In our dynamic implementation, we use the function

ε(m) =

{
a(cos(m

2lπ)) + b m ≤ l
0 m > l

for ε, where m is the current match count, l is the total learning match, which
we set in advance. a and b can be set to limit the range of ε, where ε ∈ [b, a+ b],
a, b ≥ 0 and a + b ≤ 1. The player generates a random number num where
num ∈ [0, 1]. If num < ε, the player will explore a new action randomly, else the
player will choose a best action from the currently learnt Q(s, a) table.

The question is what to do when the player cannot get a record from Q(s, a)?
In classical Q-learning, it chooses an action randomly (Algorithm 2). While in
the enhanced algorithm, we insert MCS (Algorithm 3) inside Q-learning, giving
Algorithm 4. QMPlayer combines MCS and Random strategies in the first part
of the search, but after enough state-action pairs are learned, it performs just
like QPlayer.

3.2 Q-learning for Single Player Games

We start by introducing the simplest algorithm, playing single player games.
Since games are played by only one player, we just need to build one Q(s, a) table
for the player to select the best action under the specific state, see Algorithm
1 [6]:
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Algorithm 1 Basic Q-learning Player For Single Player Games

Input:
1: game state: S ;
2: legal actions:A
3: learning rate: α
4: discount factor: γ;
5: reward: R(S,A);
6: updating table: Q(S,A);
Output:
7: selected action according to updating table: Q(S,A);
8: function BasicQlearningSingle(S,A)
9: for each learning match do

10: for each game state during match do
11: Update Q(s, a)← (1− α)Q(s, a) + α(R(s, a) + γmaxa′Q(s′, a′));
12: end for
13: end for
14: selected = false;
15: expected score = 0;
16: for each q(s, a) in Q(S,A) do
17: if(current game state equals s and expected score < q(s,a));
18: expected score = q(s,a);
19: selected action = a;
20: selected = true;
21: end for
22: if selected == false then
23: selected action = Random();
24: end if
25: return selected action;
26: end function

3.3 Q-learning for Two-Player Games

Next, we consider more complex games played by two players. In GGP, the
switch-turn command allows every player to play the game roles by turn. The
Q-learning player should build corresponding Q(s, a) tables for each role.

Since our GGP games are two-player zero-sum games, we can use the same
rule, see Algorithm 2 line 13, to create R(s, a) rather than to use a reward
table. In our experiments, we set R(s, a) = 0 for non-terminal states, and call
the getGoal() function for terminal states. In order to improve the learning
effectiveness, we update the corresponding Q(s, a) table only at the end of the
match.
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Algorithm 2 ε-greedy Q-learning Player For Two-Player Zero-Sum Games

Input:
1: game state: S ;
2: legal actions:A;
3: learning rate: α;
4: discount factor: γ;
5: corresponding updating tables: Qmyrole(S,A) for every role in the game;
Output:
6: selected action according to updating table: Qmyrole(S,A);
7: function epsilonGreedyQlearning(S,A)
8: if ε-greedy is enabled then
9: for each learning match do

10: record = getMatchRecord();
11: for each state from termination to the beginning in record do
12: myrole = getCurrentRole();
13: R(s,a) = getReward(s,a);//s′ is terminal state? getGoal(s′,myrole):0
14: Update Qmyrole(s, a) ← (1 − α)Qmyrole(s, a) + α(R(s, a) +

γmaxa′Qmyrole(s′, a′));
15: end for
16: end for
17: selected = false;
18: expected score = 0;
19: for each qmyrole(s, a) in Qmyrole(S,A) do
20: if(current game state equals s and expected score < qmyrole(s, a));
21: expected score = qmyrole(s, a);
22: selected action = a;
23: selected = true;
24: end for
25: if selected == false then
26: selectedaction = Random();
27: end if
28: else
29: selected action = Random()
30: end if
31: return selected action;
32: end function

Experiment 1 In our first experiment we create QPlayer (see Algorithm 2) to
play Tic-Tac-Toe. We set parameters α = 0.1, γ = 0.9, ε ∈ [0, 0.5], respectively.
As it learns to play Tic-Tac-Toe, we vary the total learning match in order to
find how many matches it needs to learn to get convergence, and then make it
play the game with Random player for 1.5 × total learning match matches. We
report results averaged over 5 experiments. The results are shown in Fig.3.
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(a) total learning match=5000

 

(b) total learning match=10000

 

(c) total learning match=20000

 

(d) total learning match=30000

 

(e) total learning match=40000

 

(f) total learning match=50000

Fig. 3. Win Rate of QPlayer vs Random Player in Tic-Tac-Toe averaged over 5 ex-
periments. The winrate converges, and the variance is reduced as total learning match
increases

Fig.3(a) shows that QPlayer has the most unstable performance (the largest
variance in 5 experiments) and only wins around 55% matches after training
5000 matches (i.e., 2500 matches trained for each role). Fig.3(b) illustrates that
after training 10000 matches QPlayer wins about 80% matches. However, during
the exploration period (the light part of the figure) the performance is still very
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unstable. Fig.3(c) shows that QPlayer wins about 86% of the matches while
learning 20000 matches still with high variance. Fig.3(d), Fig.3(e), Fig.3(f), show
us that after training 30000, 40000, 50000 matches, QPlayer gets a similar win
rate, which is nearly 86.5% with smaller and smaller variance.

Overall, as the total learning match increases, the win rate of QPlayer be-
comes higher until leveling off around 86.5%. The variance becomes smaller and
smaller. More intuitively, the QPlayer performance during the full exploitation
period (the convergence results in the dark part of Fig. 3) against different total
learning match is shown in Fig.4.

 

Fig. 4. Convergence Win Rate of QPlayer vs Random in Tic-Tac-Toe. Win rate con-
verges as total learning match increases

Fig.4 shows that QPlayer achieves, after convergence, a win rate of around
86.5% with small variance. These experiments suggest indeed that Q-learning is
applicable to a GGP system. However, beyond the basic applicability in a single
game, we need to show that it can do so (1) efficiently, and (2) in more than
one game. Thus, we further experiment with QPlayer to play Hex (learn 50000
matches) and Connect Four (learn 80000 matches) against the Random player.
The results of these experiments are given in Fig.5 and Fig.6.
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Fig. 5. Win Rate of QPlayer vs Random Player in 3×3 Hex, the win rate of Q-learning
also converges

 

Fig. 6. Win Rate of QPlayer vs Random Player in 4×4 ConnectFour, the win rate of
Q-learning also converges

In order to limit excessive learning times, following [11], we play Hex on a
very small 3×3 board, and play ConnectFour on a 4×4 board. Fig.5 and Fig.6
show that QPlayer can also play these other games effectively.
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However, there remains the problem that QPlayer should be able to learn to
play larger games. The complexity influences how many matches the QPlayer
should learn. We show results to demonstrate how QPlayer performs while play-
ing more complex games. We make QPlayer learn Tic-Tac-Toe 50000 matches
(75000 for whole competition) in 3×3, 4×4, 5×5 boards respectively and show
the results in Fig.7:

 

Fig. 7. Win Rate of QPlayer vs Random in Tic-Tac-Toe on Different Board Size. For
larger board sizes convergence slows down

The results show that with the increase of game board size, QPlayer performs
worse and for larger boards does not achieve convergence.

4 Monte Carlo Q-learning

4.1 Monte Carlo Search

The main idea of MCS [12] is to make some lookahead probes from a non-
terminal state to the end of the game by selecting random moves for the players
to estimate the value of that state. The pseudo code of time limited MCS in
GGP is shown in Algorithm 3.
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Algorithm 3 Time Limited Monte Carlo Search Algorithm

Input:
1: game state: S ;
2: legal actions:A;
3: time limit of each searching t;
Output:
4: The selected action sa, sa ∈ A;
5: function MonteCarloSearch(time limit)
6: sa = A.get(0);//default value of sa is set as the first action in A
7: if A.size() > 1 then
8: for int i = 0; i < A.size(); i = (i+1)%A.size() do
9: if time cost > time limit then

10: break;
11: end if
12: a = A.get(i);
13: score = getGoalByPerformingRandomActionsFromNextState(s,a);
14: score[i] += score;
15: visit[i] += 1;
16: end for
17: highest score = 0;
18: best action index = 0;
19: for int i = 0; i < A.size(); i++ do
20: expected score[i] = score[i]/visit[i];
21: if expected score[i] > highest score then
22: highest score = expected score[i];
23: best action index = i;
24: end if
25: end for
26: sa = A.get(best action index)
27: end if
28: return sa;
29: end function

4.2 Inserting MCS inside Q-learning

We will now add Monte Carlo Search to Q-learning (Algorithm 4). Starting from
plain Q-learning, in Algorithm 2 (line 26), we see that a random action is chosen
when QPlayer can not find an existing value in the Q(s, a) table. In this case,
QPlayer acts like a random game player, which will lead to a low win rate and
slow learning speed. In order to address this problem, we introduce a variant
of Q-learning combined with MCS. MCS performs a time limited lookahead for
good moves. The more time it has, the better the action it finds will be. See
Algorithm 4 (line 26).

By adding MCS, we effectively add a local version of the last two stages of
MCTS to Q-learning: the playout and backup stage [7].
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Algorithm 4 Monte Carlo Q-learning Player For Two-Player Zero-Sum Games

Input:
1: game state: S ;
2: legal actions:A;
3: learning rate: α;
4: discount factor: γ;
5: corresponding updating tables: Qmyrole(S,A) for every role in the game;
Output:
6: selected action according to updating table: Qmyrole(S,A);
7: function epsilonGreedyMonteCarloQlearning(S,A)
8: if ε-greedy is enabled then
9: for each learning match do

10: record = getMatchRecord();
11: for each state from termination to the beginning in record do
12: myrole = getCurrentRole();
13: R(s,a) = getReward(s,a);//s′ is terminal state? getGoal(s′,myrole):0
14: Update Qmyrole(s, a) ← (1 − α)Qmyrole(s, a) + α(R(s, a) +

γmaxa′Qmyrole(s′, a′));
15: end for
16: end for
17: selected = false;
18: expected score = 0;
19: for each qmyrole(s, a) in Qmyrole(S,A) do
20: if(current game state equals s and expected score < qmyrole(s, a));
21: expected score = qmyrole(s, a);
22: selected action = a;
23: selected = true;
24: end for
25: if selected == false then
26: selected action = MonteCarloSearch(time limit); // Algorithm 3
27: end if
28: else
29: selected action = Random()
30: end if
31: return selected action;
32: end function

Experiment 2 We will now describe our second experiment. In this experiment,
with Monte Carlo-enhanced Q-learning, we use the QMPlayer. See Algorithm 4.
We set parameters α = 0.1, γ = 0.9, ε ∈ [0, 0.5], time limit = 50ms respective-
ly. For QMPlayer to learn to play Tic-Tac-Toe, we also set the total learning
match=5000, 10000, 20000, 30000, 40000, 50000, respectively, and then make it
play the game with Random player for 1.5 × total learning match matches for 5
rounds. The comparison with QPlayer is shown in Fig.8.
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(a) total learning match=5000

 

(b) total learning match=10000

 

(c) total learning match=20000

 

(d) total learning match=30000

 

(e) total learning match=40000

 

(f) total learning match=50000

Fig. 8. Win Rate of QMPlayer and QPlayer vs Random in Tic-Tac-Toe for 5 experi-
ments. Small Monte Carlo lookaheads improve the convergence of Q-learning, especially
in the early part of the learning. QMPlayer always outperforms Qplayer

In Fig.8(a), QMPlayer gets a high win rate(about 67%) at the very beginning.
Then the win rate decreases to 66% and 65%, and then increases from 65% to
around 84% at the end of ε learning(match=5000). Finally, the win rate stays at
around 85%. Also in the other sub figures, for QMPlayer, the trend of all curves
decreases first and then increase until reaching a stable state. This is because



Monte Carlo Q-learning for General Game Playing 15

at the very beginning, QMPlayer chooses more actions from MCS. Then as the
learning period moves forward, it chooses more actions from Q table and achieves
convergence.

Note that in every sub figure, QMPlayer can always achieve a higher win
rate than QPlayer, not only at the beginning but also at the end of the learning
period. Overall, QMPlayer achieves a better performance than QPlayer with the
higher convergence win rate (at least 87.5% after training 50000 matches). To
compare the convergence speeds of QPlayer and QMPlayer, we summarize the
convergence win rates of different total learning match according to Fig. 3 and
Fig. 8, in Fig.9.

 

Fig. 9. Convergence Win Rate of QMPlayer and QPlayer vs Random in Tic-Tac-Toe

These results show that combining MCS with Q-learning for GGP can im-
prove the win rate both at the beginning and at the end of the learning period.
The main reason is that Monte Carlo-enhanced Q-learning allows the Q(s, a)
table to be filled quickly with good actions from MCS, achieving a quick and
direct learning rate. It is worth to note that, QMPlayer will spend slightly more
time (at most is search time limit× number of (state action) pairs) in training
than QPlayer.

4.3 Comparison with MCTS

In order to evaluate the performance of both Q-learning players, we implemented
a basic MCTS player [10]. Referring to the basic MCTS algorithm in [7], we
present the pseudo code of basic time limited MCTS in GGP in Algorithm 5.
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Algorithm 5 Basic Time Limited Monte Carlo Tree Search Player Algorithm
For Two-Player Zero-Sum Games

Input:
1: game state: S ;
2: legal actions:A;
3: empty game tree:tree;
4: visited nodes: visited ;
5: current node:node;
Output:
6: selected action according to updated game tree;
7: function MCTS(S,A, time limit)
8: if legal moves.size() == 1 then
9: selected action = legal moves.get(0);

10: else
11: while time cost ≤ time limit do
12: while !node.isLeaf() do
13: node = selectNodeByUCTMinMax();
14: visited.add(node);
15: end while
16: expandGameTree(); //expand tree based on the number of all next states
17: node=selectNodeByUCTMinMax();
18: visited.add(node);
19: bonus = playout(); //simulate from node to terminal state, get a score.
20: backUpdate(); //for every visited node, count+=1; value+=bonus;
21: visited.removeAll(visited);//erase visited list
22: end while
23: selected child=getChildWithMaxAverageValue(tree.get(0).children)
24: selected action=getMoveFromParentToChild(selected child);
25: end if
26: return selected action;
27: end function
28: function selectNodeByUCTMinMax
29: for each child in node.children do

30: float uct = child.totalvalue
child.visitcount

+
√

ln(node.visitcount+1)
child.visitcount

;

31: if is my turn according to node.game state then
32: if max value < uct then
33: max value = uct;
34: selected node = child;
35: end if
36: else
37: if min value > uct then
38: min value = uct;
39: selected node = child;
40: end if
41: end if
42: end for
43: return selected node;
44: end function
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First, we make QPlayer learn 50000 matches. Then we set time limit=10s for
the MCTS player to build and update the search tree. For MCS, we also allow 10
seconds. With this long time limit, they reach perfect play on this small game.
QPlayer and QM-player, in contrast, only get 50ms MCS time, and cannot reach
perfect play in this short time period. QPlayer plays against the MCTS player in
GGP by playing Tic-Tac-Toe for 100 matches. Then we pit other players against
each other. The most relevant competition results of different players mentioned
in this paper are shown in Table 1. The cells contain the win rate of the column
player against the row player.

MCTS Random QPlayer QMPlayer MCS

MCTS - 0.5% 0 0 35%

Random 99.5% - 86.5% 87.5% 100%

QPlayer 100% 13.5% - - -

QMPlayer 100% 12.5% - - -

MCS 65% 0 - - -

Table 1. Summary of Win Rate of Different Players Against to Each Other. The
state space of Tic-Tac-Toe is too small for MCTS, it reaches perfect play. QMPlayer
out-performs QPlayer

In Table 1, we find that (1) the state space of Tic-Tac-Toe is too small for
MCTS, which reaches perfect play (win rate of 100%). Tic-Tac-Toe is suitable
for showing the difference between QPlayer and QMPlayer. (2) MCTS wins 65%
matches against QMPlayer since MCTS can win in the first hand matches and
always get a draw in the second hand matches while playing with MCS. (3) The
convergence win rate of QMPlayer(87.5%) against to Random is slightly higher
than QPlayer(86.5%).

5 Conclusion

This paper examines the applicability of Q-learning, the canonical reinforce-
ment learning method, to create general algorithms for GGP programs. Firstly,
we show how good canonical implementations of Q-learning perform on GGP
games. The GGP system allows us to easily use three real games for our ex-
periments: Tic-Tac-Toe, Connect Four, and Hex. We find that (1) Q-learning
is indeed general enough to achieve convergence in GGP games. With Baner-
jee [11], however, we also find that (2) convergence is slow. Compared against
the MCTS algorithm that is often used in GGP [10], performance of Q-learning
is lacking: MCTS achieves perfect play in Tic-Tac-Toe, whereas Q-learning does
not.

We then enhance Q-learning with an MCS based lookahead. We find that,
especially at the start of the learning, this speeds up convergence considerably.
Our Q-learning is table-based, limiting it to small games. Even with the MCS
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enhancement, convergence of QM-learning does not yet allow its direct use in
larger games. The QPlayer needs to learn a large number of matches to get
good performance in playing larger games. The results with the improved Monte
Carlo algorithm (QM-learning) show a real improvement of the player’s win rate,
and learn the most probable strategies to get high rewards faster than learning
completely from scratch.

A final result is, that, where Banerjee et al. used a static value for ε, we find
that a value for ε that changes with the learning phases gives better performance
(start with more exploration, become more greedy later on).

The table-based implementation of Q-learning facilitates theoretical analysis,
and comparison against some baselines [11]. However, it is only suitable for small
games. A neural network implementation facilitates the study of larger games,
and allows meaningful comparison to DQN variants [8].

Our use of Monte Carlo in QM-learning is different from the AlphaGo archi-
tecture, where MCTS is wrapped around Q-learning (DQN) [8]. In our approach,
we inserted Monte Carlo within the Q-learning loop. Future work should show
if our QM-learning results transfer to AlphaGo-like uses of DQN inside MCTS,
if QM-learning can achieve faster convergence, reducing the high computational
demands of AlphaGo [17]. Additionally, we plan to study nested MCS in Q-
learning [20]. Implementing Neural Network based players also allows the study
of more complex GGP games.
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