
Towards Affordable Fault-Tolerant Nanosatellite
Computing with Commodity Hardware

Christian M. Fuchs∗†, Nadia M. Murillo†, Aske Plaat∗, Erik van der Kouwe∗, Peng Wang∗, Todor Stefanov∗
∗Leiden Institute for Advanced Computer Science †Leiden Observatory;
Leiden University, The Netherlands email: c.fuchs@liacs.leidenuniv.nl

Abstract—Modern embedded and mobile-market processor
technology is a cornerstone of miniaturized satellite design. This
type of lighter, cheaper, and rapidly developed spacecraft has
enabled a variety of new commercial and scientific missions.
However micro- and nanosatellites (≤100kg) currently are not
considered suitable for critical, high-priority, and complex multi-
phased missions, due to their low reliability. The hardware fault
tolerance (FT) concepts used aboard larger spacecraft can usually
not be used, due to tight energy and mass constraints, as well as
disproportional costs. Thus, we developed a hardware-software
hybrid FT-approach, which enables FT through software-side
coarse-grain lockstep, FPGA reconfiguration, and thread-level
mixed criticality. This allows our FPGA-based proof-of-concept
implementation to deliver strong fault coverage even for missions
with a long duration, but also to adapt to varying performance
requirements during the mission. In this paper, we present the
implementation results on a tiled multiprocessor system-on-a-
chip (MPSoC) design we developed as an ideal platform for
our approach. We provide details on the validation of our
approach through fault injection, which show that our lockstep
implementation is effective and efficient for providing FDIR within
our system, and show in direct comparison that our results
are consistent with related work. These results show that our
architecture is effective, overhead efficient, and remains within the
tight energy, complexity, and cost limitations of even very small
spacecraft such as CubeSats. To our knowledge, this is the first
fault mitigation approach offering strong fault tolerance, which
can uphold computational correctness viable for miniaturized
spacecraft and is not dependent on proprietary processor cores.

I. INTRODUCTION

Modern embedded technology is a driving factor in satellite
miniaturization, enabling a smaller, lighter, and cheaper class
of spacecraft, fueling a massive boom in satellite launches
and a rapidly evolving new space industry. These micro- and
nanosatellites (≤100kg wet mass) have become increasingly
popular for a variety of commercial and scientific missions.
However, they suffer from low reliability, discouraging their
use in long or critical missions, and for high-priority science.

For larger spacecraft, various hardware-based fault tolerance
(FT) concepts are available, which are not common aboard
miniaturized spacecraft due to tight energy, mass, and volume
constraints, and disproportional costs. Conventional embedded
and mobile-market systems-on-chip (SoCs) are deployed in
their stead, which usually lack even basic FT functionality.
In consequence, a significant share of post-deployment failure
of nanosatellites can be attributed directly to the failure these
components and peripheral electronics [1].

Therefore, we developed a non-intrusive, flexible, hybrid
hardware/software approach to assure FT with COTS mobile-
market technology, which is described in detail in [2]. The
MPSoC consists of well tested COTS components, library logic
(IP), and powerful mobile-market processor cores, yielding a
non-proprietary architecture. In this paper, we present practical
implementation results of this approach made with our MPSoC
design, provide first fault injection experiment results, and com-

pare these to the coarse-grain lockstep experiments conducted
by Dobel at al. in [3]. These result show that our architecture is
effective, and does not exceed the tight energy, complexity and
cost constraints of even very small spacecraft such as CubeSats
with scientific or commercial payload.

The following two sections contain background information
in our field of application, information on the fault types our
approach must handle, and a discussion of related work. In
Section IV a brief overview over the three stages of our ap-
proach is provided. We describe our proof-of-concept MPSoC-
design in Sections V and VI, and practical implementation
details are provided in Section VII. Section VIII contains early
validation results of our coarse-grain lock-step approach, which
were obtained using fault injection, followed by future work.

II. THE SPACE ENVIRONMENT & RADIATION

The drastically different fault-model [4] and form factor
constraints [5] prevent the re-use of many FT and testing
approaches developed for ground applications. Even in atmo-
spheric aerospace applications, these usually consider availabil-
ity, non-stop operation, and safety, but rarely computational
correctness for a fully autonomous system.

Physical access to a satellite after deployment today is in
practice impossible, and historical servicing missions were
conducted only on rare occasions for satellites of outstanding
importance in low-Earth orbit (LEO). Signal travel times, lim-
ited communication windows, and scarce bandwidth make live
interaction with a spacecraft impractical. Thus, faults detected
by our approach are resolved fully autonomously during a
satellite mission (10+ years).

High-energy particles are the predominant cause of faults
[6] during a satellite mission. They travel along the Earth’s
magnetic field-lines in the Van Allen belts, are ejected by the
Sun during Solar Particle Events, or arrive as Cosmic Rays
from beyond our solar system. These particles can corrupt
logical operations or induce bit-flips within memory and semi-
conductor logic (single event effects - SEE), and may cause
displacement damage (DD) at the molecular level to a chip’s
substrate and circuitry. The energy threshold above which SEEs
induce transient faults in chips manufactured in fine technology
node decreases, and the ratio of events inducing multi-bit upsets
(MBU) or permanent faults increases. Radiation events can also
cause single event functional interrupts (SEFIs), affecting sets
of circuits, individual interfaces, or even entire chips.

In general, the effects of bit-upsets and SEFIs can be
transient or permanent, while DD is always permanent [4]. The
accumulative nature of permanent faults implies accelerated
and often spontaneous aging, which must be handled efficiently
throughout a mission. The cumulative effect of charge trapping
in the oxide of electronic devices (total ionizing dose – TID)
further impacts the lifetime of an on-board computer (OBC).
However, chips manufactured in certain new technology nodes,

such as recent generation FPGAs [7] show drastically better
than expected TID performance [8] and resistance to latch-up
[9] in contrast to projections based on technology scaling.

In LEO, the residual atmosphere and Earth’s magnetic field
provide some protection from radiation, but this absorption
effect diminishes quickly with distance. Many miniaturized
spacecraft operate in this region, and forego FT in favor of
developing a functional satellite within the boundaries of their
limited resources and manpower. Most nanosatellites today
thus utilize COTS microcontroller- and application processors-
SoCs, FPGAs and combinations thereof [10], [11], occasionally
introducing basic, custom-designed redundancy with ground-
triggered fail-over. However, this is not an option for critical
and long-term missions with a scientific or commercial ob-
jective, as these components may fail at any given point in
time, resulting in a loss of mission. Most nanosatellite hardware
development efforts are more comparable to rapid hardware-
prototyping than to the sophisticated and thorough ASIC de-
velopment process. FPGAs have, hence, become increasingly
popular as they are well suited for this design approach, despite
being more vulnerable to radiation than ASICs, due to their
better FDIR potential [12].

III. RELATED WORK

FT is traditionally implemented through circuit-, RTL-,
core-, and OBC-level majority voting [13]–[15] using space-
proprietary IP, which is difficult and costly to maintain and
test. Circuit-, RTL-, and core-level voting are effective for small
SoCs such as microcontrollers [16]. More complex application
processor designs would require vast arrays of synchronized
high-frequency voters to facilitate core-lockstep in hardware.
Hence, core-level lockstepping at GigaHertz clock rates is non-
trivial and has been implemented only at low frequencies,
even with chips manufactured in modern technology nodes
[17]–[20]. Software takes no active part in fault-mitigation in
these concepts, as faults are suppressed at the circuit level,
preventing the effective assessment of a processor’s health
beyond hardware fault counters. In general, hardware-voting
based MPSoC designs are non-adaptive, as a design’s fault
coverage properties are design time specific and usually also
chip dependent [21].

FPGA-based systems can offer excellent FDIR potential [12],
as transients in major parts of the FPGA fabric can be cor-
rected and even permanent faults may be compensated through
reconfiguration with differently routed configuration variants
[22]. Fine-grained, non-invasive fault detection in FPGA fabric,
however, is challenging, and subject of active research [23],
[24]. Hence, FT-concepts for programmable logic resort to
error scrubbing, which has scalability limitations and covers
only parts of the fabric [23], [25]. We therefore facilitate fault
detection in software using coarse-grain lockstep.

Software-based FT measures have been shown to be effective
for modern embedded hardware [3], [26], [27], but have largely
been ignored by the space industry. While many of them
include innovative ideas, they exist only in theory and leave
fundamental practical issues unsolved. Most implement check-
point & rollback or restart, which makes them unsuitable for
spacecraft command & control applications [28], others ignore
fault detection [29], [30], or require infallible fault detection

entities with deep knowledge about application-intrinsics at
runtime [31] without considering how such knowledge could
be obtained. Faults often are assumed to be isolated, side
effect free and local to an individual application thread [32] or
transient [3], [29], and entail high performance [33] or resource
overhead [34], [35]. As shown in [2] these limitations can be
elegantly overcome by combining forward error correction and
thread-level lockstep within a generic MPSoC with three or
more independent processor cores, and can offer strong long-
term fault coverage with a tiled SoC topology.

Tiled architectures [36], [37] are often used for well par-
alellizable applications with many low-performance processor
cores. Among others, [38] and [37] showed that such typologies
exhibit a degree of inherent redundancy beneficial to FT, and
but the relevant concepts were only compatible with image
processing applications with a very specific structure. However,
to implement sophisticated and efficient thread migration, fault
detection must be facilitated at the operating system (OS) or
application-level without falling back to design space explo-
ration. Coarse-grain lockstep of weakly coupled cores can do
just that, and we show fault injection results based on our
approach [2].

IV. OUR SOFTWARE-SIDE FT APPROACH

The MPSoC described in this paper can offer strong FT
using just COTS components and standard logic. This is made
possible through the use of the FT approach we presented
in [2]. The high-level logic of this approach is depicted in
Figure 1, and consists of three interlinked fault mitigation
stages implemented across the embedded stack:

Stage 1 implements forward error correction and utilizes
coarse-grain lockstep of weakly coupled cores to generate
a distributed majority decision across tiles. Fault detection
is facilitated through application callback functions, without
requiring modifications to an application or knowledge about
intrinsics. Faults are resolved through state re-synchronization
and thread-migration to tiles with spare processing capacity.

Stage 2 recovers defective tiles through FPGA reconfigu-
ration, thereby counteracting resource exhaustion. It assures
the integrity of the FPGA’s running configuration and deploys

Tile Supervisor

Bootup

State Update

Checkpoint

Synchonization

Thread
Execution

Read Majority
Decision

Tile Fault
Counter

Tile (Partial)
Reconfig.

Keep
Tile

Spare Tile
Activation

Faulty Tile
Recovery

Alternative
Variants

Reduce
Thread

Mapping

Full FPGA
Reconfig.

&

Replace
Tile

 <= limit

Success

> limit

Done
No Spare
Capacity

Fig. 1: Stage 1 (white) assures fault detection (bold) and
fault coverage, Stage 2 (blue) and 3 (yellow) counter resource
exhaustion and adapt to reduced system resources.

scrubbing as well as Xilinx SEM to correct transients in FPGA
fabric. Its objective is to recover from upsets in tile logic, and
cover permanent faults using alternative configuration variants.

Stage 3 is activated when too few healthy tiles are available
due to accumulation of permanent faults, and re-allocates
processing time to maintain reliability. To do so, it utilizes
the thread-level mixed criticality found in satellite computing,
assuring sufficient compute resources are available to high-
criticality applications by sacrificing performance of lower-
criticality threads.

Further details on this approach including benchmark results
are available in [2]. The main processor architecture considered
in our project is the ARM Cortex-A53 application processor, as
it is today widely used in embedded and mobile-market devices.
However, this research is processor and ISA independent, and
platform agnostic. In the next sections, we describe a publicly
reproducible MPSoC sibling-variant of our design implemented
using Xilinx Microblaze cores and Library IP implemented
using Xilinx Vivado 2017.1 and later.

V. TILE ARCHITECTURE

Our MPSoC architecture consists of multiple isolated SoC-
compartments accessing shared main memory and OS code.
Even though the purpose and function of these compartments
is different, the topology resembles a tiled MPSoC rather than
a conventional design, in which cores share infrastructure and
peripherals. This topology maximizes Stage 1’s fault coverage
capacity and allows task mapping for opaque software.

Each such tile contains a processor core, local interconnect,
and peripheral IP-cores and interfaces as depicted in Figure
2, resides in its own clock domain, and can be reset inde-
pendently. Placing tiles in individual clock domains relaxes
timing, minimizes interdependencies between tiles, enables
partial reconfiguration and clock-gating.

A tile executes a set of thread replicas, and its loss can be
compensated by the rest of the system. To assure a failed tile
can not cause performance degradation in the rest of the system
e.g. by continuously accessing DDR or program memory, it can
be disconnected off the global interconnect by the supervisor.
Non-masked faults (due to radiation, ageing, and wear) disrupt
the data or control flow of software running on a tile (its state).
Stage 1 builds upon this capability at the thread-level, as state
difference can be detected, often by the malfunctioning tile [2].

Tiles are equipped with the same interfaces, with peripherals
being mapped to identical address ranges. The tile address

Debug
Bridge

MMU

X

BRAMMemory
Scrub

CoreIRQ

Inter
faces

Supervisor

C
lo

ck
G

en

C
ac

he

R
es

et
G

en

r/o

Tile off

clk

rst

Fig. 2: Logic-side architecture of a tile with clocking and reset
facilities. Access to local IP bypasses the cache, while access
to global memory passes is cached for performance reasons.

SPI CTRL MCTLR

MCTLR
Main

Memory

Memory
Scrubber

FeRAM
(OS & Code)

Tile

X

Tile

T1 Partition

. . .

MMU

MMU

MCTLR
NAND Flash

(Payload Data)

QSPI ctlr

SPI CTRL
DDR ctlr
+ ECC

BRAM

BRAM

Tn Partition

S
up

er
vi

so
r

Fig. 3: The topology of our tiled MPSoC design. Each tile
exists in its own reconfiguration partition and therefore also
clock domain, simplifying routing.

space layout is uniform across the system and tiles are indistin-
guishable for software. Hence, application code and data struc-
tures are portable between tiles, simplifying thread migration
drastically. This allows us to reduce the computational cost and
complexity of the lockstep.

Thread allocation and information relevant to the coarse-
grain lockstep is stored in a dedicated dual-ported on-chip
BRAM on each tile. One port is accessible to the tile’s
processor core, while the other is read-only accessible to the
system, allowing low-latency information exchange between
tiles without cache-coherence or DDR access.

To allow supervisor access to a tile and its address space,
each tile is equipped with a AXI debug-bridge. The supervisor
can induce a reset and execute a self-test functionality run
within a tile to detect faults in peripherals. It can also trigger an
adjustment of the thread allocation in Stage 1 and 3, making the
MPSoC’s computational performance, robustness and energy
consumption adjustable at runtime.

VI. INTERCONNECT TOPOLOGY & SHARED MEMORY

Figure 3 depicts the MPSoC’s high-level topology with clock
domains, and supervisor access ports indicated. It includes an
AXI interconnect in crossbar mode for access to main and
non-volatile memory controllers, though we are reworking our
MPSoC to use a NoC [38] instead.

Main memory is shared between tiles, as SD- and DDR
memory controllers have a too large footprint to instantiate
for each tile. Each tile has full access to a separate main
memory segment, which contains the tile’s stack and heap
segments. It is mapped to the same address range on all tiles
(the MMU component in the figures). All tiles can access main
memory read-only to allow simple state synchronization and
IPC between threads on different tiles.

To safeguard from SEFIs and permanent device failure, these
memories and their controllers are implemented redundantly to
enable fail-over. This also provides the hardware-side features
necessary to enable application protective measures for non-
volatile memory [39]. It also enables load distribution for main
memory through segment interleaving.

VII. PRACTICAL IMPLEMENTATION RESULTS

This MPSoC design was implemented on a Xilinx XCKU5P
FPGA with modest resource utilization (28% LUTs, 33%

BRAMs, 16% FFs, 5% DSPs) and 1.92W total power con-
sumption. This implementation serves as proof-of-concept, and
we are aware there is considerable potential for optimization.
For comparison, the smallest popular nanosatellite form factor,
1U CubeSats1, today offers an average power budget between
2W and 8W [40], these are commonly educational, short term
missions without a reliability-critical scientific or commercial
payload. However, in our research we consider reliability criti-
cal spacecraft with a long-term mission, for which 2U and 3U
CubeSats have become increasingly popular. 2U CubeSats offer
a power budget of 15W+ due to increased solar panel surface,
and even in its current early proof-of-concept, this architecture
stays within the energy, complexity and cost constraints of
our targeted application. We refrain from conducting an unfair
comparison to radiation-tolerant or -hardened FPGAs used in
classical space applications, the static power consumption alone
ranges far beyond our implementation’s total power due to 20
years of refined semiconductor manufacturing [41]. A detailed
utilization report is available in [42].

In our proof-of-concept MPSoC, we can utilize FeRAM [43]
or MRAM [44] connected via SPI as program memory, as both
memory technologies are inherently radiation immune. This is
being done to simplify the design, minimize the footprint of
the individual tiles, while taking advantage of the fact that the
OS and program code can be shared between tiles due to their
identical address spaces. Alternatively, program memory could
be implemented independently for each tile on-chip or via SPI.
This would imply the use of dedicated memories for each tile,
increasing FT but inflating complexity and energy consumption.

Main memory in our proof-of-concept is implemented as
DDR4 RAM due to easier migration from development boards
to a custom PCB, as all Xilinx Ultrascale+ development boards
are equipped with DDR4 memory. For nanosatellite missions
to LEO, often only SECDED ECC support is required and
available within existing Xilinx library IP, while basic EDAC
scrubbing can be facilitated in software. For critical, deep-
space, and long-term missions, block coding should be used
instead to compensate for the increased impact of SEEs and
higher likelihood of MBUs in highly-density SDRAM. Reed-
Solomon ECC as well as AXI error scrubbers are available
commercially, or can be assembled from open-source IP.

Tiles are placed in separate configuration partitions to enable
partial reconfiguration of individual tiles, without affecting the
rest of the system. We deployed configuration error mitiga-
tion through Xilinx Soft-Error-Mitigation for Ultrascale FP-
GAs (SEM) in combination with supervisor-side configuration
scrubbing to safeguard logic integrity. To facilitate FPGA
reconfiguration and transient fault scrubbing in the running con-
figuration, an off-chip supervisor is utilized. As our multi-stage
FT approach puts only minimal load on the supervisor, this
can again implemented using a traditional radiation hardened
microcontroller. The FeRAM-based MSP430 family would be
a solid radiation-tolerant but non-FT substitute for an ultra-
low-cost implementation of our approach in academic CubeSat
projects, as the CubeSat community used microcontrollers of
this family with encouraging results.

A fault resolved in Stage 1 may cause incorrect data to be
1A CubeSat unit (U) designates to a 10cm3 cube with 1.33kg

emitted through I/O interfaces, an inherent limitation to coarse-
grain lockstep [3] but acceptable for less critical nanosatellites.
Larger spacecraft already utilize interface replications or even
voting to protect I/O consistency, usually requiring considerable
effort in hardware or logic to facilitate replication. Our MPSoC
architecture inherently provides interface replication by design,
and requires no extra measures.

Further safeguards are necessary for low-end CubeSats
where interface replication is not desired, i.e., due to PCB-space
constraints or to limit hardware complexity. Most embedded
interfaces like I2C and SPI allow a simple majority decision
per I/O line, which can be implemented on-chip, as these have
low pin count and run at comparably low clock frequencies. In
our design we can utilize a simple majority voter consisting of
FIFO buffers, an extra active line per tile and majority voter
as depicted in Figure 4. For packet-based interfaces such as
Spacewire, AFDX, or CAN no logic-side solution is necessary,
as data duplication can be managed more efficiently at OSI
layer 2+ [45].

VIII. FAULT INJECTION EXPERIMENTS

Radiation induced faults are the main challenge to our FT
architecture. Hardware-side FT measures in general undergo
radiation testing through exposure with a specific particle mix
approximating the target environment. For the hardware used
in our architecture, relevant radiation tests have been conducted
already, e.g. in [8], [46], or are currently ongoing [37]. Tests
for relevant memories are available in test databases such as
ESCIES, NASA’s NEPP2 and the IEEE REDW Records.

Few related work regarding software-side FT measures has
been subjected to actual, practical fault injection testing. Most
academic publications on this subject does not consider actual
implementations, while the required metrics are unavailable due
to the use of classical fault-tolerance measures due to being
based on proprietary hardware. Therefore, most related work
relies on fault modeling using different statistical distributions
as input for projections. However, SSEs and other particle
induced faults are stochastic events, and for space applications
an assumption about faults following a statistical distribution
are non-representative. Hence, statistical models alone and
approximate fault rates obtained from radiation-tests do not
allow an assessment of our architecture’s effectiveness.

2see https://escies.org and https://nepp.nasa.gov

Partition Tile 1

Partition Tile n

Interface
Controller

Interface
Controller

I/O

Output
FIFO

Input
FIFO

Voter

Output
FIFO

Input
FIFO

. . . MUX

active

active

Fig. 4: Simplified representation of a activation-driven output
voter input multiplexer for low-pin-count CubeSat interfaces.
Note that an additional buffering/sampling step is required in
case of different thread scheduling on lock-stepped tiles.

Therefore, we conducted practical fault injection experiments
to validate the effectiveness and efficiency of our lockstep ap-
proach in practice. In the remainder of this section, we provide
preliminary results from our test campaign and compare them
to [3], the only public, prior practical fault injection experiment
conducted for a coarse-grain lockstep approach that we are
aware of to date.

A. Experiment Setup

We conducted fault injection experiments on the coarse-
grain lockstep approach using the open-source fault injection
framework FIES [47], which was designed for systematically
verifying the software-side functionality of COTS-based critical
system. The FIES source code is available publicly3 and
licensed under GPLv2, in which we introduced several bug-
fixes and adaptations, e.g. as original code required a generic
simulation target. These patches will be made available at
https://fieser.dependable.space.

Our coarse grained lockstep approach was implemented
using the ARM Cortex-A/Zynq board-support-package of
RTEMS 4.11.2, at that time the latest release. We cross-
compiled the kernel image with standard flags (-marm -O2)
using the RTEMS toolchain.

As payload, we utilized ESA’s Next Generation DSP bench-
mark run as POSIX threads on RTEMS, which is an ESA
standard application used to compare DSP system performance.
To re-confirm our results, we also tested using an application
resembling the NASA/James Webb Space Telescope’s Mid-
Infrared Instrument’s readout software [48], which we used in
[2] for performance estimation.

We injected transient, intermittent, and permanent faults into
memory, while transient and intermittent faults were injected
into general purpose registers. Transient faults were injected
as random bit-flips into the processor’s state register (CPSR)
and other special purpose registers and the processor pipeline.
To do so, we generated memory traces using an extended
version of the FIES framework’s trace functionality, recording
all read and write access of a tile. These measures allow us to
model accurately radiation-induced faults. SEFIs in different
functional units of a tile can induce faults which are neither
permanent nor truly transient. To simulate SEFIs, we used
FIES’ intermittent fault functionality with a duration equivalent
to 10 clock cycles at 100Mhz and approximately 20 instructions
executed by a Cortex-A pipeline.

B. Preliminary Results and Discussion

Table I depicts first results of our fault injection experiment.
In payload-application code, a majority of the transient faults
injected in memory and general purpose registers resulted in a
corruption to the payload applications’ state. With less than
20% of all faults, the application of the entire OS crashed
or terminated prematurely (CPU resets were treated as early
termination). As a majority of the payload application consists
of data handling, memory access and arithmetic instructions,
this is in line with our original expectations regarding our
coarse grain lockstep implementation.

Faults affecting the lockstep mechanics themselves resulted
in false comparison, incorrectly checksums generated from

3https://github.com/ahoeller/fies.git

Reco- Observed Effect per Type

Impact very Transient Permanent SEFI

Thread State update 49% 44% 53%

Thread Crash update 8% 17% 10%

Lockstep Fail reboot 1% 2% 1%

OS Crash reboot 10% 18% 15%

No Effect - 32% 19% 21%

Tab. I: Preliminary fault injection experiment results. Notice
that our setup does not enable us to detect test silent data
corruption or faults resulting in incorrect I/O.

correct data or control flow deviations, but occurred seldom due
to the minimal code and data footprint of the relevant functions.
It is important to note that a sizable share of faults resulting in
no noticeable effect, may also in practice be masked with no
actual impact on the tile state [49].

The share of bit-flips resulting in a corrupted thread state due
to permanent faults remained comparable as when injecting
transients. However, this number by itself is misleading, as the
amount of masked upsets without noticeable effects plummeted
to just 19%, while thread- or OS-crashes increased. Therefore,
we can deduct that a number of faults which due to transient
faults would have resulted in just thread state corruption, now
instead result in crashes. The total amount of detected faults in
turn was increased by faults which were previously masked.
Intermittent faults generated similar results to those with
permanent faults, though with slightly fewer crashes and more
faults affecting only the payload application.

Our results are consistent with related work [3], though the
amount of faults resulting in application and OS crashes is
larger. When conducting their transient fault injection experi-
ments, Dobel et al. utilized highly application intrusive lockstep
mechanics through function call hooking, which however offers
more fine-grained fault-mitigation possibilities. In general, our
campaign so far shows a higher amount of masked faults, a
decreased amount of detected state deviations, and an increased
amount of crashes with our approach. The authors of [3]
consider their fault injection measurements overly optimistic,
as they injected only transient faults into payload “applications
of little complexity (leading to few potential candidates for fault
injection) [3]”, while assuming the OS and lockstep mechanics
to be fault-free. In light of such bias, our reduced detection
rates can be considered a practical consequence of testing with
more complex applications running within a real OS.

IX. CONCLUSIONS

In this paper, we demonstrate the practical feasibility of the
multi-stage fault-tolerance approach described in [2] through
constructing a prototype and evaluating its fault detection
and recovery capabilities using practical fault injection into
registers, memory and a tile’s processors pipeline. Based on
these results, we can deduce that our architecture does not
exceed the tight energy, complexity and cost constraints of
even very small spacecraft such as CubeSats with scientific
or commercial payload, and is effective. To our knowledge,
this is the first fault mitigation approach offering strong fault

tolerance, which can uphold computational correctness viable
for miniaturized spacecraft and is not dependent on proprietary
processor cores.

We utilize fault tolerance measures across the embedded
stack, and combine topological with software-side functionality
to achieve the high level of reliability required to enable
the use of nanosatellites in critical space missions. The re-
sulting architecture enables an on-board computer to adapt
to varying performance requirements at run-time, allowing
processing capacity, energy consumption or fault coverage
to be maximized. This design was implemented using only
COTS hardware and widely available, pre-existing library IP,
requiring no proprietary logic or costly space-grade processor
cores. It was successfully tested on current generation Xilinx
Zynq/Kintex and Virtex FPGAs with 4, 6 and 8 tiles, and
validated using fault injection. We provide practical results for
our architecture which was implemented as MPSoC design on
a Xilinx XCKU5P FPGA with modest resource utilization.

Our current implementation serves as a proof-of-concept,
and we conducted fault injection experiments using the FIES
fault injection framework [47]. We provide preliminary results
based on these experiments, which show that the fault detection
and recovery capabilities of our approach are efficient and
effective for protecting an FPGA-based on-board computer.
A direct comparison of our results to literature demonstrates
that our results are comparable to the protective strength of
much tighter and more restrictive lockstep concepts. In contrast,
our approach can be ported between operating systems and
processor platforms rapidly, does not constrain the application
structure or type, and is non-intrusive.

X. ACKNOWLEDGEMENTS

This approach was developed for a 4-year European Space
Agency (ESA) NPI project, and we are implementing a proto-
type jointly with two industrial partners. We would like to thank
Gianluca Furano, Giorgio Magistrati, Antonios Tavoularis and
Kostas Marinis at ESTEC/TEC-EDD for their support and
feedback. We also thank ARM Ltd. for providing access to
processor and infrastructure IP.

REFERENCES

[1] M. Langer and J. Bouwmeester, “Reliability of cubesats-statistical data, developers’
beliefs and the way forward,” in AIAA SmallSat, 2016.

[2] C. M. Fuchs et al., “Bringing fault-tolerant gigahertz-computing to space,” in IEEE ATS,
2017.

[3] B. Döbel, “Operating system support for redundant multithreading,” Ph.D. dissertation,
Dresden University, 2014.

[4] J. Schwank et al., “Radiation Hardness Assurance Testing of Microelectronic Devices
and Integrated Circuits,” IEEE Transactions on Nuclear Science, 2013.

[5] M. Marinella and H. Barnaby, “Total ionizing dose and displacement damage effects in
embedded memory technologies,” Sandia National Laboratories, Tech. Rep., 2013.

[6] S. Bourdarie and M. Xapsos, “The Near-Earth Space Radiation Environment,” IEEE
Transactions on Nuclear Science, 2008.

[7] L. A. Tambara et al., “Heavy ions induced single event upsets testing of the 28 nm xilinx
zynq-7000 all programmable soc,” in Radiation Effects Data Workshop. IEEE, 2015.

[8] M. D. Berg, K. A. LaBel, and J. Pellish, “Single event effects in FPGA devices 2014-
2015,” in NASA NEPP/ETW, 2015.

[9] M. Kochiyama et al., “Radiation effects in silicon-on-insulator transistors with back-
gate control method fabricated with OKI semiconductor 0.20 µm FD-SOI technology.”
Elsevier, 2011.

[10] F. Kastensmidt and P. Rech, FPGAs and Parallel Architectures for Aerospace Applica-
tions: Soft Errors and Fault-Tolerant Design. Springer, 2016.

[11] R. Carlson, K. Hand, and E. Ozer, “On the use of system-on-chip technology in next-
generation instruments avionics for space exploration,” in IEEE VLSI-SoC, revised
paper. Springer, 2016.

[12] M. Wirthlin, “High-reliability FPGA-based systems: space, high-energy physics, and
beyond,” Proceedings of the IEEE, vol. 103, no. 3, 2015.

[13] K. Reick et al., “FT design of the IBM Power6 microprocessor,” IEEE micro, 2008.
[14] M. Hijorth et al., “GR740: Rad-hard quad-core LEON4FT system-on-chip,” in Eu-

rospace DASIA, 2015.
[15] A. S. Jackson, “Implementation of the configurable fault tolerant system experiment on

NPSAT-1,” Ph.D. dissertation, Naval Postgraduate School Monterey, 2016.
[16] X. Iturbe et al., “On the use of system-on-chip technology in next-generation instru-

ments avionics for space exploration,” in Springer VLSI-SoC, 2015.
[17] S. Gupta et al., “SHAKTI-F: A fault tolerant microprocessor architecture,” in IEEE ATS,

2015.
[18] X. Iturbe et al., “A triple core lock-step ARM Cortex-R5 processor for safety-critical

and ultra-reliable applications,” in IEEE DSN, 2016.
[19] R. DeCoursey et al., “Non-radiation hardened microprocessors in space-based remote

sensing systems,” in International Society for Optics and Photonics, 2006.
[20] J. R. Samson, “Implementation of a dependable multiprocessor cubesat,” in IEEE

Aerospace, 2011.
[21] M. Pignol, “DMT and DT2,” in IEEE IOLTS, 2006.
[22] L. Bozzoli and L. Sterpone, “Self rerouting of dynamically reconfigurable sram-based

FPGAs,” in NASA/ESA AHS. IEEE, 2017.
[23] M. Ebrahimi et al., “Low-cost multiple bit upset correction in sram-based FPGA

configuration frames,” IEEE Transactions on VLSI Systems, 2016.
[24] F. Rittner et al., “Automated test procedure to detect permanent faults inside sram-based

FPGAs,” in NASA/ESA AHS. IEEE, 2017.
[25] A. Stoddard, A. Gruwell, P. Zabriskie, and M. J. Wirthlin, “A hybrid approach to FPGA

configuration scrubbing,” IEEE Transactions on Nuclear Science, 2017.
[26] U. Kretzschmar et al., “Synchronization of faulty processors in coarse-grained TMR

protected partially reconfigurable FPGAs,” Elsevier RESS, 2016.
[27] A. Shye et al., “Using process-level redundancy to exploit multiple cores for transient

fault tolerance,” in IEEE DSN, 2007.
[28] J. Hursey et al., “The design and implementation of checkpoint/restart process fault

tolerance for open MPI,” in IEEE IPDPS, 2007.
[29] P. Munk et al., “Toward a fault-tolerance framework for COTS many-core systems,” in

IEEE EDCC, 2015.
[30] L. Zeng, P. Huang, and L. Thiele, “Towards the design of fault-tolerant mixed-criticality

systems on multicores,” in ACM CASES, 2016.
[31] S. P. Azad et al., “Holistic approach for fault-tolerant network-on-chip based many-core

systems,” ACM HiPEAC, DREAMCloud, 2016.
[32] A. Höller et al., “Software-based fault recovery via adaptive diversity for COTS multi-

core processors,” 2015, arXiv:1511.03528.
[33] A. D. Santangelo, “An open source space hypervisor for small satellites,” in AIAA

SPACE, 2013.
[34] E. Missimer, R. West, and Y. Li, “Distributed real-time fault tolerance on a virtualized

multi-core system,” Euromicro ECRTS, OSPERT, 2014.
[35] Z. Al-bayati et al., “Fault-tolerant scheduling of multicore mixed-criticality systems

under permanent failures,” in IEEE DFT, 2016.
[36] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel, “Mapping on multi/many-core

systems: survey of current and emerging trends,” in DAC. ACM, 2013.
[37] P. Meloni et al., “System adaptivity and fault-tolerance in NoC-based MPSoCs: the

MADNESS project approach,” in IEEE DSD, 2012.
[38] N. K. R. Beechu et al., “Hardware implementation of fault tolerance NoC core

mapping,” Springer Telecommunication Systems, 2017.
[39] C. M. Fuchs, C. Trinitis, N. Appel, and M. Langer, “A fault-tolerant radiation-robust

mass storage concept for highly scaled flash memory.”
[40] S. S. Arnold, R. Nuzzaci, and A. Gordon-Ross, “Energy budgeting for cubesats with an

integrated FPGA,” in IEEE Aerospace Conference, 2012.
[41] A. Cristo et al., “Optimization of processor-to-hardware module communications on

spaceborne hybrid FPGA-based architectures,” IEEE Embedded Systems Letters, vol. 5,
no. 4, pp. 77–80, 2013.

[42] C. M. Fuchs et al., “Preliminary Performance Estimations and Benchmark Results for
a Software-based Fault-Tolerance Approach aboard Miniaturized Satellite Computers,”
2017, arXiv:1706.02086.

[43] Z. Zhang et al., “Single event effects in COTS ferroelectric RAM technologies,” in
Radiation Effects Data Workshop. IEEE, 2015.

[44] G. Tsiligiannis et al., “Testing a commercial MRAM under neutron and alpha radiation
in dynamic mode,” IEEE Transactions on Nuclear Science, 2013.

[45] Aeronautical Radio, INC, ARINC Specification 664: Avionics Full Duplex Switched
Ethernet (AFDX), 2005.

[46] D. S. Lee et al., “Single-event characterization of the 20 nm xilinx kintex ultrascale
field-programmable gate array under heavy ion irradiation,” in Radiation Effects Data
Workshop. IEEE, 2015.

[47] A. Höller et al., “FIES: a fault injection framework for the evaluation of self-tests for
COTS-based safety-critical systems,” in MTV. IEEE, 2014.

[48] M. Ressler et al., “The mid-infrared instrument for the James Webb Space Telescope,”
Astronomical Society of the Pacific, 2015.

[49] X. Li and D. Yeung, “Application-level correctness and its impact on fault tolerance,” in
HPCA. IEEE, 2007.

