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Abstract In this paper we analyse the classification of zo-
ological illustrations. Large archives of historical biodiver-
sity data are stored in natural history institutions world-
wide. By employing computational methods for classifica-
tion, the data can be made amenable to research. The domain
presents multiple challenges: the set of potential classes is
large, images from only a subset of these are digitally avail-
able, and many images are unlabelled, since labelling re-
quires domain expertise. We argue that there is a lack of
research that analyses the performance of models that can
cope with the aforementioned challenges for problems in the
real world. Here, we explore zero-shot learning approaches
to address these issues.

We first introduce a new hierarchical dataset, the Zoo-
logical Illustration and Class Embedding (ZICE) dataset for
large-scale - covering many classes - zero-shot learning. It is
the first large-scale expert dataset for zero-shot learning “in
the wild”, that pulls together distributed, multi-modal, aux-
iliary data, from a range of research institutions within the
domain’s community. We use the dataset to train a species
embedding model using a state-of-the-art prototypical net-
work for zero-shot learning. We introduce fused prototypes
(FP) and hierarchical prototype loss (HPL) to optimise the
model. The experiments show that the proposed approach
significantly improves over the baseline. Finally, we analyse
the performance of the species embedding model for use in
real-world applications, exemplified by results on the ZICE
dataset and an independent verification-set.
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Fig. 1: Example zoological illustrations from the Icono-
graphia Zoologica online collection' (best viewed in
colour). Images free of known restrictions under copyright
law (Public Domain Mark 1.0).

1 Introduction

Zero-shot learning (ZSL) aims to recognise objects whose
instances have not yet been seen during training, based on
semantic knowledge, e.g., attributes [20, | 2], that are shared
among seen and unseen classes. Datasets have been set up
to facilitate progress in the field and demonstrate the pos-
sibilities and advantages of zero-shot learning [27,41,20].
We argue there is a need for research that analyses the per-
formance of zero-shot learning models on complex real-
world data, collected to fulfill a need within a certain do-
main. Specifically data from domains where the solution
space is large and complex, and obtaining labels for train-
ing is costly or simply not feasible, e.g., [33,39]. When al-
gorithms are, for instance, evaluated on highly imbalanced
large-scale datasets, results are poor: Xian et al. show that
experiments of state-of-the-art zero-shot learning algorithms
achieve only ~ 1.3% top-1 per-class accuracy on the 5,000
least populated classes in ImageNet, and only ~ 0.4% top-

! https://bijzonderecollecties.uva.nl/gedeelde-
content/beeldbanken/iconographia.html
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1 accuracy for generalised zero-shot learning (GZSL) [45],
where the classifier must choose the correct class from both
seen and unseen classes. With an increasing number of
classes to choose from and less information to learn from, it
becomes progressively harder for a classifier to obtain good
results.

In this paper we analyse a new, sparsely populated,
large-scale dataset for zero-shot learning. The dataset comes
from the natural history domain, see figure 1, and is formed
by consolidating data that is in use and managed by the bio-
diversity research community. Ultimately, automated meth-
ods can assist biodiversity experts in the formation of a
global picture of historical and current biodiversity, some-
thing that is crucial given the current biodiversity crisis [17].
Our contribution is threefold:

1. We introduce the Zoological Illustration and Class Em-
bedding dataset (ZICE) constructed from real-world
data. It consists of: (i) 14,502 biological illustrations of
7973 species from the animal kingdom, with labels or-
ganised hierarchically, and (ii) class embeddings from 3
different sources - a hierarchy (a biological taxonomy),
historical texts and photographs.

2. We introduce and evaluate a new zero-shot learning
(ZSL) approach for fine-grained classification. We use
the prototypical networks introduced by Snell et al. in
[31] and introduce: fused prototypes (FP), and hierar-
chical prototype loss (HPL). Our approach is evaluated
on the ZICE dataset.

3. We analyse the performance of our ZSL approach in a
real-world scenario on an independent verification-set: a
collection of 1,088 unlabelled illustrations from the an-
imal kingdom, collected during a historical biodiversity
expedition [43].

The rest of this paper is organised as follows. Section 2
describes the problem we present. In Section 3 we discuss
related work on automated species classification and zero-
shot learning. We discuss the data in Section 4, the method-
ology in Section 5, the experimental setting in Section 6 and
the experiments in Section 7. We close the paper with an
analysis and discussion of the results in Section 8, and our
conclusions in Section 9.

2 Problem Description and Approach

Historically, the habitus illustration - a scientific illustration
of a species’ physical appearance - was the most important
medium to convey a species’ characterising traits to other
scientists. In illustrations, scientists are capable of delineat-
ing and highlighting the most minuscule details, often even
more so than photographs. Habitus illustrations were rou-
tinely and abundantly created and commonly served as ex-

amples for the description of newly discovered species, so-
called holotypes. Additionally, they sometimes recorded the
habitat or behaviour of an organism. Over the last 250 years,
a large number of the earth’s zoological species have been
observed and documented this way, by means of expeditions
to the world’s most bio-diverse areas.

Research into these scientific illustrations is complicated
by several challenges. First, most illustrations are stored
in museum repositories and archives that are not disclosed
for generic use. Digitisation projects are currently ongoing
worldwide to address this challenge, but as of now, most col-
lections remain offline [17]. Second, illustrations published
as online digital collections can be used for research, but are
often published online with very limited or no identifica-
tions (unique labels). To study the illustrations, the depicted
organism should be annotated with a published taxonomic
name. [llustrations do contain captions with handwritten is-
torical names, as is demonstrated in figure 2, but these are
mostly unpublished or obsolete within today’s taxonomy.

In biology, taxonomy refers to the process of classify-
ing biological organisms into taxonomic groups based on
their shared characteristics. Modern names for these groups
are based on a binomial nomenclature that was introduced
by Carl Linnaeus in 1735. In a Linnaean taxonomy, taxon
groups are hierarchically categorised into the taxonomic lev-
els (also called ranks): kingdom, phylum, class, order, fam-
ily, genus and species. Each level subsumes less general
taxon groups, kingdom being the most general and species
the most specific taxon group. The scientific name for a
species serves as a unique label (once it has been published
and accepted by the biodiversity community) and is formed
by the binomial of the genus and species name. Over two
million distinct animal species have so far been described,
their names published and categorised according to a taxon-
omy. Consequently, the identification of an organism from
a photograph or illustration, using the system of biological
classification, is a complex and delicate task [3].

Automated methods can significantly reduce the time
and effort required by scholars to identify and label the
resources. Easy access to illustrations and their taxonomic
classification facilitates research into the history of species
abundance and variation, something that is paramount
in biodiversity research. The current biodiversity crisis
increases the importance of such historical studies as these
provide a longer-term view of changes to biodiversity.

Automated species identification is not a new challenge
within the field of computer vision and pattern recognition
[39,38,6,40, 19]. Many models have been developed for the
detection and classification of species in photographs, but
photographs and illustrations of species are quite distinct.
In illustrations, the background (natural habitat) is often
omitted and species are depicted in the form of collages
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of multiple (smaller) depictions of their external and inter-
nal anatomy (e.g., bones, organs, limbs). These appear in a
combination of various views (e.g., frontal, dorsal, lateral).
Moreover, illustrations exist as rough pencil sketches and/or
detailed colour drawings and commonly contain handwrit-
ten captions. To illustrate the differences between photo-
graphic and illustration data, three depictions and two pho-
tographs of the species Lepas (Anatifa) anserifera Linnaeus,
1767 can be observed in figure 2 and 3.

() (b (©

Fig. 2: Scientific illustrations from the Iconographia Zoolog-
ica online collection' of the species Lepas (Anatifa) anser-
ifera Linnaeus, 1767, with handwritten (historical) name
Anatifa laevis Bruguiere, 1789 (best viewed in colour). (a)
species within shell, (b) shell of species, (c) species without
shell. Images free of known restrictions under copyright law
(Public Domain Mark 1.0).

The large discrepancy between the two modes demands
a classifier that is trained or fine-tuned on the illustrations.
This is a non-trivial task due to several reasons of which
we name three. First, the space of possible solutions is very
large. Access to label candidates is available through many
years of naming species and species systematics, but only
a subset of these classes have labelled instances available
for training. The Catalogue of Life (CoL)’ estimates that
presently, ~2.2 million species on the planet are known
to taxonomists, which, according to the current system of
taxonomy, belong to ~200,000 genera, ~10,000 families,
~1,600 orders, ~400 classes, ~100 phyla and 7 kingdoms.
Second, as retrieving labelled instances is costly and diffi-
cult, few are available per species. Therefore, standard su-
pervised classification models overfit to the training data.
Third, testing the model on a test-set does not guarantee its
value ’in the wild’, where data often either comes from a dif-
ferent marginal probability distribution, or exists in a (par-
tially) different feature space [42].

Fig. 3: Photographs of the species Lepas (Anatifa) anser-
ifera Linnaeus, 1767 (Goose Barnacle), taken from iNat-
uralist.? (best viewed in colour). (a) Observation © David
R.*. (b) Observation © mervyngreening.’. Images are li-
censed under CC BY-NC 4.0.

Here, we discuss an approach that copes with the afore-
mentioned challenges. To address the first problem, we
make use of a non-standard learning strategy called zero-
shot learning (ZSL), with which it is possible to identify
unseen classes: classes that are not observed by the classi-
fier during training. As discussed in Section 2, the assump-
tion that the Linnaean taxonomic system makes is that the
members of a taxonomic group must share a cluster of sim-
ilar traits [11]. As we move down the taxonomic ranks, the
characteristics shared by groups of organisms become more
specific. In a computer vision context, we also expect visual
features (or attributes) to be shared among classes, becom-
ing more similar and specific for classes lower down the bi-
ological taxonomy. Such assumptions are exploited by ZSL.:
images from a set of unseen classes can be classified through
between-class feature transfer [19], for instance by embed-
ding seen and unseen classes in a shared feature space.

We use a prototypical network [31], to optimise a species
embedding model for zero-shot learning: we exploit auxil-
iary data - a hierarchy, historical texts and photographs - to
obtain aforementioned class embeddings, and learn a map-
ping from the images to the representations. By introduc-
ing fused prototypes (FP), and hierarchical prototype loss
(HPL), we aim to improve optimisation of the embedding
model for classification.

To address the second problem, the difficulty of learn-
ing from few illustrations per class , we exploit image rep-
resentations learned from another task - the recognition of
species’ photographs - to extract meaningful features for our
task [26]. Moreover, by using a biological taxonomy as a la-
bel hierarchy for training (through HPL), a larger number
of labelled examples are available, per group, higher up the
label hierarchy.

For the third problem, we stress that a trained model
should be evaluated ’in the wild’ on a dataset collected under

2 http://www.catalogueoflife.org
3 https://www.inaturalist.org/

4 hitps://www.inaturalist.org/observations/25983495
5 https://www.inaturalist.org/observations/34793791
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different conditions. Therefore, we analyse the final trained
prototypical network using a second independent collection
of illustrations without annotations.

3 Related Work

Below, we discuss datasets related to computer vision and
biodiversity, and provide a short survey of the field of zero-
shot learning.

Computer vision and biodiversity Recognising and identi-
fying species in images is a well researched problem within
the computer vision field. Most popular datasets contain
classes of animals, (often birds), or plants [39,38,6, 19,40,

,25]. Although some datasets contain clear, well posi-
tioned images of animals with many examples per class,
newer data sets better capture the ‘wildness’ of real-world
animal photographs. A citizen science project called iNatu-
ralist®, allows users to upload photographs of organism en-
counters in the wild. Since 2017, a new dataset has been
published every year as part of the iNaturalist Competition
FGVC6 for fine-grained image classification.” Computer vi-
sion models trained on such data sets are much better pre-
pared for the automatic identification of species in the wild,
for instance images collected from motion-triggered cam-
era traps.® In addition to photographs of species, there are
examples of models trained for the automated classification
of plants in herbaria [5]. Herbaria are collections of dried
plants on sheets of paper, which aid researchers in describ-
ing plant species.

While a great deal of work is spent capturing often un-
clear images of species in the wild, a wealth of detailed zo-
ological illustrations are under-utilised. A reason could be
that samples are small, many classes are under-represented,
and numerous institutions have yet to start with the digitisa-
tion of their collections [10].

Zero-shot learning While standard supervised image clas-
sification methods learn to recognise classes from examples
of those classes, zero-shot learning (ZSL) aims to recog-
nise unseen classes from examples of other classes, using
between-class feature transfer. To share knowledge between
classes, all classes y € Y are embedded in a feature space,
o(y) : Y — Y, called class embeddings. They are either
(i) created manually, through class annotations or attributes
[20,12], or (ii) learned from auxiliary information such as
taxonomies [4,30] or text [23,28, 16]. Attribute embeddings
encode if a certain attribute - from a set of predefined at-
tributes - is present for a specific class. Attribute embed-
dings can be either binary or continuous, e.g., {wing: 0.1,

S https://www.inaturalist.org/
7 hitps://www.kaggle.com/c/inaturalist-2019-fgvc6
8 https://github.com/microsoft/CameraTraps

red: 0.4, tail: 0.7} and fall within the interval [0,1]. Learned
embeddings are continuous and represent similarities be-
tween classes more abstractly. Class embeddings from var-
ious sources can be used to complement one another; com-
bining them often results in a higher accuracy [33,2,1].
Combining class embeddings can be done in different ways,
for instance by concatenating the class embeddings or com-
bining compatibility scores [2]. We refer to [2] for an ex-
tensive evaluation of class embeddings. Similarly to classes,
images from classes Y, are embedded in a different fea-
ture space, f(z) : X — X, resulting in image embed-
dings. Most commonly, 6 is a Convolutional Neural Net-
work (CNN), that learns filters that allow the extraction of
important features from an image. After training the CNN,
the top of the network - often just the softmax layer - is re-
moved and an embedding function remains. Finally, a func-
tion is learned that maps image embeddings to class embed-
dings: f : X Y. By mapping an image from an unseen
class into class embedding space, the image can be classi-
fied by assigning to it, for instance, the label of the nearest
class embedding vector.

Most common ZSL methods learn either a linear [1,13,

,29] or a non-linear [44,32] compatibility function. Proto-
typical networks [31] belong to the latter group. They learn
linear deep visual-semantic models, such as DeViSe [13]
and Cross-modal transfer (CMT) [32], in which the visual
object recognition network is trained to predict the class em-
bedding vector learned from auxiliary data. However, where
DeViSe aims to maximise hinge rank loss and CMT aims to
minimise a distance function, prototypical networks produce
a distribution over distances to class embedding vectors and
minimise the negative log-probability.

While all methods achieve impressive results on small-
and medium-scale datasets, the more realistic variant gener-
alised zero-shot learning (GZSL), that aims to classify both
seen and unseen classes, performs poorly for unseen classes
[32]. The function learned by the model overfits to the seen
classes and will therefore, during testing, favour seen over
unseen classes. Therefore, zero-shot learning models em-
bedded in real world applications should include novelty de-
tection. For an extensive comparison of state-of-the-art of
zero-shot learning and generalised zero-shot learning meth-
ods, we point to the work of Xian et al. [45]. In our work
we use prototypical networks for zero-shot learning because
they are state-of-the-art models within the few- and zero-
shot learning domain [31].

4 The Data

In this section, we discuss the Zoological Illustration and
Class Embedding (ZICE) dataset (see Subsection 4.1), used
for training, validating and testing our zero-shot learning ap-
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proach, and an independent verification-set (in Subsection
4.2) to verify the zero-shot learning results.

4.1 The ZICE dataset

The Zoological Illustration and Class Embedding (ZICE)
dataset contains illustrations, from the Iconographia Zoolog-
ica online collection,' and class embeddings obtained from
online data sources within the biodiversity domain.

The Iconographia Zoologica is a 19th century collection
of biological illustrations from the Artis Library of the Uni-
versity of Amsterdam. The collection was formed by three
collectors: the well-known collector and naturalist Th. G.
van Lidth de Jeude, the zoologist R.T. Maitland and the cu-
rator of the shell collection at the Amsterdam Zoo, Abraham
Oltman, together with the Amsterdam society Natura Artis
Magistra. In the 21st century, the collection was digitised
and labelled with either complete binomial species names
(genus and specific epithet) or corresponding genera. The
full online collection contains over 26,500 pages of zoolog-
ical illustrations.

Table 1: A biological illustration of the canonical name
‘Achatina columnaris’ (Achatina columnaris - - Print -
Iconographia Zoologica - Special Collections University of
Amsterdam - UBAINV0274 088 12 0011.tif) and its GBIF
classification meta-data.

Achatina columnaris - - Print - UBAINV0274 088 12 0011

GBIF taxonID 2295965
Kingdom Animalia

Phylum Mollusca

Class Gastropoda
Order Stylommatophora
Family Achatinidae
Genus Achatina

Specific epithet  columnaris

We have cross-referenced the illustration labels with the
June 2018 backbone taxonomy [30] of the Global Biodiver-
sity Information Facility (GBIF),” a central repository for
biodiversity occurrence data. For 14,502 illustrations, la-
bels could be cross-referenced directly with GBIF without
extra domain expert curation. Matches were only accepted
when the names had the status “accepted”, as propagating la-
bels with the status “unaccepted” or “synonym” could prove
problematic for the performance of a network trained with
these labels. As a result of the automated matching process,
all illustrations in the ZICE dataset are organised according
to a taxonomy with six ranks: kingdom, phylum, class, or-
der, family, genus, genus + epithet (species). In the rest of

9 https://www.gbif.org/

this paper, we refer to this taxonomy with the term label hi-
erarchy. The various ranks of the hierarchy we call levels.
Below we illustrate our work as follows. Table 1 contains
an image of an illustration, its label and the matched GBIF
classification. Figure 4 shows twelve example illustrations.

() (b)
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Fig. 4: Cropped example illustrations from the ZICE train-
set (best viewed in colour). Image (f), for example, depicts
the skull of a Rhinosceros unicornis and image (j) the tail of
a Squilla hoevenii. Images free of known restrictions under
copyright law (Public Domain Mark 1.0)

For our approach, we have generated class embeddings,
whose classes match those from the illustrations, from three
different sources: (i) hierarchical embeddings ¢" based on
the GBIF backbone taxonomy [30], (ii) text embeddings !
based on literature from the Biodiversity Heritage Library
(BHL) [15] and (iii) photograph embeddings ¢? based on
images from the iNaturalist 2018 challenge dataset [39]. In-
formation on how these embeddings were produced is given
in Section 5.

4.2 Data from the Committee for Natural History

The Committee for Natural History of the Netherlands In-
dies (1820-1850) was founded by King William I of the
United Kingdom of the Netherlands. Their primary task was
the collection of information on natural resources in the
Dutch Indies. In addition, they were deployed to observe
and describe the local flora and fauna. As a result, many
specimens, biological illustrations and observation descrip-
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tions were brought back to the Netherlands for closer inves-
tigation, with the aim to publish results on the natural di-
versity of the Dutch Indies [43]. Currently, the physical col-
lection is stored at the Naturalis Biodiversity Center in Lei-
den. In 2008 the archival part of the collection was digitised
(scanned), but due to a lack of annotation, it still remained
inaccessible to biodiversity researchers. Currently, the col-
lection serves as a use-case for the Making Sense of Illus-
trated Handwritten Archives Project'® of which this work is
part. We use 1,088 illustrations from the collection to evalu-
ate the model in a realistic setting. Example illustrations are
presented in figure 5.

Fig. 5: Cropped example illustrations from the verification-
set: data from the Committee for Natural History (best
viewed in colour). Labels are unknown. Images free of
known restrictions under copyright law (Public Domain
Mark 1.0)

5 Methodology

In this section, we describe the mathematical formulation of
the zero-shot learning model (ZSL) (in Subsection 5.1), im-
age embeddings (in Subsection 5.2), class embeddings (in
Subsection 5.3), a new method for (i) combining class em-
beddings: fused prototypes (FP) (in Subsection 5.4), and (ii)
for calculating hierarchical prototype loss (HPL) based on
the label hierarchy (in Subsection 5.5).

10" www.makingsenseproject.org

5.1 Zero-shot Learning Model

Prototypical networks for few-shot learning, as described in
[31], compute for each class an m-dimensional representa-
tion ¢ € R™ or class prototype. They do so by embed-
ding support points € S, e.g., images belonging to a sub-
set of classes k, X € R”, with an embedding function
fo + R® — R™ and taking the per-class average of the
resulting embedded support points, see equation 1. These k
points then serve as prototypes for those k classes. We fur-
ther refer to the space R™ by the term prototype space.

= S folxi) )

(xi,yi) €Sk

To train the network, prototypical network loss (PNL),
is calculated by embedding query points: images belonging
to the same k classes that are embedded in prototype space
using the same function f,. Distances from the query points
to the k prototypes are computed so that, based on a softmax
over these distances, a distribution over classes is obtained.
Parameters ¢ are learned by minimising the negative log-
probability of the true class k via Stochastic Gradient De-
scent. The network is trained with mini-batches, consisting
of k classes, g query points and s support points is called an
episode.

For zero-shot learning, Snell et al. [31] mention that
rather than embedding support points in prototype space,
prototypes can be constructed by embedding auxiliary in-
formation, e.g., class embeddings in the form of attribute
annotations, in prototype space. In their paper they use bi-
nary attribute vectors from the CUB-200-2011 dataset [41].
They extract features from different crops of the images us-
ing GoogleNet [34] and map them to prototype space using a
one-layer linear model. Similarly, they use a one-layer linear
model to map the attributes to prototype space and prototyp-
ical training proceeds as in the few-shot setting. Rather than
relying on one source (such as attributes), we rely on a com-
bination of class embeddings from three distinct sources.

5.2 Image embeddings

We extract deep features from zoological illustrations us-
ing a deep Convolutional Neural Network (CNN). Training
a deep CNN from scratch from small samples results in fea-
tures that overfit the dataset. When all images from a class
are depicted by a specific illustrator, the model learns fea-
tures that are specific to the illustrator, such as a mark or a
label. Therefore, we transfer image representations learned
from photographs (the source dataset) to illustrations (the
target dataset) to bootstrap the learning of the image em-
bedding space [26]. We use the inception V3 model [35],



Large-scale Zero-shot Learning in the Wild: Classifying Zoological Illustrations 7

and import weights learned on the iNaturalist 2018 compe-
tition dataset.!' For zero-shot learning, image embeddings
are often generated using CNNs pre-trained on another task
(e.g., the ImageNet task [8]). The choice of model is crucial
as the quality of the image embeddings has a big impact on
the performance of the ZSL model. Therefore, we have cho-
sen to use a model that was trained on a task more similar to
ours. Xian et al. [45] mention that class overlap between the
classes from the source dataset and classes represented in the
target dataset leads to an unwanted positively biased result.
However, our goal is not to compare between various state-
of-the-art zero-shot learning methods, but rather to provide
insights for training a model that is able to generalise to new
data within the target domain.

{1
Galeolaria hystrix - {1}

Lepas anatifera - {2}
Papilio thoas - {1}
[ ipus rathkii - {5}

illidium vulgare - {4}
Porcellio laevis - {3}
Porcellio dilatatus - {1}
Porcellio spinicornis - {1}

Stenopus hispidus - {3}

-{3}

Minuca pugnax - {1}

-{1
—— Homarus americanus - {1}

- Procambarus clarki - {1}
{Ovconecies virilis - {1}

Sepia officinalis - {4}

[ Octopus vulgaris - {3}

‘ Spirula spirula - {2}

Amblema plicata - {3}

siliqua patula - {2}

Mytilus californianus - {2}

Mya arenaria - {2}

Spisula soli {1y

Argopecten gibbus - {5}

L cessadomagganea-
Tridacna crocea - {1}

—_ Dinocardium robustum - {1}

Bursatella leachii - {1}

T
Janthina janthina - {3}

Cypraea tigris - {4}
Pomatias elegans - {2}
Cyphoma gibbosum - {2}
Strombus alatus - {2}

Limax maximus - {4}

Cochlicopa lubrica - {1}

Helix pomatia - {5}

Cepaea nemoralis - {3}
Cornu aspersum - {3}
Arianta arbustorum - {2}

c -{1

sayana - {1}

———Busycon carica - {2}
L Cominella maculosa - {1}

Dicathais orbita - {1}
{ Hausirum scotina - {1
Nucella lapillus - {1}

Ancula gibbosa - {2}
Polycera quadrilineata - {1}

D -{2}
— S Felimare villafranca - {1}

Phyllidia varicosa - {4}
{ Phyllidia ocellata - {1}

Phyllidiella pustulosa - {1}

Fig. 6: A subset of classes from the ZICE dataset and the
corresponding hierarchy. Leafnodes present species names.
Nodes indicate taxon groups from kingdom, (left) to species
(right), becoming increasingly specific. It contains species
from the three animal phyla (top to bottom): Annelida, Mol-
lusca and Anthropoda. Bold names indicate classes used for
training, and numbers indicate number of instances within
that class.

-z

1 https://github.com/macaodha/inat_comp_2018

5.3 Class embeddings

Below we describe details concerning the embedding func-
tions ¢ used to create the class embeddings ¢ from the three
different sources: (i) " : the GBIF hierarchy, (ii) ¢! : texts
from the Biodiversity Heritage Library (BHL) and (iii) ¢? :
photographs from the 2018 iNaturalist competition dataset.
As each embedding comes from a different domain, all em-
beddings are [o-normalised.

©": After all 7973 classes from the ZICE dataset were
matched with GBIF names, we had access to the ground
truth list of higher taxon labels for nearly all of them: 7920
in total. For the missing 53 classes, no (or an incomplete)
higher classification was available in the GBIF taxonomy
backbone. Using the deterministic algorithm from Barz et
al. [4], we projected all 7920 classes onto a unit sphere of
dimensionality n - where n is the number of classes. The
negated dot product between classes on the sphere repre-
sents their semantic similarity. This similarity is based on
the ratio of overlap between their ground truth list of higher
taxon labels - nodes in the hierarchy. Part of the hierarchy of
classes is given in figure 6.

*: To facilitate semantic search over large textual biodi-
versity archives, Nguyen et al. have constructed an inventory
of name variants and synonyms from a large textual biodi-
versity corpus [24]. For this task, they have computed the
semantic similarity between all single and multi-word terms
- ”chipping sparrows” becomes ~’chipping_sparrows” - men-
tioned in the corpus. The semantic similarity is the output
of a similarity function computed from word embeddings.
Furthermore, they compared multiple methods to compute
word embeddings: continuous-bag-of-words (CBOW) [22],
count-based [37] and Global Vectors (GloVe) [28]. From
these three, we rely on the 300 dimensional multi-word
GloVe embeddings.

©P: Features in photographs are quite distinct from those
in illustrations, but their features are well able to capture the
semantic similarity of the different classes they represent. To
this end, we have extracted 2048 dimensional features from
the iNaturalist 2018 dataset photographs, using the inception
V3 model trained on the corresponding dataset (previously
mentioned in Section 5.2).

5.4 Combining class embeddings

Below we describe two methods for generating singular
class prototypes from three distinct embeddings, each with
a different dimensionality.

Concatenated embeddings (CE) One method that is often
employed to combine the different embeddings is concate-
nation: the dimensions of each class embedding (from the
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three distinct sources) are concatenated together. This re-
sults in one sparse matrix with a large dimensionality. Sim-
ilarly to Snell et al. [31], we use a one-layer linear model to
map the concatenated embeddings to prototype space.

Fused prototypes (FP) Our new idea is to implement fused
prototypes, which we derive from the prototypical few-
shot learning approach. Instead of using images as support
points, class embeddings from distinct sources are mapped
into prototype space, each source with a one-layer linear
model. In prototype space, the resulting prototypes are fused
together, similarly to the way support points are fused for
few-shot learning, see formula 2. In that formula, £ denotes
the set of class embedding vectors from the various sources
1. eg refers to the class embedding vector € F; that is la-
belled with class k. f; refers to the linear model that embeds
the class embedding vectors from source F; to a prototype
space.

> fidlex) 2)

(ex,yk)EE;

Cr =

We hypothesise that fused prototypes will perform better
than concatenated embeddings, as the latter introduce one
large sparse input space whereas fused embeddings learn
from multiple dense input spaces.

5.5 Hierarchical prototype loss

Hierarchical prototype loss (HPL) extends prototypical net-
work loss (PNL), and is defined as the sum of the losses for
each level of the label hierarchy. One other example of a type
of hierarchical loss is hierarchical triplet loss (HTL) [14],
which extends triplet loss (TL) used in triple-based models.

The loss for a specific level [ is calculated by first gener-
ating new prototypes for that level: all class embeddings that
belong to a class k € [ are averaged to form new prototypes.
As described in Section 5.1, distances of the query points to
the k& new prototypes are then computed and the loss is cal-
culated over these distances. The hierarchical prototype loss
accumulates the losses of each level in the hierarchy L for
which we have labels (in our case there are six), see equation
3.

L

HPL = argmin, Z —log(p(y'|x, w) 3)
i=0

By implementing HPL, we take a multi-objective (or
multi-granularity) approach: we enforce a clearer separation
of classes not only for the finest grain, but also for coarser
taxonomic groups. As more labels are available for each

level higher up in the label hierarchy, this intuitively sup-
ports the discovery of more robust features for the classifi-
cation of coarser classes.

6 Experimental setting

In this section we discuss details regarding the settings of the
experiment: the dataset splits (in Subsection 6.1), data aug-
mentation (in Subsection 6.2), evaluation criteria (in Sub-
section 6.3) and experimental tasks (in Subsection 6.4).

6.1 Dataset splits

As recommended by [45], we split the classes for training
and evaluation based on the number of instances each of
them contain. Since our dataset contains so few instances
per class, (ng, € [1,283], u: 1.79, 0: 3.93). We have used all
classes with n > 2 per class for the training set Y;,.. Two ex-
amples per class is not sufficient to learn a good class repre-
sentation, but the features of these illustrations are useful for
between super-class feature sharing. Moreover, we exploit
them for learning representations of classes on a higher taxo-
nomic level, since a larger number of instances are available
higher up the label hierarchy. All remaining classes with n
= 1 were split and used for the validation set Y, and the
test set Y;,. Table 2 shows the number of classes and im-
ages within each super-class, split, and embedding. Since
not all of the classes were represented in each source (GBIF,
BHL and iNaturalist), each embedding (¢", !, and Y ¢” re-
spectively) represents a subset of Y. However, together they
span the totality of classes y € Y. The super-class Animalia
is used for classes that are not assigned to a phylum.

6.2 Data augmentation

For training, we have used image embeddings extracted
from augmented versions of all images, in order to in-
crease the ability of the classifier to generalise the classi-
fication with respect to the data. Before cropping all im-
ages, the largest side of each image was first resized to 300.
During resizing, we keep the aspect ratio identical to the
original image. Since the images are rather large and con-
tain a large amount of white space, it is quite clear that
not resizing the images first would result in many empty
crops. 2048-dimensional features are extracted by apply-
ing the pre-trained Inception V3 model to crops (middle,
upper left, upper right, lower left and lower right) of each
resized original illustration and its horizontally flipped ver-
sion. Crops containing only white space or text were manu-
ally discarded.
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Table 2: Dataset statistics: number of classes and instances per super-class (phylum), number of classes per split, number of

instances per split, and number of classes per embedding

Super-class (phylum)  Yio: Niot Yir Y, Yis Nt Ny Nits Yq, h Y, Yo
Arthropoda 2977 3740 620 1106 1251 | 1383 1112 1245 | 2977 218 14
Chordata 2903 7358 1281 870 752 | 5736 878 744 | 2901 2050 475
Mollusca 1423 2384 488 464 471 1449 464 471 1385 475 40
Cnidaria 179 299 58 47 74 178 48 73 179 88 5
Echinodermata 111 180 36 33 42 105 33 42 111 62 10
Annelida 109 171 32 44 33 94 44 33 106 61 3
Porifera 59 79 17 17 25 37 17 25 59 11 -
Platyhelminthes 56 75 9 38 9 28 38 9 55 9 -
Bryozoa 45 67 10 12 23 32 12 23 45 23 -
Brachiopoda 37 38 1 23 13 2 23 13 37 2 -
Nematoda 18 24 4 9 5 10 9 5 18 8 -
Rotifera 17 20 2 7 8 5 7 8 17 12 -
Ctenophora 14 33 5 2 7 24 3 6 14 6 -
Nemertea 6 8 2 3 1 4 3 1 4 4 -
Sipuncula 5 6 1 3 1 2 3 1 5 - -
Acanthocephala 4 5 1 1 2 2 1 2 4 2 -
Nematomorpha 2 6 1 1 - 5 1 - 2 1 -
Onychophora 2 2 2 - - 2 - 0 2 -
Cephalorhyncha 1 1 - 1 - - 1 - 0 1 -
Chaetognatha 1 2 1 - - 2 - - 1 1 -
Entoprocta 1 1 - 1 - - 1 - 0 1 -
Animalia 3 3 - 2 1 - 2 1 0 3 -
Total 7973 14502 | 2569 2684 2717 | 9098 2702 2702 | 7920 3040 547

6.3 Evaluation criteria

In our experimental ZSL results (Subsection 7.2) we re-
port two accuracy metrics: top-k accuracy and hierarchical
accuracy @k. Below we will note down our motivations for
doing so.

Top-k accuracy When measuring the performance of a clas-
sifier on a large-scale hierarchical dataset, we should be alert
on the fact that a flat top-1 accuracy does not accurately por-
tray the classifier’s capabilities. Assuming the solution space
is large, it is valuable for domain experts to obtain top-k pre-
dictions as the correct label might be among them, as exem-
plified later in figure 8. We therefore report top-k accuracy,
k € {1,2,5,10}. This metric is computed by the percent-
age of images for which the correct label is among the top k&
predictions.

Hierarchical accuracy@k Classifying an illustration of a
Boiga nigriceps as a Boiga dendrophila - both tree snakes
- is less problematic than classifying it as a Procyon lotor,
a common raccoon. In the former case, the classifier has
learnt important coarser features that allowed it to classify
the image as a tree snake, providing researchers with a par-
tially correct classification. To this end, we would like to
shed light on the quality of the entire predicted classification
for each illustration. Therefore, we additionally report hier-
archical accuracy. Hierarchical @k precision is sometimes

used as a metric for hierarchical datasets [13]. We report a
new metric that we deem more informative in our context:
average per-level accuracy, or hierarchical accuracy. It is
computed by calculating the accuracy for each level in the
label hierarchy and averaging over these, see formula 4. In
formula 4, L refers to the set levels for which we have labels
and [ to a specific level [ € L.

|L| .
t pred l
Hierarchical acc = E 1t cotree ﬁ)re .S lln 4)
=1 T samples 1n

Additionally, we report accuracies for labels k levels up
the label hierarchy, where k € {1,2,3}, thus referring to
the accuracy for labels one, two and three levels up the label
hierarchy respectively.

6.4 Experimental tasks

In this section we describe the setup of our experiments,
dividing them up in separate tasks, each task evaluating
one of the components of our proposed zero-shot learning
approach (discussed in Section 5).

In a common supervised classification setting we evaluate
(in Subsection 7.1):

Task 1 the image embeddings. Specifically, we train a Sup-
port Vector Machine (SVM) on the image embeddings.
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Fig. 7: T-SNE plots showing image embeddings of images from the ZICE dataset (should be viewed in colour). From left to
right, label levels become more specific. Family labels come from a selection of 12 families of which the binomial name was
not present in the iNaturalist 2018 dataset. The t-SNE algorithm was run for 5,000 iterations with perplexity 100.

In a fine-grained zero-shot learning setting we evaluate (in
Subsection 7.2):

Task 2 the class embeddings. Specifically, we train multi-
ple prototypical networks using the image embeddings
for every possible combination of class embeddings.

Task 3 how class embeddings are combined. We compare
the results of a network that uses fused prototypes (FP)
to those of a network trained using concatenated embed-
dings (CE).

Task 4 the hierarchical prototype loss (HPL): loss accumu-
lated for all levels of the hierarchy.

Task 5 the final results by an in-depth analysis of the net-
work on the main test-set.

7 Experimental Results

Before we present zero-shot learning results, we start by
evaluating the quality of the image embeddings (Task 1) in
a separate supervised classification setting below.

7.1 Supervised classification and visualisation

We show classification results from a Support Vector Ma-
chine (SVM) trained on the image embeddings, in table 3,
and a t-Distributed Stochastic Neighbor Embedding (t-SNE)
[21] visualisation of the image embeddings, figure 7. For
this supervised classification task, we have selected image
embeddings from the set of species that is disjoint from the
set of species represented in the iNaturalist 2018 dataset, so
as to obtain a deeper insight into the generic quality of the
embeddings. Since both the SVM and t-SNE do not per-
form well on small samples, we select twelve most popu-
lated taxon groups from two levels higher up the label hier-
archy: the family level. We additionally present higher taxon

labels for both the SVM results as the t-SNE visualisation.
Table 3 shows per-class, micro, macro and weighted aver-
age precision and recall results for the Support Vector Ma-
chine (SVM) trained on top of the image embeddings. The
weighted average alters the macro metric to account for label
imbalance. The support column indicates the number of ac-
tual occurrences of that class in the given dataset. The SVM
was trained using a stratified 80% 20% split for the train and
test-set respectively.

Looking at figure 7, we see that same-class image em-
beddings are visibly clustered, but that image embeddings
within the order Coleoptera (in yellow) and within class
Mammalia (in brown) overlap. This effect is reflected in ta-
ble 3: the image embeddings from only one of four families

Table 3: Classification precision and recall results in %
(rounded off to whole integers) for a Support Vector Ma-
chine (SVM) trained on the image embeddings belonging to
12 families (also visualised in figure 7). The top-1 per-class
average accuracy is 43.58%.

Class Family prec. rec. fl support
Mammalia  Bovidae 0 0 0 19
Mammalia  Canidae 48 100 65 33
Insecta Carabidae 44 74 56 27
Insecta Cerambycidae 56 85 68 26
Mammalia  Cercopithecidae 0 0 0 9
Gastropoda  Conidae 87 98 92 41
Insecta Curculionidae 0 0 0 14
Mammalia  Equidae 0 0 0 12
Insecta Melolonthinae 100 22 36 9
Gastropoda  Muricidae 67 55 60 11
Insecta Staphylinidae 0 0 0 10
Bivalvia Veneridae 82 90 86 10
micro avg 60 60 60 221
macro avg 40 44 38 221
weighted avg 46 60 50 221
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Table 4: Zero-shot learning (ZSL) classification results in % for Task 2, 3 and 4: each combination of embeddings, con-
catenated embeddings (CE) versus fused prototypes (FP), fused prototypes plus hierarchical prototype loss (FP + HPL), and
final results for the best configuration. The 50-way classification accuracy for the final model was 35.53%, calculated by

averaging results over 6,000 randomly drawn episodes.

top-k acc Yis Hierarchical acc@k Y
Method P ot P 1 2 5 10 1 2 3 avg
N/A v X X 229 412 89 1534 | 593 1323 4374 36.38
X v X 041 066 1.14 1.72 | 0.72 1.22 7.33 12.53
X X v | 055 085 147 215 1.03 281 1529 18.26
FP v v X 2.13 3.89 879 1511 | 551 13.56 4321 3596
v X vV | 250 426 891 1526 | 6.05 14.24 45.69 36.85
X v v | 053 084 145 2.06 1.04  2.02 9.41 13.50
v v vV | 242 429 910 1537 | 598 14.22 45.09 36.70
CE (baseline) v v vV 1209 405 896 1554 | 545 1342 4476 36.41
FP v v vV | 242 429 910 1537 | 598 14.23 45.09 36.70
FP v v V| 242 429 910 1537 | 598 1423 45.09 36.70
FP + HPL v v v 2.12 383 888 15.03 | 623 1571 51.10 39.35
Final model v X v 277 474 964 16.02 | 6.94 16.65 50.71 39.67
Majority guess - - - 0.04 007 0.19 037 | 285 326 21.87 18.66

subsumed under the class Mammalia can be classified cor-
rectly (Canidae, with 100% recall). From the precision value
(48%) we find that many other image embeddings are also
classified as Canidae.

The results shows us that the features learned from the
iNaturalist 2018 task are not specific enough to properly
classify all fine-grained classes in our task well. Further im-
proving the image features would therefore improve zero-
shot learning results, but other approaches should be devised
that can do so with the aid of small data samples. Visualisa-
tion of the features after dimensionality reduction can give
an indication up to which grain the features within specific
taxon groups are informative enough for proper classifica-
tion. How well classes can be distinguished within a certain
taxonomic group also depends upon the inter-class variation
of that group, which can be quite small. Some species within
the order Coleoptera (beatles), for instance, can only be ac-
curately identified after a close inspection of their genitalia

[7].

7.2 Fine-grained zero-shot learning

In this section we provide general training details for our
zero-shot learning experiments, present results for the eval-
uation of our approach (Task 2 and 3), and show final results
for a model that incorporates the results from Task 2 and 3
(Task 4).

Training details All prototypical networks were trained
using Stochastic Gradient Descent (SGD) with Adam.
Episodes for training were comprised of k¥ = 50, ¢ = 1
and s = 0, similar to a balanced mini-batch of size 50. The
validation loss was monitored during training and if, for 10

iterations, the loss did not decrease, the learning rate was
decreased with a factor of 0.5. We tuned hyper-parameters
using hyper-parameter optimisation - tree-structured parzen
estimators - and ended up with a learning rate of 10~* and
a weight decay of 1072, Early stopping on the validation
loss was used to determine the optimal number of epochs
for training. For each model, five different networks were
trained. As a statistical test for comparing classifiers we used
the McNemar test [9] for each classifier pair for all pre-
dictions of 5 runs accumulated. It is a test that works well
for testing statistical significance when dealing with paired
nominal data for comparing classifiers trained, validated and
tested on the same splits of a dataset. Bold numbers indicate
statistical superiority over other values within that column
and cell. Multiple bold numbers in one row are not statis-
tically different. A final model was trained, again 5 times,
with the configuration that we found to work best. The last
row of table 4 indicates accuracy values for the majority
guess, where the model simply always predicts the major-
ity class.

Evaluation Table 4 shows results for networks trained, val-
idated and tested with each k-combination of the set of em-
beddings F, with k& € (1,2,3). In order for the results
to be comparable between all combinations, we used all
classes to train, validate and test the networks, despite the
fact that each embeddings spans a subset of all classes. In
case a class was not represented in an embedding, those di-
mensions were set to zero. In this context, these results say
more about the contribution of each embedding to the per-
formance of the networks, than about their quality.

The results in table 4 show us that " is the most in-
formative embedding, mainly because it embeds almost all
classes, as is visible in table 2. A network trained with * ap-
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Table 5: Zero-shot learning (ZSL) classification results in % for Task S on the test-set per super-class (phylum).

top-k acc Yis Hierarchical acc@Kk Y; 5

Super-class (phylum) avg n¢y  AvVg Nits 1 2 5 10 1 2 3 avg
Chordata 5736 744 47 739 1465 24.06 | 1465 5336 81.05 50.22
Mollusca 1449 471 34 616 11.89 2059 | 293 4756 7325 4777
Arthropoda 1383 1245 1.61 297 659 10.6 | 15774 60.88  80.0 50.1
Cnidaria 178 73 822 959 1644 30.14 | 19.18 31.51 41.1  29.86
Echinodermata 105 42 476 714 952 2143 | 9.52 119 3333  19.05
Annelida 94 33 0.0 0.0 0.0 0.0 0.0 0.0 3.03 1.21
Porifera 37 25 0.0 8.0 8.0 16.0 4.0 8.0 44.0 20.0
Bryozoa 32 23 0.0 0.0 0.0 8.7 0.0 4.35 4.35 3.48
Platyhelminthes 28 9 0.0 0.0 0.0 0.0 0.0 0.0 11.11 444
Ctenophora 24 6 0.0 0.0 3333 3333 0.0 0.0 0.0 333
Nematoda 10 5 20.0 20.0 400 40.0 20.0 40.0 40.0 32.0
Rotifera 5 8 0.0 0.0 0.0 12.5 0.0 0.0 0.0 0.0
Nemertea 4 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Sipuncula 2 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Brachiopoda 2 13 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Acanthocephala 2 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Animalia 0 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Per super-class average 534.76 15894 | 251 3.6 826 12.79 | 6.61 15.15 24.19 1538
Per sub-class average (species) 9098 2702 296 496 9.96 16.65 7.11 17.10  52.26 40.05

pears to perform better than the majority guess for the top-k
acc metric. However, even though ! spans almost half of
the classes; 3040 in total, it harms the learning ability of the
network when used in combination with other embeddings.
This could be due to a myriad of factors: it could be that the
embedding is better suited for finding synonyms between
taxon terms - as similar species are described similarly. It
could also be that some names in the Biodiversity Heritage
Library [15] are ambiguous: referring to one species in the
historical texts, while they refer to another in modern tax-
onomy. Particularly, any historical unpublished name could
have been published today as a different species. Matching
them with sources from a modern taxonomy could there-
fore be problematic. P as an addition to ¢" improves the
accuracy of the model, specifically the hierarchical acc@2
(13.23% to 14.24%) and @3 (43.74% to 45.69%). Using
more instances and more fine-grained classes to generate ©”
would therefore further improve results.

Table 4 further presents results for the comparison of
fused prototypes (FP) with concatenated embeddings (CE),
and the effects of hierarchical prototype loss (HPL). CE rep-
resents the baseline model: it is comparable to the method
used by Snell et al. [3 1] for zero-shot learning. Results show
that by using our fused prototypes (FP) formulation, we can
increase the top-1 accuracy from 2.09% to 2.42%. Such an
increase is non-trivial. Since the test-set contains an instance
per class, with 2702 classes (on the finest grain), an in-
crease of 0.33% of the top-1 accuracy equals the capabil-
ity of the classifier to correctly classify illustrations from
an additional 9 classes from different parts of the biologi-
cal taxonomy. Fused embeddings also induce a higher hi-

erarchical accuracy compared to concatenated embeddings:
from 5.45% t0 5.98% and 13.42% to 14.23% for hierarchical
acc@1 and @2 respectively. We anticipate that when class
embeddings from additional (informative) sources are used,
this effect which we discuss in Section 5.3 will become more
evident: the value of using fused prototypes over concate-
nated embeddings will increase.

As expected, table 4 shows that adding hierarchical pro-
totype loss (HPL) as a loss function improves the average hi-
erarchical accuracy significantly - from 36.70% to 39.35%.
However, a decrease is measured for the top-1 and top-2 ac-
curacy: from 2.42% to 2.12% and 4.29% to 3.88% respec-
tively, which demonstrates the inter super-class variation of
taxon groups. It is unsurprising that the models that were
trained with neither the hierarchical prototype loss nor the
hierarchical embeddings have low hierarchical accuracy val-
ues compared to the majority class guess.

Final results A final model was trained 5 times using the
best configuration - {¢!, P}, FP and HPL. Although im-
plementing HPL decreases the top-1 and top-2 accuracy, a
substantial increase of the average hierarchical accuracy was
measured. Table 4 shows per-network averaged top-k and hi-
erarchical acc@k accuracies for the final model on the test-
set, and table 5 provides results for the same metrics, calcu-
lated from predictions of the final model’s best network, and
detailed per super-class. Table 5 serves to provide a deeper
insight into the trained network. Evidently, illustrations from
some of the super-classes were not recognised at all due to
their limited contribution to the training of the network -
visible from the column avg n;s - and per definition, most
feature sharing occurs within super-classes.
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Fig. 8: Example of 4 test images and the confidence values of their top 5 predictions (best viewed in colour). Confidence
values, per illustration, have a sum of one. Labels are organised hierarchically (K: kingdom to S: species) to show the
diversity of predictions and how close - in the label hierarchy - the classifier is to the real label. For the Cribrinopsis crassa,
the correct label was not among the top 5 predictions. A dark green label denotes the correct label.

Furthermore, table 6 details results for GZSL. Here, the
network could select label candidates from all classes rather
than just the unseen ones during classification. The top-k
accuracies for GZSL are poor: during classification, a net-
work trained for ZSL tends to favor seen classes over unseen
classes [32]. This however, logically, does not affect the av-
erage hierarchical accuracy as much; good predictions are
generally from the same family, order or another label level
higher up the label hierarchy (see figure 8), and seen and
unseen classes share common super-classes.

Figure 8 shows images from the test-set and the confi-
dence values of their top 5 predictions. The first (1) and sec-
ond (2) image (from top to bottom) are examples of good
predictions. Although the prediction of the first image (1)
is incorrect (the classifier is most confident that the correct
label is Brachirus macrolepis), it is a species from the cor-
rect genus Brachirus. Moreover, the top 3 predictions are all
from the same (correct) genus, and the remaining two pre-
dictions are from a different genus within the same family.
The predictions for the second image (2) are very good: the
confidence value for the correct label is high and the remain-
ing predictions are from the same order. Visually, there are
very few distinctions between species from these families,
so mistakes reflect the inability of the classifier to learn very
specific fine-grained features from the available data. The

Table 6: Generalised zero-shot learning (GZSL) classifica-
tion results in % for final model

top-k acc Yis Hier. acc@Kk Y;

Method 1 2 5 10 1 2 avg

GZSL 0.04 021 124 325 | 447 1603 38.19
M. guess | 0.01 003 006 0.13 | 285 326 18.66

third image (3) is a very poor prediction as (i) the correct la-
bel is not among the top 5 predictions and (ii) almost all pre-
dictions are from a different phylum. Interestingly, however,
the most confident predictions do have something in com-
mon: they share the illustration’s most salient feature - a dot-
ted pattern. Lastly, the fourth image (4) contains an incorrect
prediction, but is correct up to the class level. The correct
label belongs to the order Macroscelidea (Elephant shrew),
and incorrect predictions belong to the Rodentia (Rodents)
and Carnivora (Carnivores). Predictions from the Rodentia
are from two different mouse families. Generally, elephant
shrew visually resemble mice or gerbils; both rodents. The
most salient feature that would allow a classifier to make the
distinction between a mice or gerbil and an elephant shrew,
interestingly, is cut off from the illustration: its long trunk-
like nose resembling the trunk of an elephant. It is therefore
good to consider that cropping the image at its center in a
standardised way can cause the loss of information that is
vital for proper classification.

8 Analysis and discussion

The results presented in this work show us, first of all, that
normal supervised classification can not cope with the full
scope of the problem presented in this paper. Training a
CNN from scratch would ovetfit filters to our dataset. Us-
ing filters from a pre-trained model would partially circum-
vent this issue, but a network trained on these features would
show similar issues. Additionally, it could only be employed
to classify previously seen classes (classes with many train-
ing examples), whereas in cases like this, it is difficult to re-
trieve labelled digitised example illustrations for all classes.
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Fig. 9: A t-SNE plot showing all prototypes (closed circles) and instances (open triangles) from the 12 most populated phyla
(indicated by different colours), embedded by the final prototypical network (should be viewed in colour). The plot includes
prototypes and instances from training, validation and test classes. Instances from the verification set (bottom cluster) are
indicated by the label unknown’. Note that t-SNE does not accurately preserve distances between clusters.

Table 5, 6 and figure 8 show us that with the aid of trans-
fer learning, background knowledge, auxiliary data, and a
label hierarchy, we can learn to capture coarse to finer-
grained features that are shared among taxon groups. Prac-
tically, however, for many of these problem domains, it is
challenging to transfer obtained results to real-world scenar-
ios. First of all, table 5 shows us that novelty detection is a
requirement for GZSL, as seen classes are favored over un-
seen classes. Second, using a trained network in real-world
applications can prove problematic.

The verification set that we have presented in Section 4
serves as an example real-world dataset. Illustrations from
this dataset, shown in figure 4, depict the same task as il-
lustrations from the ZICE dataset, shown in figure 5. How-
ever, both datasets appear to come from a distinct marginal
probability distribution. In order to demonstrate this effect,

figure 9 shows a t-SNE visualisation of images and proto-
types from the ZICE dataset, embedded by the final net-
work. In addition, it shows the images from the verification-
set (depicted as purple triangles), similarly embedded by the
final network. It is clear from the t-SNE visualisation that
the embedded images from the verification-set lie on a dif-
ferent manifold than those from the ZICE dataset. Through
training, the prototypes have enveloped the manifold of em-
bedded images from the ZICE dataset. The classifier there-
fore performs poorly on the verification-set, selecting only
classes from the phylum Anthropoda, as its prototypes are
closest. The domain shift most likely resulted from the use
of different types of paper, sketching techniques and mate-
rials. We argue that it is vital that a computer vision system
is tested on an independent dataset that represents the same
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task. Models can then be developed to, for instance, align
domain marginal probability distributions [42].

9 Conclusions

In this paper we have analysed the problem of classifying
species in zoological illustrations. Fur this purpose, we have
introduced a dataset representative of the problem, and had
to deal with very limited access to labelled examples to learn
good, robust data representations. For most classes, only
a few example instances were available, whereas for other
classes, no examples were available for training. Zero-shot
learning and transfer learning allowed us to re-use and share
features of images through the deployment of auxiliary data
sources, and hereby to push the boundaries of automated
recognition for this specific problem: from the classes that
contained zero example instances for training, illustrations
from 80 classes could be classified correctly. We have in-
troduced fused prototypes (FP) and hierarchical prototype
loss (HPL) to improve the results further, and conclude that
these alterations improve over the baseline substantially. FP
most notably allowed us to classify examples from an ad-
ditional 9 unseen fine-grained classes, and learning with
HPL has increased the average hierarchical accuracy sub-
stantially (from 36.41% to 39.35%). Finally, a verification-
set has shed light on the robustness of the network to differ-
ences in marginal probability distributions between datasets.

We have demonstrated how intrinsically complex it can
be to develop computer vision models for real-world appli-
cations, but our results have shown that computational meth-
ods can be used as decision support for researchers. Our
model can help biodiversity researchers classify their his-
torical and present-day scientific illustrations, which reside
underutilised in natural history museums globally. Online
datasets that store domain knowledge and auxiliary data of
species can and should be exploited to develop embedding
models for classification. They can guide and improve the
recognition of illustrations from previously seen and unseen
species of living organisms on various levels of the biologi-
cal taxonomy.

References

1. Akata, Z., Perronnin, F., Harchaoui, Z., Schmid, C.: Label-
embedding for image classification. IEEE transactions on pattern
analysis and machine intelligence 38(7), 1425-1438 (2015). DOI
10.1109/TPAMI.2015.2487986

2. Akata, Z., Reed, S., Walter, D., Lee, H., Schiele, B.: Evalua-
tion of output embeddings for fine-grained image classification.
In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 2927-2936. 1IEEE (2015). DOI
10.1109/CVPR.2015.7298911

3. Austen, G.E., Bindemann, M., Griffiths, R.A., Roberts, D.L.:
Species identification by experts and non-experts: comparing im-
ages from field guides. Scientific Reports 6, 33634 (2016)

4. Barz, B., Denzler, J.: Hierarchy-based image embeddings for se-
mantic image retrieval. In: Proceedings of the IEEE Winter Con-
ference on Applications of Computer Vision (WACV), pp. 638—
647. IEEE (2019). DOI 10.1109/WACV.2019.00073

5. Belhumeur, P.N., Chen, D., Feiner, S., Jacobs, D.W., Kress, W.J.,
Ling, H., Lopez, 1., Ramamoorthi, R., Sheorey, S., White, S.,
Zhang, L.: Searching the world’s herbaria: A system for visual
identification of plant species. In: Proceedings of the European
Conference on Computer Vision, pp. 116-129. Springer (2008).
DOI 10.1007/978-3-540-88693-8_9

6. Berg, T., Liu, J., Woo Lee, S., Alexander, M.L., Jacobs, D.W.,,
Belhumeur, P.N.: Birdsnap: Large-scale fine-grained visual cate-
gorization of birds. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2011-2018. IEEE
(2014). DOI 10.1109/CVPR.2014.259

7. Choate, PM.: Introduction to the identification of beetles
(coleoptera). Dichotomous keys to some Families of Florida
Coleoptera pp. 23-33 (1999)

8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Ima-
genet: A large-scale hierarchical image database. In: Proceedings
of the IEEE conference on Computer Vision and Pattern Recog-
nition, pp. 248-255. IEEE (2009). DOI 10.1109/CVPR.2009.
5206848

9. Dietterich, T.G.: Approximate statistical tests for comparing su-
pervised classification learning algorithms. Neural computation
10(7), 1895-1923 (1998). DOI 10.1162/089976698300017197

10. Drew, J.A., Moreau, C.S., Stiassny, M.L.: Digitization of museum
collections holds the potential to enhance researcher diversity. Na-
ture ecology & evolution 1(12), 1789 (2017)

11. Ereshefsky, M.: The poverty of the Linnaean hierarchy: A philo-
sophical study of biological taxonomy. Cambridge University
Press (2000). DOI 10.1017/CB0O9780511498459

12. Ferrari, V., Zisserman, A.: Learning visual attributes. In: Advances
in Neural Information Processing Systems, pp. 433—440 (2007)

13. Frome, A., Corrado, G.S., Shlens, J., Bengio, S., Dean, J., Ran-
zato, M., Mikolov, T.: Devise: A deep visual-semantic embedding
model. In: Advances in Neural Information Processing Systems,
pp. 2121-2129 (2013)

14. Ge, W., Dong, D., Scott, M.R.: Deep metric learning with hier-
archical triplet loss. In: Proceedings of the European Confer-
ence on Computer Vision, pp. 272-288. Springer (2018). DOI
10.1007/978-3-030-01231-1_17

15. Gwinn, N.E., Rinaldo, C.: The biodiversity heritage library: shar-
ing biodiversity literature with the world. IFLA journal 35(1),
25-34 (2009). DOI 10.1177/0340035208102032

16. Harris, Z.S.: Distributional structure. Word 10(2-3), 146-162
(1954). DOI 10.1080/00437956.1954.11659520

17. Hedrick, B.P., Heberling, J.M., Meineke, E.K., Turner, K.G.,
Grassa, CJ., Park, D.S., Kennedy, J., Clarke, J.A., Cook, J.A,,
Blackburn, D.C., Edwards, S.V., Davis, C.C.: Digitization and the
future of natural history collections. BioScience 70(3), 243-251
(2020). DOI 10.1093/biosci/biz163

18. Kumar, N., Belhumeur, P.N., Biswas, A., Jacobs, D.W., Kress,
W.J., Lopez, 1.C., Soares, J.V.B.: Leafsnap: A computer vision
system for automatic plant species identification. In: Proceedings
of the European Conference on Computer Vision, pp. 502-516.
Springer (2012). DOI 10.1007/978-3-642-33709-3_36

19. Lampert, C.H., Nickisch, H., Harmeling, S.: Learning to detect
unseen object classes by between-class attribute transfer. In: Pro-
ceedings of the IEEE conference on Computer Vision and Pattern
Recognition, pp. 951-958. IEEE (2009). DOI 10.1109/CVPR.
2009.5206594

20. Lampert, C.H., Nickisch, H., Harmeling, S.: Attribute-based clas-
sification for zero-shot visual object categorization. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 36(3), 453—
465 (2013). DOI 10.1109/TPAMI.2013.140



Lise Stork*, Andreas Weber, Jaap van den Herik, Aske Plaat, Fons Verbeek, Katherine Wolstencroft

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Maaten, L.v.d., Hinton, G.: Visualizing data using t-sne. Journal
of machine learning research 9(Nov), 2579-2605 (2008)
Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation
of word representations in vector space. In: Workshop proceed-
ings of the International Conference on Learning Representations.
arXiv preprint arXiv:1301.3781 (2013)

Mikolov, T., Sutskever, 1., Chen, K., Corrado, G., Dean, J.: Dis-
tributed representations of words and phrases and their composi-
tionality. In: Advances in Neural Information Processing Systems,
vol. 2, pp. 3111-3119 (2013)

Nguyen, N.T.H., Soto, A.J., Kontonatsios, G., Batista-Navarro, R.,
Ananiadou, S.: Constructing a biodiversity terminological inven-
tory. PLoS ONE 12(4), e0175277 (2017). DOI 10.1371/journal.
pone.0175277

Nilsback, M.E., Zisserman, A.: A visual vocabulary for flower
classification. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, vol. 2, pp. 1447-1454. IEEE
(2006). DOI 10.1109/CVPR.2006.42

Oquab, M., Bottou, L., Laptev, 1., Sivic, J.: Learning and transfer-
ring mid-level image representations using convolutional neural
networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1717-1724. IEEE (2014).
DOI 10.1109/CVPR.2014.222

Patterson, G., Hays, J.: Sun attribute database: Discovering, an-
notating, and recognizing scene attributes. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
pp- 2751-2758. IEEE (2012). DOI 10.1109/CVPR.2012.6247998
Pennington, J., Socher, R., Manning, C.: Glove: Global vectors
for word representation. In: Proceedings of the Conference on
Empirical Methods in Natural Language Processing, pp. 1532—
1543. Association for Computational Linguistics (2014). DOI
10.3115/v1/D14-1162

Romera-Paredes, B., Torr, PH.S.: An embarrassingly simple ap-
proach to zero-shot learning. In: Visual Attributes, pp. 11-30.
Springer (2017). DOI 10.1007/978-3-319-50077-5_2

Secretariat, G.: Gbif backbone taxonomy. Checklist Dataset
https://doi. org/10.15468/39omei (2017)

Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-
shot learning. In: Advances in Neural Information Processing Sys-
tems, pp. 4077-4087 (2017)

Socher, R., Ganjoo, M., Manning, C.D., Ng, A.: Zero-shot learn-
ing through cross-modal transfer. In: Advances in Neural Infor-
mation Processing Systems, pp. 935-943 (2013)

Sumbul, G., Cinbis, R.G., Aksoy, S.: Fine-grained object recog-
nition and zero-shot learning in remote sensing imagery. IEEE
Transactions on Geoscience and Remote Sensing 56(2), 770-779
(2018). DOI 10.1109/TGRS.2017.2754648

Szegedy, C., Liu, W, Jia, Y., Sermanet, P., Reed, S., Anguelov,
D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with
convolutions. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 1-9 (2015). DOI
10.1109/CVPR.2015.7298594

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Re-
thinking the inception architecture for computer vision. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2818-2826. IEEE (2016). DOI 10.1109/CVPR.
2016.308

Tsochantaridis, 1., Joachims, T., Hofmann, T., Altun, Y.: Large
margin methods for structured and interdependent output vari-
ables. Journal of Machine Learning Research 6(Sep), 1453-1484
(2005)

Turney, P.D., Pantel, P.: From frequency to meaning: Vector space
models of semantics. Journal of Artificial Intelligence Research
37(1), 141-188 (2010)

Van Horn, G., Branson, S., Farrell, R., Haber, S., Barry, J., Ipeiro-
tis, P., Perona, P., Belongie, S.: Building a bird recognition app and

39.

40.

41.

42.

43.

44,

45.

large scale dataset with citizen scientists: The fine print in fine-
grained dataset collection. In: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pp. 595-604.
IEEE (2015). DOI 10.1109/CVPR.2015.7298658

Van Horn, G., Mac Aodha, O., Song, Y., Cui, Y., Sun, C., Shep-
ard, A., Adam, H., Perona, P., Belongie, S.: The inaturalist species
classification and detection dataset. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp.
8769-8778. IEEE (2018). DOI 10.1109/CVPR.2018.00914

Wah, C., Branson, S., Perona, P., Belongie, S.: Multiclass recog-
nition and part localization with humans in the loop. In: Com-
puter Vision (ICCV), 2011 IEEE International Conference on, pp.
2524-2531. IEEE (2011)

Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The
caltech-ucsd birds-200-2011 dataset (2011)

Wang, M., Deng, W.: Deep visual domain adaptation: A survey.
Neurocomputing 312, 135-153 (2018). DOI 10.1016/j.neucom.
2018.05.083

Weber, A.: Collecting colonial nature: European naturalists and
the netherlands indies in the early nineteenth century. BMGN-
Low Countries Historical Review 134(3) (2019). DOI 10.18352/
bmgn-Ichr.10741

Xian, Y., Akata, Z., Sharma, G., Nguyen, Q., Hein, M., Schiele, B.:
Latent embeddings for zero-shot classification. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 69-77 (2016). DOI 10.1109/CVPR.2016.15

Xian, Y., Lampert, C.H., Schiele, B., Akata, Z.: Zero-shot
learning—a comprehensive evaluation of the good, the bad and the
ugly. IEEE Transactions on Pattern Analysis and Machine In-
telligence 41(9), 2251-2265 (2019). DOI 10.1109/TPAMI.2018.
2857768



	Introduction
	Problem Description and Approach
	Related Work
	The Data
	Methodology
	Experimental setting
	Experimental Results
	Analysis and discussion
	Conclusions

