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Language models with billions of parameters exhibit in-context learning abilities, enabling few-shot learning on tasks that the model
was not specifically trained for. Although the models achieve breakthrough performance on language tasks, traditional models do
not perform well on reasoning benchmarks. However, a new prompt-based approach, Chain-of-thought, has demonstrated strong
reasoning abilities on these benchmarks.

The research on LLM reasoning abilities started with the question whether LLMs can solve grade school math word problems, and
has expanded to other tasks in the past few years. This paper reviews the field of prompt-based reasoning with LLMs. We propose a
taxonomy that identifies different ways to generate, evaluate, and control multi-step reasoning. We provide an in-depth coverage
of core approaches and open problems, and we propose a research agenda for the near future. We highlight the relation between
reasoning and reinforcement learning, and find that self-improvement and self-reflection are possible through the judicious use of

prompts. True self-improvement and self-reflection, to go from reasoning with LLMs to reasoning by LLMs, remains future work.
CCS Concepts: « Computing methodologies — Natural language processing.
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1 INTRODUCTION

Transformer-based Large Language Models (LLMs) that are trained on large datasets have achieved breakthrough
performance at text generation tasks that directly build on next token prediction [103, 135, 145]; they are very good at
natural language understanding (GLUE, SQUAD, Xsum) [89, 107, 138, 139], translation [67, 94, 116], question answering
[127], and other language generation tasks. The success of models such as ChatGPT [92] is impressive.

Transformer-based generative language models whose size is beyond hundreds of billions parameters are not only
good at language generation, they also enable a new type of machine learning, called in-context learning [14]. In-context
learning, also known as prompt-based learning, is an emergent ability that occurs in LLMs beyond a certain size
(hundreds of billions of parameters—less, with judicious prompting) that have been finetuned for conversational
responses [145]. In-context learning is inference-time, prompt-based, few-shot learning with instructions. As opposed
to finetuning, model parameters are not adapted by in-context learning.

Language generation tasks are solved well by LLMs with prompt-based learning. On the other hand, reasoning tasks,
such as grade school math word problems, are more difficult for LLMs [27]. Spurred-on by the impressive performance
on language tasks, much research has focused on understanding the reason for the poor performance of LLMs on

reasoning tasks, and how it can be improved. Among this research, the Chain-of-thought paper by Wei et al. [146] stands
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out. This work, and later work by Kojima et al. [68], showed that adding a simple instruction to the prompt, Let’s think
step by step, can provoke an LLM to perform the required intermediate reasoning steps. Subsequently, performance on
benchmarks has increased markedly. Much of the performance increase of models such as OpenAl o1, 03 and DeepSeek
R1 is attributed to reasoning methods as reviewed here, with reinforcement learning playing an increasingly important
role [23, 33, 46, 58, 117, 149, 154].

The line of research into LLM-reasoning was initiated with grade school math word problems, with the GSM8K
benchmark [27]. Soon, other reasoning domains were included, such as reasoning about computer code, robotic
movement, and games. Many works have been published that build on Chain-of-thought [25]. In this paper, we survey
the literature using a straightforward taxonomy. We discuss papers based on several reasoning benchmarks, and
directly-related follow up work on reasoning.

While other works focus on the nature of reasoning and its definition [24, 55, 160], and on evaluating reasoning in
LLMs [88], we focus on prompt-based reasoning algorithms and provide a research agenda with opportunities for future
research. At the end of this survey, we also discuss connections to other fields, such as self-reflection and metacognition
(or thinking about thinking [34]).

The main contributions of this paper are: (1) we provide a survey of relevant approaches in prompt-based reasoning
with LLMs on grade school math word problems and closely related reasoning domains, (2) we propose a taxonomy
based on the reasoning literature (step generation, step evaluation, and control of reasoning steps), and (3) we formulate

a research agenda for reasoning with LLMs.

1.1 Selection of Papers and Organization of the Survey

The papers in this survey were selected as follows. We started by selecting papers on the ability to solve math word
benchmarks (as a proxy for reasoning ability), that contained the search terms reasoning and large language model in
their title or abstract, with a focus on papers that reference the Chain-of-thought paper. Reasoning with LLMs initially
was aimed at solving math world problems. It is now wider, including benchmarks and approaches for computer code,
game play, puzzles, robot movement, and webpage navigation (see Table 2). We selected recent papers (two years prior
to the writing of the survey) that show experimental results on selected benchmark datasets.

We focus on prompt-based, in-context learning, methods based on Chain-of thought, that are used in reasoning
LLMs such as OpenAl o1 and 03 [58, 149, 154]. We also include papers that work by finetuning or supervised learning
that have contributed to the Chain-of-thought approaches.

This survey is organized as follows. Section 2 provides background information on the most relevant developments
in LLMs, including in-context learning. Of great importance are the benchmarks that are used in this field (Section 2.3).
Next, in Section 3 we provide a taxonomy of the field, where we discuss the approaches in detail. Then, in Section 4 we
discuss our findings in a broader perspective. We also discuss the relation between reasoning and work on self-reflection

and metacognition. This section concludes with an agenda for future research. Finally, Section 5 concludes the survey.

2 BACKGROUND: REASONING WITH LLMS

Reasoning has a long history in Al, in logical inference, and in other fields, such as commonsense reasoning. Before we
dive into the works on reasoning, we review some background terminology on LLMs. Our overview is brief. Excellent
recent general surveys on LLMs are, for example, Minaee et al. [86] and Zhao et al. [166]. We discuss the generic training
pipeline for LLMs, we discuss how in-context learning works, and we discuss commonly used benchmarks. We start

with the generic language model training pipeline.
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2.1 Language Model Training Pipeline

LLMs are typically constructed in a sequence of stages, from data preparation, through training, to inference. The
training pipeline for most LLMs is quite elaborate. We will now list a brief pipeline of the most commonly used stages,
based on the survey by Minaee et al. [86].

In training an LLM, the first stage is to acquire a large, general, unlabeled, high-quality text corpus. Some considerations
on the selection of the texts are discussed in Brown et al. [14]. The next stage is pretraining the transformer model
[135] on this large corpus. This stage yields a generative language model. Pretraining is done using a self-supervised
autoregressive approach on the unlabeled dataset (text corpus). Then the general model is finetuned to a specific
(narrow) task. This can be done using supervised learning with a new labeled dataset consisting of prompts and answers
(supervised finetuning, SFT) [86, 145], or reinforcement learning [23, 125], specific for the task at hand. A small number
of the surveyed papers also address the finetuning stage. A specific form of finetuning is instruction tuning, to improve
instruction following for a certain task. Instruction tuning is supervised by a labeled dataset of instruction prompts
and corresponding outputs. Depending on the purpose of the model the next step is alignment of the finetuned model
with user expectations (preference alignment). Alignment is usually performed to ensure that the model produces
more ethically and socially acceptable answers. The machine learning method that is commonly used in this stage
Reinforcement Learning with Human Feedback [92] or Direct Preference Optimization [105]. Optionally, model training
can be optimized to improve cost-effectiveness, for example, with low-rank optimization [53], mixed precision training
[85], quantization [61], or knowledge distillation [45, 155].

Once the model has been trained in the steps described above, its behavior can be further specialized during the
inference stage. Here, the model is used to provide an answer to the prompt. The inference-time stage is post-training, no
model parameters are changed anymore [14, 32]; in-context learning, or prompt-learning, takes place in this stage. This
is the stage on which most of the surveyed papers focus, using prompts for the LLM to perform a complex multi-step

reasoning task. The following section provides a brief introduction to in-context learning.

2.2 In-Context Learning

In large models, beyond hundreds of billions of parameters, a new kind of learning has emerged, that has been called
in-context learning or prompt-learning [14]. It occurs not when the model is trained, but when it is used, at inference
time. Since no parameters are changed in this stage, it is not a model training stage; in-context-learning “learns” from
information that is already encoded in the trained model parameters and the context in the prompt, not by training the
model anymore. In-context learning is often able to give good results with few examples, so-called few-shot learning.
The large size of the model, containing rich and general knowledge, is enabling the few-shot learning (see Dong et al.
[32] for a survey).

In in-context learning, a prompt, consisting of a piece of demonstration context, is concatenated with a query
question, and is given to the language model, for prediction [79]. For example, when the task is emotion recognition in
a social media post, “I missed the bus today,” can be followed by “I felt so [___]”, and the model could answer with
“bad”. Alternatively, for translation, we could follow “I missed the bus today,” by “French: [___]” to request a translation
[79]. The prompt contains background information that is recognized by the model, selecting the desired model context.
In-context learning works when language models contain enough knowledge, allowing them to generalize on the (few)

examples provided in the prompt.
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Prompts that contain a few examples are said to perform few-shot learning. Prompts that contain only instructions
with zero examples are said to perform zero-shot learning. In-context learning takes place at inference time, after the
computationally intensive training stages where parameters have been pretrained and finetuned, when the model
is queried by the user to provide answers. No parameters are changed anymore with in-context learning. This is
quite different from the common approach in supervised deep learning—or self-supervised deep learning—where large
datasets are used during training to update model parameters with backward propagation in lengthy and costly training
epochs [44]. Indeed, in-context learning takes place fully at inference time, no parameters are trained, instead, learning
now refers to adjusting the answers to the context of the prompt and the internal knowledge acquired during training.
Common approaches to few-shot learning, such as metalearning, do include training and finetuning of parameters to
achieve generalization, and are computationally expensive (see, for example, [38] or [52, 59] for a survey). In-context
learning, in comparison, is computationally cheap.

Prompts provide a user-friendly interface to LLMs. The success of in-context learning tends to be quite sensitive to
the way a prompt is formulated; a new field called prompt engineering has emerged to help human users learn how to
make LLMs do what we want them to do [43, 103, 112, 145].

2.3 Reasoning Benchmarks

Progress in artificial intelligence is measured by benchmarks. Benchmarks define the goal that researchers aim to
achieve in their experiments. In natural language processing, a wide array of benchmarks exist to measure progress,
such as on question answering (for example, CommonsenseQA [126]), word prediction (for example, LAMBADA [93]),
translation (for example, WMT’22 [67]), language understanding (for example, GLUE [138, 139]), and text summarization
(for example, Xsum [89]). Transformer architectures were first popularized by encoder models such as BERT [30], for
understanding tasks, such as named entity recognition and classification. Subsequently, decoder models such as GPT
2-4 [1, 14, 103] showed impressive progress on natural language generation tasks.

The field of LLMs is quite active. Many different benchmarks exist, and providing a comprehensive overview of all
relevant benchmarks is beyond the scope of this survey. We will mention relevant benchmarks for testing the reasoning
abilities of LLMs. The research on reasoning with LLMs started with math word problem benchmarks. The benchmark
that is most frequently associated with reasoning with LLMs is a dataset of grade school math word problems GSM8K
[27]. GSM8K was created with the aim of providing high quality, high diversity, moderate difficulty, problems and
solutions in natural language. It consists of 8500 human-written math problems. Language models struggled to achieve
good performance on this dataset before Chain-of-thought was introduced. An example of a math word task follows.
Problem: Beth bakes 4 trays with two dozen batches of cookies in a week. If these cookies are shared amongst 16 people
equally, how many cookies does each person consume? Answer: 4 x 2 X 12/16 = 6.

Other benchmarks of similar math word problems are the SVAMP varying structures benchmarks [95], the ASDiv
dataset of diverse math problems [84], the AQuA dataset of algebraic word problems [76], and the MAWPS benchmark
[69]. Table 1 summarizes the accuracy of Chain-of-thought on these basic math word problems, against the baseline of
GPT-3 175B as LLM [146], as percentage of benchmark questions answered correctly. We see that Chain-of-thought
performs well against the baseline of GPT-3 on some benchmarks, but there is certainly room for further improvement
on others.

In addition to the initial set of math word benchmarks, further reasoning approaches have been introduced that test
performance in other fields of reasoning. Benchmarks have been developed on Computer code comprehension (Human

evaluation, Spider [162], Transcoder [110]), Robotic movement (Alfworld [122], Kitchen [3]), Puzzle solving (Game24
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Benchmark GPT-3 175B  Chain-of-thought [146]

GSM8K 15.6 46.9
ASDiv 703 71.3
MAWPS 72.7 87.1
SVAMP 65.7 68.9
AQuA 24.8 35.8

Table 1. Accuracy of GPT-3 and Chain-of-thought on popular Math Word Problems benchmarks [146]

[159]), Creative writing [159]), Gaming (Checkmate problems[156], MineCraft [36]), and Webpage navigation (WebShop

[157]). These benchmarks are used by other approaches in our survey, as we will see in more detail in Section 3.

3 PROMPT GENERATION, EVALUATION AND CONTROL

This survey examines how LLMs based on the transformer architecture can be prompted to solve reasoning tasks. The
Chain-of-thought paper shows how a simple command could prompt an LLM to perform reasoning steps, yielding
much better performance in math word problems. Since then much research has further explored this approach, trying
to build stronger general problem solvers for other types of reasoning problems.

A typical approach to solve a complex problem is to subdivide it into smaller steps and to solve those. This approach
is related to classical divide and conquer [6]. It consists of three stages. New steps are (1) generated, (2) evaluated, and
the search of the generated steps is (3) controlled in some way. The in-context reasoning approaches that we survey

follow a general three-stage pipeline [82]:

(1) Generate: prompt the model for the generation of steps,
(2) Evaluate: prompt for evaluation of the generated steps,
(3) Control: prompt for control of the number of steps that are generated and how deep ahead the reasoning process

will look.

This three-stage pipeline is the basis of our taxonomy. Other taxonomies focus on LLM in general [86, 166], on
reinforcement learning in reasoning [154], on reasoning in language [160], or on Chain-of-thought itself [25]. We will
now discuss the three stages more deeply; for ease of reference they are numbered according to the Subsection in which
they are described in more detail (3.1, 3.2, 3.3). Please also refer to Figure 1, or Table 2, for a diagram of the categories

and subcategories of different approaches for the generation, evaluation, and control of reasoning steps.!

(3.1) Generation. The first stage is to create a prompt that instructs the LLM to generate reasoning steps. The problem
must be split into substeps. This can be achieved with a problem-specific prompt that contains elements of the problem,
such as: “First calculate how many marbles Mary had originally, then how many her friend had, and finally how many
they had together”” In general, it is possible to prompt an LLM to fill in the blanks in a step-by-step fashion. In the papers
that we discuss, there are three main approaches for generating the step-by-step prompt, numbered with the Subsection
in which the approaches are described. First, the prompt may be handcrafted for the problem by the researchers: (3.1.1)
hand-written prompt. Second, the prompt or prompts may come from a source that is external to the model, such as

another model or dataset: (3.1.2) external knowledge-based prompt. Third, the model itself can be prompted to generate a

'We show the approaches in the Figure in their main category only. Some approaches show innovations in two categories, and are shown twice. (Since all
approaches have a generation, an evaluation, and a control aspect, all could in principle occur three times, and all three columns can be found in Table 2).
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Scratchpad (Nye et al., 2021) [supervised]
Hand-written prompt ———— Chain of Thought (Wei et al., 2022),
ZS-CoT (Kojima et al., 2022)

Auto-CoT (Zhang et al., 2022),
Model-generated prompt G ity (Fu et al., 2022),
/_’ Buffer of Thoughts (Yang et al., 2024)

1. Generation

\ Prompt using external knowledge —— Self-Ask (Press et al., 2022)

Self-Verification (Weng et al., 2022),

[ N Self-Consistency (Wang et al., 2022)

Codex (Chen et al., 2021),
Self-Debugging (Chen et al., 2023),
Fun-Search (Romera et al. 2024),

Tool-based LLaMEa (Van Stein and Back, 2024),
MathPrompter (Imani et al., 2023),
Program of Thoughts (Chen et al., 2022),
Program Aided Language (Gao et al., 2023)

2. Evaluation Refiner (Paul et al., 2023),
Finetuni Self-Corrector (Welleck et al., 2022),
Self-Improvement (Huang et al., 2022)

o SayCan (Ahn et al., 2022),
[Zizuiz Lkl allEtsite Rebet Inner Monologue (Huang et al., 2022)

Data Augm Self Taught Reasoner (Zelikman et al.,
Complexity (Fu et al., 2022),

_
Greedy Selection Least-to-Most (Zhou et al., 2022)

Self-Consistency (Wang et al., 2022),
Self-Verification (Weng et al., 2022),

pter (Imani et al., 2023),
Program Aided Language (Gao et al., ¢

3. Control Ensemble Strategy

Progressive Hint (Zheng et al., 2023),
Self-Refine (Madaan et al., 2023),
Tree of Thoughts (Yao et al., 2024),
Buffer of Thoughts (Yang et al., 2024),
Reinforcement Learning Beam Search (Xie et al., 2024),
ReAct (Yao et al., 2022),
Reflexion (Shinn et al., 2024),
Voyager (Wang et al., 2023)

Fig. 1. Taxonomy of LLM-Reasoning Approaches: Prompt Generation, Evaluation, and Control

(series of) prompt(s) to analyze the problem (3.1.3) model-generated prompt. As we will see, all three approaches have
their advantages and disadvantages.

Generating the subproblem-steps is the first stage that is necessary for in-context learning to perform reasoning.
Each paper in our survey performs at least this stage of the reasoning pipeline. In some of the early papers (around

2022) it is the only stage of the pipeline that is performed.

(3.2) Evaluation. After the prompt has been generated and the model has answered it, the next stage is to evaluate
this answer. Again, we see three main approaches for substep evaluation. First, the steps may be evaluated by the model
itself: (3.2.1) self-assessment. Second, an external program can be used to evaluate the steps. For example, when the steps
are expressed as computer code, an external interpreter or compiler can be used to check the validity and the outcome:
(3.2.2) tool-based evaluation. Finally, an external model can be used, LLM or otherwise. For example, in robotics, an
external physics model can determine if certain actions are physically possible: (3.2.3) external model validation.

Manuscript submitted to ACM



Reasoning with Large Language Models, a Survey 7

Table 2. Taxonomy of approaches: Generation, Evaluation, and Control. Reported benchmark results: =’ is absolute score, ’+’ is
improvement to a baseline

Approach Domain (3.1) Step generation  (3.2) Step evaluation  (3.3) Step control ~ Result

Scratchpad [91] math word hand-wr/superv - greedy/1prompt PolyEval +19%, Python +21%

Chain-of-thought [146] math word hand-written - greedy/1prompt GSMSK +39%, SVAMP +10%, ASDiv +2%, AQuA +11%,
MAWPS +14%, CSQA +1.8%, StrategyQA +0.2%

ZS-CoT [68] math word hand-written - greedy/1prompt MultiArith =89%, GSM8K =70%

Auto-CoT [165] math word model-generated - clustering MultiArith +0.3%, GSM8K +1%, AddSub +3.5%,

AQuUA +0.7%, SingleEq +0.4%, SVAMP +0.6%,
CSQA +1%, StrategyQA +0%, Letter +0.7%, Coin +2.7%

Complexity [40] math word hand-written self-consistency greedy/1prompt GSMSK +7%, MultiArith +3%, Penguins +3%

Self-ask [101] math word ext knowledge LLM multi-hop q. Bamboogle =60%, 2Wiki =40%, Musique =15%

Self-verification [148] math word hand-written back-verify ensemble GSMSK +4%, SingleEq +2%, AddSub +4%,
MultiArith +3%, AQuA +3%, SVAMP +1%

Self-consistency [143] math word hand-written majority ensemble GSMS8K +18%, SVAMP +11%, AQuA +12%,
StrategyQA +6%, ARC-c +4%

Codex [16] code - tool-based - HumanEval =70%

Self-debugging [19] code hand-written tool-based greedy Spider +9%, MBPP +12%, TransCoder +12%

Fun-search [108] code hand-written tool-based evolutionary alg cap set 8 =512

LLaMEa [134] code hand-written tool-based evolutionary alg BBOB +11%

MathPrompter [60] math hand-written tool-based ensemble MultiArith =92%

Program-of-thoughts [17]  math word hand-wr, Codex Python+Consist. split reason/cmput  GSM8K =71%, SVAMP =85%, ASDIV =85%,
AddSub =92%, MultiArith = 99%

Program-aided-lang [41] math word hand-wr, Codex NLP/Python ensemble GSMB8K =72%, SVAMP =79%, ASDIV =79%,

SingleEQ =96%, SingleOP =94%, AddSub = 92%,
MultiArith = 99%, Penguins = 93%

Refiner [96] math word finetune critic model gen/crit feedback ~ SVAMP =72%, GSM8K =78%

Self-correction [147] math word finetune corrector model gen/corr feedback  MathProgSynth =24%, LexConstrGen =98%,
ToxicityControl =0.0%

Self-improvement [54] math word finetune self-assessment CoT/consistency GSMSK =82%, DROP =83%, ARC-c =90%,
OpenBookQA =94%, ANLI-A3 =68%

Say-can [3] robot model-generated external model greedy Kitchen =31%

Inner-monologue [57] robot hand-written various greedy TableTop =90%, Kitchen =60%

Self-taught-reasoner [163]  math word finetune augmentation greedy/feedback ~ CommonsenseQA =72%

Least-to-most [169] math word hand-written self-assessment curriculum SCAN =99%

Progressive-hint [167] math word model-generated self-assessment stable prompt AddSub +2%, MultiArith +0%, SingleEQ +2%,

SVAMP +3%, GSM8K +5%, AQuA +1%
Self-refine [82] math word model-generated self-assessment greedy/feedback  Sentiment +32%, Dialog +49%, CodeOptim +8%,

CodeRead +28%, MathReason +0%,

AcronymGen +25%, ConstrainedGen +30%

Tree-of-thoughts [159] puzzles model-generated self-assessment BFS/DFS Game24 =74%, CreativeWriting , Crossword
Buffer-of-thoughts [156] math word thought template self-assessment buffer manager  Game24 +11%, GeoShapes +20%, Checkmate +51%
Beam-search [153] math word model-generated self-assessment Beam Search GSMSK +6%, AQUA +9%, StrategyQA +5%

ReAct [158] action external knowledge self-assessment reinf learning ALFWorld =34%, WebShop =10%

Reflexion [121] decision model-generated ext model reinf learning HumanEval =91%

Voyager [141] Minecraft model-generated Minecraft reinf learning 15 x faster

(3.3) Control. The third stage is control. A reasoning process that consists of multiple steps is a sequential decision
process [77]. When a single chain of reasoning steps is generated, the control flow of the reasoning process is simple:
greedily evaluate the first step and then the next one, if present. The control flow of the reasoning process may also be
more intricate. Some reasoning problems can be divided into multiple subproblems. To execute, evaluate and combine
the results of all substeps, a separate controller may be needed. This controller can be a prompt or an external algorithm.

Again, we distinguish three approaches. Most papers use a (3.3.1) greedy selection approach: a single prompt with
a single chain of steps is generated, and these steps are directly executed and followed. The second approach is to
generate an (3.3.2) ensemble strategy of reasoning steps, evaluate them, combine the individual results, and present them
as the result of the ensemble. Finally, a full tree-search or a (3.3.3) reinforcement learning (RL) algorithm can be used as
scaffolding. In this case, when a step is followed and evaluated, the LLM can roll back and try a different reasoning
step, as in a search [98]. Going further, a full reinforcement learning approach can be used [99, 125] to find an optimal
policy for the sequential decision process. A Markov Decision Process of state, action, transition, and reward function
is specified, and step control can become a process where prompts are generated dynamically.
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Domain. Initially, papers are applied to math word problems (natural language descriptions of math problems). Math
problems were the original inspiration for the experiments with reasoning in LLMs. Other application domains include
autonomous agents, robotic movement, generating computer programs, and playing computer games. We will discuss

these in more detail in the descriptions of the individual approaches in this section.

Taxonomy Table. Table 2 lists main papers of this survey. We show the domain they work on, the type of prompt
generation, the evaluation of the result, and the control method. These three categories of approaches—indicated by
their Sections (3.1) generation, (3.2) evaluation, (3.3) control—are shown in the table as groups divided by horizontal
lines. The first group in the Table, from Scratchpad to Self-ask, focuses on creating a prompt that generates the reasoning
steps. The entries in the cells of this column are shown in bold, highlighting the focus of the approaches. The approaches
in this group are the start of the field of LLM-reasoning. The Chain-of-thought approach is especially an inspiration for
many works. The prompts are often written manually by the researchers for each problem; the steps are encoded in
one prompt, and step control is greedy. There is no specific evaluation of the steps, other than comparing results to
the benchmark. The Scratchpad approach is special in that it uses supervised learning, not prompt-learning; the work
showed that LLMs can generate internal reasoning steps by supervised learning, paving the way for prompt-based
works.

The second group, from Self-verification to Self-taught-reasoner, focuses on evaluation of the reasoning steps in the
prompt. This column is shown in bold in the table. The approaches in this group aim to improve the Chain-of-thought
results by reducing error accumulation that occurs when multiple steps are taken in a reasoning chain. A variety of
step control methods is used by these approaches, which is discussed in more detail later. Note that not all approaches
use natural language problems. For example, the subgroup of Codex to Program-aided-language focuses on formal
languages. They generate code or math equations, typically in Python, to formalize the steps of the reasoning problem, or
as result of the task. LLMs are quite good at code generation, and these approaches typically achieve good performance.
The use of code also allows the approaches to call external programs such as interpreters and debuggers to evaluate the
correctness of the reasoning steps that are generated.

There is also a special subgroup, Refiner to Self-improvement, that uses finetuning in addition to prompt learning.
Here, new data is generated based on reasoning exemplars, which is then used to further train the model. The extra
data is often generated as a separate dataset, sometimes called critic or corrector.

There are two approaches, Say-can and Inner-monologue, whose application domain is control of robot movement.
Robotic movement is constrained by the laws of physics (both in the body of the robot as in aspects of its environment).
The laws of physics are learned and used to ground the reasoning steps in reality (to reduce hallucination).

The third group, Least-to-most to Voyager, addresses step control (shown in bold in this column). Whereas in the
previous approaches the reasoning steps are written in a single, static, prompt, these approaches generate the steps in
multiple, dynamic, prompts. This allows control of the space of reasoning steps. Various search control approaches
are used, all in the form of an external algorithm that performs calls to the LLM with different prompts. The control
methods range from simple greedy and depth-first search to elaborate beam search and reinforcement learning schemes.

The last column of the Table summarizes reported benchmark results. The ’=" symbol indicates absolute scores on
the benchmarks, while '+ indicates relative improvement in percentage points over a baseline LLM, typically GPT-3.5.
Results vary strongly, both between approaches and within a single approach between benchmarks. Also, different

LLMs were used, from early stage to more mature models, open and commercial, and the baselines differ. For some
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Input:
29+57

Target:
<scratch>
29+57, C:0
2+5,6C: 1 #a
, 86 C: @ # added
086

</scratch>

8 6

dded 9 + 7 = 6 carry 1
2+5+1 8 carry 0

Fig. 2. Example of input and target for supervised learning on a long addition problem of adding two numbers. The carry is recorded
in the C: digit. Comments (after #) are not part of the learning target [91]

benchmarks, such as the Creative Writing benchmark in Tree-of-thoughts, results are best reported qualitatively. The
source papers provide more measurement details.
In conclusion, we see a diverse array of methods that often achieve high performance in reasoning on their respective

domains. To better understand the approaches, we discuss them in more detail, starting with the generation of steps.

3.1 Generation of Steps

Originally, LLMs performed poorly on math word problems such as GSM8K [27]. Different approaches were tried
unsuccessfully, for example scaling up the size of the LLM [104]. The LLM architecture, based on transformers, is
designed to produce a single token. When we prompt such an architecture to produce an answer, it does so. What we
should do instead, is to prompt it to follow intermediate steps, answer those, and thus work towards the final answer,
just as a student is taught to break down a complex problem into smaller steps. We should guide the model to explicitly
produce intermediate steps, and combine the intermediate results. This idea was used by Nye et al. [91] in Scratchpads,
a transformer model that performs multi-step computations by asking it to emit intermediate computation steps into a
scratchpad. They train the model by supervised learning (not prompt-based in-context learning). Figure 2 shows an
example. On experiments with addition, polynomial evaluation, and Python code execution, versions that produced the
intermediate steps on a scratchpad performed considerably better than versions that did not, going from 35% to 95%,
from 32% to 51%, and from 30% to 42% accuracy, respectively.

If supervised learning can produce intermediate steps, would prompt learning be able to do so too?

3.1.1 Hand-written Prompt. This question was studied by Wei et al. [146], amongst others. A basic way to instruct an
LLM to generate steps by prompt-learning is to manually write a prompt for the large language model to follow the
reasoning steps. When the LLM is prompted to rephrase information from the question as intermediate reasoning steps
in its answer, the LLM performed much better than when it was prompted to answer a math problem directly, without
reproducing information from the question in its answer in multiple steps. The example from the Chain-of-thought
paper is shown in Figure 3. Table 1 shows that the largest accuracy increase is on GSM8K, from 16% to 47%.

The performance improvement by Chain-of-thought has caused much excitement and has opened up further research
on reasoning with LLMs. In the original paper the prompts were handwritten by the researchers for the individual
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Standard Prompting Chain-of-Thought Prompting

Model Input Model Input
Q: Roger has 5 tennis balls. He buys 2 more cans of Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now? tennis balls does he have now?
A: The answer is 11. A: Roger started with 5 balls. 2 cans of 3 tennis balls

gach is 6 tennis balls. 5 + 6 = 11. The answer is 11.
Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples Q: The cafeteria had 23 apples. If they used 20 to
do they have? make lunch and bought 6 more, how many apples
do they have?

Model Output

Model Output

A: The answer is 27. x

b
NG

Fig. 3. Chain-of-though Prompting. In blue at the top the prompt, in green at the bottom the answer. When shown the longer example
prompt, the LLM follows the longer example when answering the question [146]

(a) Few-shot (b) Few-shot-CoT

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis
balls. Each can has 3 tennis balls. How many tennis balls does
he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6
tennis balls. 5 + 6 = 11. The answer is 11.

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis
balls. Each can has 3 tennis balls. How many tennis balls does
he have now?

A: The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?
A:

Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?

A:

(Output) The answer is 8. X (Output) The juggler can juggle 16 balls. Half of the balls are golf
balls. So there are 16 / 2 = 8 golf balls. Half of the golf balls are

blue. So there are 8/ 2 = 4 blue golf balls. The answer is 4. v/

(c) Zero-shot (d) Zero-shot-CoT (Ours)
Q: A juggler can juggle 16 balls. Half of the balls are golf balls, Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are and half of the golf balls are blue. How many blue golf balls are
there? there?
A: The answer (arabic numerals) is A: Let’s think step by step.
(Output) 8 X (Output) There are 16 balls in total. Half of the balls are golf

balls. That means that there are 8 golf balls. Half of the golf balls
are blue. That means that there are 4 blue golf balls. v

Fig. 4. Zero-shot Chain-of-thought: Let’s think step by step [68]

types of problems, and evaluations are conducted with benchmarks (not by an LLM).? In a later work the prompts were
generated automatically by the LLM [165], and evaluated.

Kojima et al. [68] go a step further. They show that the addition of a single text to the prompt (Let’s think step by
step) significantly improves performance. Since this text does not contain problem-related elements, it is as a form of
zero-shot learning. Figure 4 compares the approaches. Experiments further show that with this addition to the prompt

2The Chain-of-thought idea is about prompt generation, not about the evaluation or the search control of the reasoning steps. Hence, in Table 2
Chain-of-thought is labeled as greedy without an evaluation.
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Direct Prompting

Question: Who lived longer, Theodor Haecker or Harry Vaughan
Watkins?
Answer: Harry Vaughan Watkins.

Question: Who was
was discovered?

resident of the U.S. when superconductivity:

Answer: Franklin D. Roosevelt x

Chain of Thought

—| GPT-3
Question: Who lived longer, Theodor Haecker or Harry Vaughan
Watkins?

Answer: Theodor Haecker was 65 years old when he died. Harry
Vaughan Watkins was 69 years old when he died.

Self-Ask

—| GPT-3

Question: Who lived longer, Theodor Haecker or Harry Vaughan

Watkins?

Are follow up questions needed here: Yes.

Follow up: How old was Theodor Haecker when he died?

Intermediate answer: Theodor Haecker was 65 years old when he

died.

Follow up: How old was Harry Vaughan Watkins when he died?

Intermediate answer: Harry Vaughan Watkins was 69 years old when

he died.

So the final answer is: Harry Vaughan Watkins

Question: Who was of the U.S. when superconductivity

was discovered?

Are follow up questions needed here: Yes.

Follow up: When was superconductivity discovered?
answer: vity was di

Follow up: Who was president of the U.S. in 19112

Intermediate answer: William Howard Taft.

So the final answer is: William Howard Taft.

in 1911.

11

So the final answer (the name of the person) is: Harry Vaughan
Watkins.

Question: Who was presi perconductivity.
was discovered?

Answer: Superconductivity was discovered in 1911 by Heike
Kamerlingh Onnes. Woodrow Wilson was president of the United
States from 1913 to 1921. So the final answer (the name of the

president) is: Woodrow Wilson. x

Fig. 5. Self-Ask asks follow-up questions, and uses an external search engine [101]

significant performance gains are achieved on a diverse set of reasoning benchmarks, including arithmetic, symbolic,
and logical reasoning (achieving 70% accuracy on GSM8K/PaLM when Self-consistency is also included).
The Chain-of-thought idea itself is inspired by earlier work where natural language steps are generated for arithmetic

reasoning [27, 76], and the use of formal languages for reasoning [4, 18, 20, 109].

3.1.2  Prompt using External Knowledge. Chain-of-thought prompts are written manually, by the researchers, an
approach that does not scale. We can also use external information about the problem to improve the prompt. Press
et al. [101] study how subproblems are related to the main problem, which they call compositional reasoning. They
study how often a model is able to answer the subproblems, but not the overall problem. This difference is called the
compositionality gap. They find that in GPT-3, as model size increases, the single-hop question-answering performance
improves faster than the multi-hop performance: while more powerful models memorize and recall more factual
knowledge, no improvement in their compositional reasoning occurs. The ability to reason does not depend on the size
of the model.

Subsequently, a method called Self-ask is proposed, that asks elicitive follow-up questions (like Chain-of-thought,
but with the follow up: prompt), that the model then answers (see Figure 5). Self-ask can also use an external search
engine to answer intermediate prompts, instead of the model. The initial subquestion is fed into the search engine,
and the answer is processed by the model, which generates another subquestion, and so on, until it produces the final
answer. Self-ask was tested on three benchmarks that were specifically designed for multi-hop questions. Although it
performs only a few percentage points better than vanilla Chain-of-thought, it showed how external knowledge can be

used in a reasoning setting.

3.1.3 Model-Generated Prompt. In addition to manually writing prompts or using external information, we can also
let the LLM itself study the problem to write the best reasoning-prompt. An example of such self-improvement is
Manuscript submitted to ACM
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Auto-chain-of-thought [165]. This approach builds on the observation by Kojima et al. [68] that large language models
are zero-shot reasoners. First, Auto-chain generates specific questions for a given dataset and partitions them into
clusters. Then an external algorithm uses the model to generate examples that are sampled for diversity. The constructed
demonstrations augment the in-context prompt. This approach also performed a few percentage points better than
hand-written Chain-of-thought prompts, on ten benchmarks, using GPT-3 (see Table 2).

Fu et al. [40] introduce Complexity-based prompting. Inspired by Chain-of-thought and Self-consistency, their work
specifically studies the impact of the complexity of the reasoning chain (the number of steps), and introduces a related
reasoning approach (Complexity-based prompting). They find that prompts with the largest complexity perform best,
and also that answers with the highest complexity are the best. Complexity-based prompting achieves somewhat higher
performance on three math reasoning benchmarks: GSM8K improves 7 points, MathQA 6 points, and the Penguins
benchmark from Big Bench Hard improve 3 percentage points.

We see that the initial approaches showed larger improvements than the later approaches. It is time to look at another

category of approaches, that focus on the evaluation of reasoning steps.

3.2 Evaluation of Steps

After discussing prompts for the generation of reasoning steps, the next stage in the generation/evaluation/control
pipeline is evaluation of the results of the steps. This stage focuses on reducing error accumulation of multi-step

reasoning chains. We will start with approaches where the same model performs step-generation and step-evaluation.

3.2.1 Self-Assessment. When LLMs are prompted to perform reasoning steps, they perform a sequence of steps and
predict multiple tokens. Performing a sequence of steps makes them sensitive to mistakes and vulnerable to error
accumulation (logical, factual, ethical, or otherwise) [148, 151]. Several methods have been developed to prevent error
accumulation. One approach is to create a new model to separately evaluate the results. Shen et al. [118] and Li et al.
[75] train an external verifier to check results. In contrast, Weng et al. [148] propose an automated approach using
evaluation by the same LLM, called Self-verification. They note that human reasoning also suffers from the problem of
accumulating errors, and that in human reasoning we frequently revisit our thought process to verify the accuracy
of our reasoning steps. The LLM is prompted to use the conclusion of the Chain-of-thought reasoning chain as a
condition for solving the original problem and then compare the answer, going back to the original question. The LLM
is given variations of its own conclusion and is instructed to choose the one with the highest similarity to the original
question. (Note that there can be feedback issues using an LLM to evaluate itself, for a discussion see Zheng et al. [168].)
Experiments are reported on GPT-3 [16] and on Instruct-GPT [92]. The accuracy of Chain-of-thought was improved by
a few percentage points on arithmetic and general reasoning tasks (GSM8K 65%, AQuA 48%, SVGAMP 77%).

A popular related approach is Self-consistency [143]. Self-consistency is a straightforward ensemble approach (a
well-known machine learning technique to make a strong learner out of multiple weaker learners [12, 111]). Greedy
single-path decoding is replaced by sampling diverse reasoning paths, evaluating them, and selecting the most consistent
answer. Self-consistency asks the LLM to simply perform the same query multiple times, and takes the majority-vote of
the answers, or decoding paths. Self-consistency works since complex reasoning problems typically allow different
reasoning paths that lead to the correct answer. Figure 6 summarizes the approach. Self-consistency has been evaluated
on arithmetic reasoning, commonsense reasoning and symbolic reasoning, on a variety of LLMs, including GPT-3
[14, 22, 128, 129]. Self-consistency further improves the performance of Chain-of-thought by 10-20 percentage points,
and has been used as a baseline in many of the other approaches in this survey.
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Greedy decode

. This means she uses 3 + 4 = 7 eggs every day.
Chain-of-thought | Language | | She sells the remainder for $2 per egg, soin
prompting model total she sells 7 * $2 = $14 per day.

The answer is $14.

Self-consistency i Sample a diverse set of Marginalize out reasoning paths
reasoning paths P to aggregate final answers

. e m oem o oamom — 1
[ Q:lf there are 3 cars in the parking Shehas16 - 3 - 4 =9 eggs I } \
\

Iot and 2 more cars arrive, how many left. So she makes $2*9 = | The answer is $18.
cars are in the parking lot? $18 per day. 1

A:There are 3 cars in the parking lot
already. 2 more arrive. Now there are
3 +2=5cars. The answer is 5.

T
This means she she sells the
remainder for $2* (16 - 4 - 3)  The answer is $26.
= $26 per day. 1

Q: Janet's ducks lay 16 eggs per day.
She eats three for breakfast every
morning and bakes muffins for her

Language
model

[}
\ { she eats 3 for breakfast, so |
she has 16 - 3 =13 left. Then |
she bakes muffins, so she 1 The answer is $18.
has 13 - 4 = 9 eggs left. So
|\ _she has 9 eggs * $2 = $18. 1

friends every day with four. She sells
the remainder for $2 per egg. How
much does she make every day?

A:

Fig. 6. Self-Consistency [143]

3.22 Tool-based Validation. Another approach to improve the accuracy of evaluating the reasoning steps is to switch
from a natural to a formal language. The advantage of a formal language is that it is less ambiguous than a natural
language. Examples are computer languages, such as Python, or mathematical equations. Using a formal language for
reasoning is a popular approach, and we discuss seven papers. Many approaches generate the steps in Python, and the
code can then be evaluated by a formal evaluator, such as a compiler, debugger, or interpreter.

LLMs have been quite successful in generating computer code from natural language prompts. Chen et al. [16]
introduced Codex, a GPT model that was trained on publicly available code in the repository GitHub. A production
version of this work was introduced under the name GitHub Copilot. Codex is able to generate correct programs from
descriptions in natural language, such as commentary strings. Figure 7 shows examples that are produced by Codex.

The work on Codex is used as a basis for further research on reasoning in LLMs. Human programmers, when writing
code, typically follow a cycle of writing some code, executing it to look for errors, and then using the feedback to
improve the code. This step-by-step approach is followed in Self-debugging [19]. It follows the same steps of code
generation, code execution, and code explanation (see Figure 8). Self-debugging is able to identify mistakes in its own
code by investigating the execution results, and can also provide an explanation of the generated code, in natural
language. It achieves strong performance: the text-to-SQL Spider benchmark improves 9 points, and the C++ to Python
Transcoder benchmark improves by 12 percentage points.

Several works generate working code tuned for solving specific problems automatically, without human feedback.
Romera-Paredes et al. [108] introduced FunSearch, an approach that integrates formal methods and LLMs to enhance
mathematical reasoning and code generation. FunSearch uses a genetic approach with multiple populations of candidate
solutions (programs), which are evaluated using a function depending on the problem specification. In addition to
the evaluation function, also an initial program is given to the LLM in the first prompt. After evaluating a number of
generated programs from the starting prompt, a new prompt is created, in an iterative fashion, combining a selection of
sampled programs sorted according to their evaluation score, and the LLM is requested to generate a new program.
Another work leverages evolutionary computation methods to generate and optimize evolutionary algorithms [134]. This
approach, LLaMEA (Large Language Model Evolutionary Algorithm), utilizes LLMs to design and optimize evolutionary
algorithms. The approach uses LLMs to generate initial algorithmic structures, which are then refined through mutation
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incr_list(1l: list):

"""Return list with elements incremented by 1.
>>> incr_list([1, 2, 31

[2, 3, 4]

>>> incr_list([5, 3, 5, 2, 3, 3, 9, 0, 123])
[6, 4, 6, 3, 4, 4, 10, 1, 124]

return [i + 1 for i in 1]

solution(lst):
"""Given a non-empty list of integers, return the sum of all of the odd elements
that are in even positions.

Examples

solution([5, 8, 7, 11) ==>12
solution([3, 3, 3, 3, 31) ==>9
solution([30, 13, 24, 321]) ==>0

wun

return sum(1lst[i] for i in range(@,len(lst)) if i % 2 == 0 and 1st[i]l % 2 == 1)

encode_cyclic(s: str):

wun

returns encoded string by cycling groups of three characters.

wun

groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)]

groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups]
return "".join(groups)

decode_cyclic(s: str):

wun

takes as input string encoded with encode_cyclic function. Returns decoded string.

groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)1]

groups = [(group[-1] + group[:-11) if len(group) == 3 else group for group in groups]
return "".join(groups)

Fig. 7. Codex example [16]

Step 2: Code execution

EST

o=\ =

o= g
@ ) 1 ,
Unit tests Executor

— Step 1: Code N
l generation [

g P Feedback
Problem Code .

Model Expla:atlon
Step 3: Code explanation ~—

Fig. 8. Self-Debugging control flow [19]
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Chain-of-Thought (Wei et al., 2022)

—(Input )

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 tennis balls. 2 cans of 3 tennis
balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The bakers at the Beverly Hills Bakery baked 200
loaves of bread on Monday morning. They sold 93 loaves
in the morning and 39 loaves in the afternoon. A grocery
store returned 6 unsold loaves. How many loaves of
bread did they have left?

Program-aided Language models (this work)

Q

: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 tennis balls.
tennis_balls = 5

2 cans of 3 tennis balls each is

bought _balls = 2 * 3

tennis balls. The answer is

answer = tennis_balls + bought balls

Q: The bakers at the Beverly Hills Bakery baked 200
loaves of bread on Monday morning. They sold 93 loaves
in the morning and 39 loaves in the afternoon. A grocery
store returned 6 unsold loaves. How many loaves of bread
did they have left?

Model Output

A: The bakers started with 200 loaves. They sold 93 in
the morning and 39 in the afternoon. So they sold 93 +

Model Output

A: The bakers started with 200 loaves
loaves_baked = 200

15

39 = 132 loaves. The grocery store returned 6 loaves. So
they had 200 - 132 - 6 = 62 loaves left.
The answer is 62.

They sold 93 in the morning and 39 in the afternoon
loaves_sold morning = 93

loaves_sold afternoon = 39
x The grocery store returned 6 loaves.
\_ loaves_returned = 6

The answer is
answer = loaves_baked - loaves_sold morning
- loaves_sold_afternoon + loaves_returned

Fig. 9. Program-aided-language [41]

and selection. This enhances the efficiency of algorithm design, particularly in fields requiring innovative and adaptive
solutions, improving accuracy on the Black-Box Optimization Benchmark [48] (BBOB) suite by 11 pecentage points. A
key difference between FunSearch and LLaMEA is that LLaMEA uses a sample-efficient elitism strategy by iteratively
improving the best-so-far solution, requiring significantly fewer prompt evaluations than the large-population strategy
proposed in FunSearch. Evolutionary approaches let the LLM discover new algorithms, solving existing problems in
new ways, or solving entirely new problems. Another method, Evolution-of-heuristics [78], was proposed for evolving
code snippets for guided local search to solve combinatorial optimization problems, such as the Traveling Salesperson
Problem.

To improve prompt-based reasoning, Codex is used in an ensemble approach named MathPrompter [60]. This
approach generates multiple algebraic expressions or Python functions, which then solve the same math problem.
The results are compared, just like in Self-consistency and Self-verification, raising the confidence level in the results.
MathPrompter achieved state-of-the-art accuracy on the MultiArith dataset (78.7% — 92.5%), evaluated on GPT-3 175B.

Two other approaches that use a formal language are Program-of-thought [17] and Program-aided-language [41].
Both approaches use the LLM to generate Python and then use an interpreter to evaluate the result. The approaches are
similar although Program-aided-language uses generic prompts, and has been tested on more benchmarks. Figure 9
illustrates the Program-aided-language approach. When the evaluation of the reasoning steps is offloaded to the Python
interpreter, decomposing the natural language problem into executable code-steps remains the only task for the LLM.
(Earlier work in math word problems showed how to decompose a problem and reach an answer [76].) Gao et al. [41]
provide extensive experimental evidence about the synergy between the neural LLM and the symbolic interpreter.
Experiments are performed on 13 mathematical, symbolic, and algorithmic reasoning tasks, achieving more accurate
results than much larger models (for example, Program-aided-language reported 72% on GSM8K and 93% on Penguins).
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Context: Frank had
number@ pieces of candy.
He lost numberl of them.
If he put the remaining
pieces into bags with
number2 pieces in each
bag,

Question: How many bags
would he have?

Generator

Intermediate Equation:
#0: divide (number0,number2) |
#1: multiply (#0,numberl) | EOS
¥

0.0, The operator in #@ is incorrect, the second number
w in #@ is incorrect, the operator in #1 is incorrect,
and the second number in #1 is incorrect.

4

Intermediate Equation:
#0: 51 t (number0, numberl) | ‘
#1: > (#0,number0) | EOS

Generator

v, ¥
W The second number in #1 is incorrect.

)
Intermediate Equation:
#0: su ber0, num
#1:

s \
W No hint. ‘—I

))|EOS

) Generator

Fig. 10. Refiner [96]

3.2.3 External Model Validation. We have seen many examples of succesful prompt-based in-context reasoning and
evaluation (at inference time—where no parameters were changed). We will now look at reasoning approaches that
follow a more traditional parameter training approach. All approaches evaluate the output of the model and generate

corrective data. That data is then added to the training pipeline, and the model is subsequently finetuned.

Finetuning. The Refiner approach [96] uses a generator model and a critic model that provide fine-grained feedback
on reasoning errors. The generator generates multiple reasoning hypotheses, and the critic evaluates results by randomly
selecting a hypothesis for feedback. The generator model is then finetuned based on its reasoning errors. A small
supervised model is used to overcome the cold-start problem. Figure 10 shows an example of how the critic provides
feedback to the generator. The approach achieves 78% accuracy on GSM8K and also works well on related problems.

Welleck et al. [147] follow a similar approach which they call Self-correction. Here, the corrector is a separate model
specialized in refining the outputs of the generator. Unlike Refiner, where the generator is finetuned based on the critic,
Self-correction finetunes the corrector to rectify errors in the hypotheses produced by the generator. Self-corrector is
not applied to math word problems, but to program synthesis, where a small corrector reduces toxicity to 0%.

A third finetuning approach is Self-improvement [54]. Here, too, the base model data is augmented by LLM-generated
rationales, and then finetuned. They achieve 82% accuracy on GSM8K and similarly high scores on question answering
and adversarial benchmarks. Noteworthy in all three finetuning approaches is that LLMs are capable of improving

themselves by training on their own generated output, and that stability problems from feedback loops are overcome.

Dataset Augmentation. The final finetuning approach that we discuss uses dataset augmentation. In Self-taught-
reasoner [163], an intermediate reasoning is generated, called a rationale. Rationales are shown to be valuable across
diverse tasks such as mathematical and commonsense reasoning, code evaluation, social bias inference, and natural
language inference. First an augmentation dataset is created by attempting to solve the original dataset. Next, the dataset
is augmented using rationalizations and ground-truth answers to problems the model failed to solve. Finally, the model
Manuscript submitted to ACM
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5 Q: What can be used
Question, Rationale, Answer Correct |4 to carry a small dog?
Answer QF Answer Choices:
T (a) swimming pool
Finetune Rationale (b) basket

1
(o e R RS =

(c) dog show

(d) backyard

(e) own home

A: The answer must be
something that can be
used to carry a small
dog. Baskets are
designed to hold things.
Therefore, the answer
is basket (b).

Generation

Language
S
Rationalize

_[ Rationale, Answer ] [ Hint

Fig. 11. Self-Taught-Reasoner [163]

Rationale, Answer

Wrong
Answer

| spilled my drink, can you help? | spilled my drink, can you help?
LLM

’
. 1
GPT3 You could try using : Value Functions .
“find a cleaner” ot chuner” 1
avacuum cleaner. \ o ecteans T O + BN
! 0o the trash can” “go to the trash can” 1
“try using the vacuum” Ty g e rcuam’ | | would:
LaMDA Do you want me to 1 , L
find a cleaner? ! . . -find a sponge
| SayCan i 2. pick up the sponge
s |
1 “find a sponge” | 3. come to you
I'm sorry, | didn't ! e , 4. put down the sponge
FLAN : “pick uj . 1 5.done
b |
\

mean to spill it.

Fig. 12. Say-Can compared to other language models [3]

is finetuned on the combined dataset. Figure 11 illustrates the approach. Self-taught-reasoner performs comparably

(72%) to finetuning a 30 times larger model on CommonsenseQA.

Reasoning about Robot Behavior. In addition to math word problems, computer code, and common sense, prompt-based
reasoning has also been used to improve robot behavior. Language models contain a large amount of information about
the real world [3]. In theory, this should allow them to reason realistically about robotic behavior. However, the models
do not have knowledge about specific embodied aspects of a particular robot. If we could compare a Scratchpad-like
list of intermediate reasoning steps with a list of possible movements of the robot in its environment, then we could
prevent the model from suggesting impossible joint movements and actions, and prevent failures.

Say-can [3] learns a value function [64] of the behavior of a robot and its environment using temporal difference
reinforcement learning [124]. This value function is combined with prompt-based reasoning by the language model, to
constrain it from suggesting impossible actions. The goal of Say-can is to ground language in robotic affordances. In
contrast to Scratchpad, which used supervised learning, the affordance model is learned interactively by reinforcement
learning, and then applied using prompt-based learning on the LLM. The language model has high-level semantic
knowledge about the task (Say). The learned affordance function (Can) provides an environment-grounding on what is
possible. Say-can achieves a 31% success rate on 101 real-world robotic kitchen tasks (see Figure 12).

Where Say-can learns affordances as a separate function, Inner-monologue [57] formulates robotic planning directly

as part of the language prompt, internally. The input consists of many elements: textual descriptions from InstructGPT
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Fig. 13. Architecture of Inner-Monologue [57]

[14] for multi-step planning, scripted modules for object recognition, success detection, task-progress scene description,
and language-conditioned pick-and-place primitives, similar to CLIPort [123]. Figure 13 gives an example of the
working of Inner-monologue. The language feedback that is thus generated significantly improves performance on
three benchmarks, achieving 90% accuracy on simulated and real table top rearrangement tasks and 60% on the
kitchen environment. There are many other studies into robotic behavior. An approach related to Inner-monologue is
Chain-of-tools, which proposes a plan-execute-observe pipeline to ground reasoning about tool behavior [119, 120].

This concludes our discussion of the second stage of the reasoning pipeline, evaluation of the reasoning steps.

3.3 Control of Steps

The third stage is control. This stage controls how many sub-steps are generated, and how deep into the future the
reasoning chain is generated. There are three main approaches: (3.3.1) greedy selection, which generates a step and
then follows it, (3.3.2) ensemble strategy, which generates a set of possible next steps, and (3.3.3) a (reinforcement
learning) search which generates multiple options for the steps, traversing a search tree with backtracking, controlling

an exponential search space [154].

3.3.1 Greedy Selection. Most earlier works on prompt-based reasoning follow the greedy approach: generate a single
prompt with a single sequence of steps and follow them. Among the greedy reasoners are Chain-of-thought, Auto-CoT,
and Zero-shot CoT. Inner Monologue and Say-Can also use greedy reasoning.

In Least-to-most prompting [169], the key idea is to break down a complex problem into simpler subproblems
and then solve these in sequence, explicitly encoding them in the prompt, related to Complexity-based prompting.
In Least-to-most the answers to previously solved subproblems help in finding the answer, as a curriculum [8]. On
symbolic manipulation, compositional generalization, and math reasoning, Least-to-most prompting generalizes well,

achieving 99% accuracy on a compositional generalization benchmark. Figure 14 illustrates the idea.

3.3.2 Ensemble Strategy. The second kind of reasoning control is based on an ensemble of (sequences of) reasoning
steps. For most problems, multiple different options exist for the next step. When all or some of these are generated and

evaluated, then the consensus result can be reported as the outcome of an ensemble of steps. Self-consistency [143] and
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Fig. 14. Least-to-most prompting [169]

Self-verification [148] (in Section 3.2.1) are popular ensemble approaches to evaluate the results of reasoning steps, in
which greedy single-path decoding used in Chain-of-thought prompting is replaced by a diverse set of paths. Taking
this further, Chain-of-experts uses a mixture-of-experts ensemble for complex combinatorial problems [152]. PAL and

MathPrompter also use the ensemble approach. The ensemble approach is popular in reasoning with LLM.

3.3.3 Reinforcement Learning. In reasoning, often multiple valid steps are possible, but pursuing all possibilities over
multiple trajectories may lead to an infeasible number of possibilities. The third kind of reasoning control is to use
a full-fledged controller that can traverse a tree, or perform reinforcement learning to do so [64, 99, 125]. When
decomposing the problem, multiple alternative steps are generated that can be searched multiple steps into the future.
Then, backtracking can be performed, allowing alternative steps to be tried.

Where greedy and ensemble processes can be controlled with a prompt by the LLM, this third category is more
complex, and an external algorithm is used to control the reasoning process. The external algorithms call the LLM as a
subroutine prompting it to perform requested tasks. The external algorithm allows more complex reasoning control,
but we are now beyond prompt-based self-reasoning: control has been given to an algorithm that is external to the
LLM and external to prompt-learning.

We start our discussion of control strategies with depth-first and breadth-first search, then go to beam search, and then
to full reinforcement learning. A complex reasoning space can be traversed with a search algorithm. Tree-of-thoughts
[159] uses breadth-first or depth-first search to dynamically follow different reasoning steps. The evaluation part in
Tree-of-thoughts is performed with a prompt to the LLM. Together, the trio of generation, evaluation, and control allow
systematic exploration of the space of reasoning steps with look-ahead and backtracking. The authors compare their

approach to Chain-of-thought and Self-consistency on the Game of 24, Creative writing, and Mini crossword, achieving
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Fig. 16. Chain-of-Thought, Self-Consistency, and Buffer of Thoughts [156]

an accuracy of 74% on a Game of 24 task. The other tasks are evaluated qualitatively. Figure 15 illustrates the different
reasoning structures.

Another approach, Buffer-of-thoughts [156], goes a step towards metareasoning [42]. It introduces a meta-buffer that
stores high-level thought-templates. These thought-templates are derived from a variety of tasks. Figure 16 compares the
Buffer-of-thoughts approach to other approaches such as Chain-of-thought and Tree-of-thoughts. Buffer-of-thoughts
outperforms other methods in puzzles such as Game of 24 (by 11%) and checkmating (by 51%). Thought templates are
related to metacognition (thinking about thinking), which is further discussed in Section 4.2.3.

A related search method is Beam-search-for-reasoning [153]. When the space of possible reasoning paths is large,
Beam-search searches a promising part of this space. It uses self-evaluation to control exploration and to evaluate
3A similarly named approach is Graph-of-thoughts [11]. Graph-of-thoughts allows more general reasoning graphs, providing a formal framework, where
the different elements can then be specified manually.
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(decode) reasoning steps. Figure 17 illustrates how Beam-search uses self-evaluation in multi-step reasoning. Beam
search uses Program-aided-language models for math word problems [41]. Using a Codex backbone [16], it surpasses
the few-shot baselines by 6.34%, 9.56%, and 5.46% on the GSM8K, AQuA, and StrategyQA benchmarks, respectively.

Reinforcement learning is another step in the sophistication of optimization algorithms. It learns by interactive
sampling, improving its policy based on rewards from the environment [125]. To use reinforcement learning, the
reasoning problem is formulated as a Markov Decision Process: the agent-algorithm creates a prompt (an action), to
sample a step (t) and get an answer (state, reward) from the environment-model (see Figure 18). The answer can then be
used to improve the prompt (next action), using the rewards to improve its policy of best actions for each state. The
approaches that use reinforcement learning also do so in the form of an external algorithm.

Progressive-hint-prompting (PHP) uses reinforcement learning to interactively improve prompts [167]. Figure 19
illustrates the approach. PHP calls the LLM with dynamic prompts, using previously generated answers as hints, to
progressively prompt the LLM towards the correct answers. It works as follows: (1) given a question (prompt), the LLM
provides a base answer, and (2) by combining the question and answer, the LLM is queried and obtains a subsequent
answer. We (3) repeat operation (2) until the answer becomes stable, as a regular policy-optimizing reinforcement
learning algorithm. The authors have combined PHP with Chain-of-thought and with Self-consistency. Using GPT-4,
state-of-the-art performance was achieved on grade school math questions (95%), simple math word problems (91%)
and algebraic question answering (79%).

Another approach that is motivated by improving answers from feedback, is Self-refine [82]. Like PHP, the LLM
generates an initial output and provides feedback for its answer, using the LLM to refine itself, iteratively. Figures 20

and 21 illustrate the approach. Self-refine prompts the LLM in three ways: (1) for initial generation, (2) for feedback,
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and (3) for refinement, following a greedy reasoning chain. Self-refine has been used with GPT-3.5 and GPT-4 as base
LLMs, and has been benchmarked beyond math word problems on dialogue response generation [5], code optimization,
code readability improvement, math reasoning, sentiment reversal, acronym generation, and constrained generation,
showing substantial improvements over the base models (typically around 30 percentage points, see Table 2) .
Another approach that combines reinforcement learning and LLMs is ReAct [158]. Most works focus on reasoning by
the LLM, not on actions by an agent. The goal of ReAct is to combine progress in reasoning with action plan generation.

(Or, to put it differently, other approaches use RL to improve LLM-reasoning, ReAct uses LLMs to improve RL agent
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policies.) ReAct uses Chain-of-thought prompt-learning as part of an RL framework that also uses external knowledge
sources (Wikipedia) and finetuning; for error reduction, grounding, and for reducing hallucination. The framework
allows hand-written prompts. Figure 22 shows four different prompting strategies. On two interactive decision making
benchmarks (Alfworld and WebShop), ReAct outperforms imitation and reinforcement learning methods by an absolute
success rate of 34% and 10% respectively.

The ReAct work has been developed further. Reflexion [121] creates Al agents that learn by reflecting on failures
and enhance their results, much like humans do. Reflexion uses three language models: actor, evaluator, and reflector.
It works as follows: (1) an actor generates text and actions, (2) an evaluator model scores the outputs produced by
the actor, and (3) a self-reflection model generates verbal reinforcement cues to assist the actor to self-improve (see
Figure 23). For the actor, Chain-of-thought and ReAct can be used. Reflexion is evaluated on decision-making, reasoning,
and coding tasks. Improvements of 10-20 percentage points are reported.

To conclude this overview of reinforcement learning approaches, we discuss an application in the games domain.
Voyager [141] is an agent for the game of Minecraft that uses an iterative prompting mechanism that generates code
for embodied control. The agent includes self-verifcation an a skill library to maximize exploration. The goal of is to
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discover diverse items in Minecraft, a form of novelty search [35]. Voyager performs well, reaching high scores by
acquiring many tools (see Figure 24) 15 times faster than the baseline.

The applications of reinforcement learning in LLM reasoning are many, and the connections run deep [102]. Wang
et al. [142] use the similarity between RL timesteps and LLM reasoning steps to jointly train a value function together
with the LLM policy by optimizing the soft Bellman equation, achieving 85% accuracy on GSM8K and 81% on Alfworld.
Du et al. [33], Guo et al. [46] replace supervised finetuning by reinforcement learning, integrating it with reasoning,

achieving large efficiency gains in the training pipeline in the DeepSeek r1 and Kimi models.

4 DISCUSSION

We have reviewed many reasoning approaches. It is now time to reflect on the approaches, discuss limitations, and to
look for promising areas of future work. First we discuss issues concerning hallucination, faithful reasoning, and scaling.
Then we discuss what LLMs can and cannot do. Then, we highlight connections with sequential decision processes and

metacognition, and we end with a research agenda.

4.1 Hallucination, Faithfulness and Scaling

Most works on reasoning in LLMs are experimental in nature. The success of in-context learning and Chain-of-thought
has prompted efforts to provide deeper insight into the reasoning processes in language models. Saparov and He [113]
introduce a synthetic question/answer dataset designed to evaluate the reasoning abilities of LLMs. The work showed
that LLMs are capable of reasoning to a certain degree, but that Chain-of-thought struggles with proof trees with a wide
branching factor. In another study, Wang et al. [140] also aim to increase our understanding of how Chain-of-thought
works. The authors find that it continues to work even with invalid steps in the reasoning chain. They also find that the
order of the reasoning steps is important for good results. Prompts should be relevant to the question, and coherent
(steps should be in the correct order). Jin et al. [62] study the impact of reasoning step length on LLMs, finding a
strong positive correlation between the length of the prompt and reasoning abilities. These works highlight the risk of
hallucination in LLM-reasoning, for the model to see steps that are not there. Next, we discuss works on errors in the
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Chain-of-thought approach, studying whether the reasoning of the LLM is faithful, or that it gives the right answer for

the wrong reason.

4.1.1 Faithfulness. Chain-of-thought approaches prompt a language model to take certain steps to solve the problem
that the prompt specifies. One can ask the question, whether those steps are indeed the steps that the model has
followed (faithful reasoning) or whether it took another road to arrive at the same answer (unfaithful reasoning). A
few studies measure the faithfulness of reasoning by LLMs. Lanham et al. [71] notes that just like organic reasoners, a
model’s reasoning may be post-hoc, it may be constructed after a certain conclusion has been found. By deliberately
adding mistakes to the chain of thought, the authors measure the faithfulness of the model. They find a wide variation
of post-hoc reasoning, with a tendency of larger models to be less faithful. Like regular LLMs, when not properly
grounded, (Chain-of-thought) reasoning suffers from hallucination [56].

Another study adds deliberate bias to the prompt. For example, in a multiple-choice setting, they always make answer
(A) the correct answer [131]. They find that a bias towards wrong answers can cause significant drops in accuracy, and
that models frequently generate Chain-of-though explanations rationalizing wrong answers. The authors further note
that, insofar as language models are trained on human-written explanations, that explanations may be incomplete
or wrong. Human explanations may omit crucial steps of the causal chain, may provide an unfaithful account of the
human reasoning process, or may be aimed at convincing others, instead of providing the true causes of a decision.

To address issues of faithfulness, Lyu et al. [81] propose Faithful-chain-of-thought. This approach involves two
stages. First, the natural language query is translated into a formal symbolic language. Second, the problem-solving
stage processes the formal language, and can explain the reasoning steps it has thus taken. For the symbolic language,
Python, Datalog, or PDDL is suggested. Another approach, mechanistic interpretability, studies methods to target
individual representations inside the LLM, to see if the expected behavior occurs in practice [9, 106].

Faithfulness studies tell us more about how models reason. Further surveys on this topic are Chuang et al. [26], Luo
et al. [80], Mondorf and Plank [88], Paul et al. [97],

4.1.2  Scaling. The emergent abilities of LLMs have prompted research into the nature of scaling and reasoning with
LLMs, and, specifically, how reasoning capabilities can be transferred to smaller language models. Scaling laws of LLMs
are an active area of study, see for example [50, 51, 66]. Given the computational cost of training LLMs, there is much
interest in transferring knowledge to small language models. Comprehensive surveys on knowledge distillation are Gu
etal. [45], Xu et al. [155]. For reasoning specifically, Magister et al. [83] have studied reasoning in small language models,
using a student model that learns from a teacher model, by finetuning. Another study related to Self-taught-reasoner
focuses on explanation in small language models, achieving similar results [74].

Other works focus on prompt distillation for retrieval [29], recommendation [73], embodied agents [21], and LLM
graph reasoning [164]. Distillation of reasoning to smaller models can work surprisingly well in situations with more
explicit instructions. Distillation is also proposed for bringing results of reasoning from large models to small models

[161], which brings us to the topic of metacognition (Section 4.2.3).

4.2 Limitations: What LLMs Can and Cannot do

The capabilities of LLMs are impressive. LLMs can be seen as large text-based surrogate models of the world (or the
world how we describe it on the internet), and thus allow reasoning about a large variety of contexts and problems.
Reasoning tasks, such as math word problems, were one of the capabilities that LLMs could not achieve, until recently.

Let us look more closely at what language models currently can and cannot do.
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4.2.1 What Can LLMs Do? With the right prompt, LLMs are able to solve many of the problems in grade school math
word benchmarks and beyond. Prompt-based learning is able to perform reasoning tasks such as math word problems,
robotic movement, and Python code generation, at inference time, without expensive parameter training.

A taxonomy of generate-evaluate-control is able to describe the structure of the current LLM reasoning literature.
Furthermore, the accuracy of the reasoning chains can be improved with ensemble methods, or self-verification.
Hallucination can be reduced by grounding the model with external models, such as for robotic affordances, and
information retrieval from search engines and Wikipedia. Going a step further, using external control algorithms
(such as search or reinforcement learning) as scaffolding, dynamic prompts can use the LLMs to perform complex and
dynamic reasoning patterns. Note that the reasoning control is now two layers away from the core LLM: an external
control algorithm, on top of in-context-learning, dynamically generating prompts for the LLM. This is reasoning with
prompts with LLMs, not by.

At this point, it is interesting to note the confluence of the two schools of classical artificial intelligence, symbolic
and connectionist. Search and reinforcement learning are rooted in the symbolic tradition, while LLMs are rooted in
the connectionist tradition. The literature in this survey combines the two traditions. High performance reasoning is
created with a (symbolic) searcher/learner on top of a (connectionist) LLM. In other fields similar combinations can be
seen (for example, AlphaFold [15, 63] and retrosynthesis of molecules [115]). The LLM helps ground symbolic reasoning
methods in language; symbolic methods help create prompts that let the LLM perform dynamic reasoning.

We note that benchmarks such as GSM8K have been central for the progress of the field, and that while reasoning
started with math word problems, the field has extended to robotics, autonomous agents, games, and most emphatically
computer code. Formal languages play an important role in the intermediate multi-step reasoning chains.

A side effect of the work on reasoning is the emergence of a new few-shot learning approach for sequential decision-
making processes (SDP)[77]. Traditionally these processes are solved by explicit reinforcement learning (such as DQN
[87], PPO [114] and SAC [47]), achieving good results, but suffering from high sample complexity for larger problems
[100]. The emergence of few-shot in-context learning for solving SDPs opens a research avenue to find out what SDPs

few-shot prompt-learning will be able to solve.

4.2.2  What Can LLMs Not Do? Now that grade school math word problems are largely solvable, harder reasoning
benchmarks in other domains are appearing [2]. Another line of research argues that LLMs cannot reason, providing
examples where LLMs fail, and discussing potential reasons. Berglund et al. [10] show that LLMs can fail to generalize
in surprising ways. They provide the example of a model that is trained to report that “Valentina Tereshkova was
the first woman to travel to space,” but will not automatically be able to answer the question, “Who was the first
woman to travel to space?” pointing to a lack of semantic understanding by LLMs. Other work suggests that results
are less generalizable and transferable than often assumed, showing how base-10 arithmetic skills do not transfer to
base-9 arithmetic problems [150]. The question which problems LLMs can and cannot solve will continue to motivate
researchers.

Other works study the dangers of the size of LLMs. Bender et al. [7] mention the environmental risks associated
with the large computational training demands, as well as the difficulty of understanding the training data, for example

in the context of bias. Furthermore, there are ethical, legal, and copyright concerns regarding the data that LLMs are

4Reasoning and planning have been studied since the start of artificial intelligence, starting with logic and reasoning [90], search algorithms in puzzles
and board games [70, 98], robot planning [37], classical machine learning such as decision trees and support vector machines [12, 28, 39], through
knowledge representation and the semantic web [133]. Ever since the success of the connectionist approach [44, 72] (deep learning, including LLMs)
researchers have tried to join the two approaches.
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trained on. Finally, to prevent putting too much trust in the outcome of LLMs, we should understand their failure
modes better, such as the well-publicized problems of hallucination (inventing facts that look right but are not). Here,
mechanistic interpretability can be used to explore LLM representations and understand where they go wrong [9, 106].

Most of the reasoning capabilities exhibited by LLMs are due to the great representational powers of the transformer
architecture, and how in-context learning is able to harness them. Prompt engineering and prompt control play a crucial
role in the kind of reasoning that we have seen in the papers. Models can be instructed to write their own reasoning
prompts; however, such Auto-GPT or Auto-CoT prompts need careful evaluation, verification, and grounding in the
real world, to prevent degeneration into a hallucinatory world of their own. Models can also be instructed to interact
with the world, and become the tool of external scaffolding that evaluates, controls and improves the prompts. Some of
what we experience as reasoning by the LLM, is controlled by the prompt or the scaffolding algorithm. It is an open
question if prompt learning is able get the LLM to create a prompt to exhibit dynamic reasoning by itself.

From the symbolic planning field there is a critical view on the reasoning and planning abilities of LLMs [132] giving
examples of planning failures. They argue that LLMs are better used instead to improve heuristic elements of traditional
planners, such as PDDL [65], to strengthen traditional symbolic planning approaches.

Some of the names of the approaches surveyed in this paper are suggestive of self-awareness and self-reflective
capabilities. True (human) self-reflection, or metacognition, is still largely outside the capabilities of current LLMs.
LLMs can be prompted to reason, to take small steps, to self-evaluate, and their search process can be controlled by
an external algorithm. The self-reflective type of “intelligence” is written into the prompt by the prompt engineer or
the control algorithm. We are unaware of any LLM that has been made to reflect on, or even control, its reasoning
processes, controlling how many reasoning steps it should take, or limiting its reasoning once the answer had become

good enough. True self-reflection remains future work, although some steps have been taken, as we will discuss next.

4.2.3 Reasoning towards Metacognition. Human thought exhibits the ability to reason about self, we are able to
think about our own thinking processes. Metacognition studies this phenomenon [136]. Prompted by the success of
Chain-of-thought and related works, metacognition has also been studied in the context of LLMs [130].

Many reasoning approaches highlight self-reflective aspects in their names and in how they work. The prompts that
prompt the models to reason are being improved with the outcome of the reasoning process, and in Buffer-of-thoughts
thought-templates are used that are derived from other reasoning processes. Wang and Zhao [144] study Metacognitive-
prompting. Inspired by Chain-of-thought and Self-consistency, they create manually designed prompts to increase the
understanding of language models. Figure 25 illustrates the relation between metacognitive human thought processes
and metacognitive LLM prompting. Another work, again inspired by Chain-of-thought and Self-consistency, connects
psychology and LLMs. Didolkar et al. [31] study metacognitive capabilities of LLMs in mathematical problem solving,
both on GSM8K and on the harder MATH problems [49]. First, the model is prompted to find a skill name for each
problem instance in the dataset. For 7000 instances of GSM8K, 500 skill names were found by the model. Next, these
500 names are clustered down to 22 skills. They find that by using the names of these 22 skills in Chain-of-thought-like
prompts, more problems are solved than with standard Chain-of-Thought/Self-consistency/PAL prompts. Examples of
the 22 skill names are multiplication-and-addition, basic-arithmetic, subtraction, and algebra. Interestingly, the authors
find that the skill exemplar repository that is trained on a strong model (GPT-4), also down-translates to a weak model
(GPT-3). The performance of the weak model benefits from the skill-name-enhanced prompts.

Metacognitive reasoning with LLMs is still in its early stages.
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4.3 Research Agenda

At the end of this discussion, we list promising topics for future work. Reasoning with LLMs is an active field of research.
It brings together elements of symbolic reasoning, connectionism, natural language, autonomous agents, affective
reasoning [13] and metacognition. First we discuss topics for the field of LLM-reasoning itself, then we discuss more
general machine learning topics that are important for progress in LLM-reasoning, and finally we discuss more longer

term, fundamental topics.

o Implicit Control—Search control beyond greedy search is often implemented as an external reinforcement learning
algorithm. Is it possible to incorporate the control stage of the reasoning pipeline into one static prompt?

o Inference-time finetuning—Can we improve performance further by augmenting finetuning with inference-time
reasoning results, as done by [54, 96, 147, 163]? Can we integrate reasoning and finetuning [23, 33, 46]?

o Code—Progress in reasoning using formal languages and computer code has been quite promising. GitHub
Copilot is a success. Further integration of LLM-reasoning with software engineering tools is a promising area of
research that can have a large practical impact on how software is written.

o Grounding—Reasoning in LLMs has been successfully applied in autonomous agents, robotics, and games. A
challenge is the grounding of the reasoning process in the environment. How can we help LLMs to actively find

new information when the reasoning outcome is uncertain? Is the future reasoning-LLM a search engine [137]?
Generic topics in machine learning that also influence prompt-based reasoning research are:

o Benchmarks—Progress in LLMs depends on the availability of the right benchmarks. As the field has progressed
beyond math word problems, other benchmarks become prevalent, with more difficult and diverse tasks.

o Faithfulness—Our theoretical understanding of prompt-based reasoning with LLMs is incomplete. The research
on faithfulness highlights one example of our lack of understanding. In general, more insight into the working of
multi-step in-context learning in LLMs is dearly needed.

o Small language models—Efficiency is an important element for wide adoption of language models. Important
topics are distillation of reasoning to small language models and an understanding of scaling laws. Reinforcement

learning approaches [117] can improve the efficiency of the finetuning/reasoning pipeline greatly [33, 46].
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e Few-shot Reinforcement Learning—Small reasoning problems can be solved with few-shot in-context learning.

Can we solve larger sequential decision processes, reducing the sample complexity in reinforcement learning?
For longer term future work, the following more fundamental questions are important:

e Symbolic and Connectionist Computation—How can we further improve LLM-reasoning: how can LLMs benefit
from symbolic reasoning prompts and how can LLMs help ground symbolic reasoning in language?

o Metacognition—Much of the research into reasoning guides the model how it should solve a problem. Is it helpful
to introduce named concepts for different kinds of reasoning, such as metareasoning [42]? Can the model find
these concepts by itself [46]?

5 CONCLUSION

Prompt-based in-context learning is an efficient machine learning method, requiring no parameter updates to the LLM.
While achieving good performance on language tasks, performance on reasoning tasks was lacking. Reasoning tasks,
such as math word problems, are typically solved in a step-by-step fashion. Recently prompts have been developed that
guide an LLM to “think step by step” (Chain-of-thought), and to evaluate and verify the step results. The performance
of reasoning with LLMs has improved greatly, and the field has progressed beyond math word problems. Together,
the surveyed methods allow the LLM to follow high-quality multi-step reasoning chains. Python code or other formal
languages have been used successfully to reduce the error in reasoning steps. Also, in the field of autonomous agents
and robotic action, good performance has been achieved by grounding reasoning answers in the environment and the
physical constraints of robotic movement.

For complex reasoning tasks a large number of reasoning steps may be generated. To control the size of the reasoning
space dynamically, external scaffolding algorithms can be used. Often, variations on search algorithms are used, and
especially reinforcement learning. The symbolic and connectionist Al traditions come together in reasoning prompts and
search algorithms that help LLM neural networks solve natural language math word and related problems. Inference-time
reasoning results can be used to augment finetuning, in a feedback loop.

LLMs hallucinate and suffer from bias, and their use poses different ethical dangers. In multi-step reasoning meth-
ods, self-verification methods have been developed to reduce error-accumulation, yet ethical dangers may remain.
Additionally, retrieval augmentation methods ground LLM output directly in sources such as Wikipedia.

Among the most popular reasoning benchmarks in this survey is GSM8K, which contains 8500 grade school math
word problems. With LLMs such as GPT-3, reasoning approaches show an improvement of 20-50% points over standard
prompting methods, and some even more. The success of reasoning with LLMs has attracted more applications, and
with them, benchmarks are diverging.

The field of reasoning with LLMs is quite new, and theoretical understanding is lacking in important areas, such as
faithful reasoning (models may sometimes find the right answer for the wrong reason). There may be more opportunities
for efficiency gains by integrating the training of reasoning models, using reinforcement learning. Although prompt-
based learning allows few-shot learning at inference time, the computational needs of LLM pretraining and finetuning
are still high, hence the interest in small language models. Reasoning skills that work in large models can often be
distilled to small models.

Human thought is capable of metacognition, we can think about our thinking process. Many of the names of the
approaches in this survey suggest a link to metacognition (Reflexion, Self-refine, Self-improvement, Inner-monologue).
The first preliminary experiments of language models that reason about their reasoning skills have appeared.
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LLM-reasoning is an active field of research that shows great progress. Based on current limitations and open
questions we provide a research agenda highlighting opportunities for further progress with reinforcement learning,

implicit control, inference time finetuning, and small language models, amongst others.
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