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Abstract. Exploration is crucial for learning in sparse reward environ-
ments such as continuous 2D Navigation or Communicative Navigation.
The increased difficulty of multi- over single-agent tasks stems mainly
from the increased number of entities requiring coordination and coop-
eration between each other. To improve cooperation during the explo-
ration phase, we introduce an adaption of the Count-Based method that
works centralized, containing all agents’ information instead of decen-
tralized. Moreover, we tune a hash function (SimHash) to reduce the
high-dimensionality of the continuous navigation environment. With our
method, we were able to be cut down training time by at least half.

Keywords: Multi-Agent Reinforcement learning · Exploration · 2D Nav-
igation

1 Introduction

Learning can be associated with exploration and exploitation. Exploration refers
to gaining new information and focusing on long-term gains. Exploitation utilizes
current information to maximize short-term benefits. Efficacious exploration is
crucial, especially in environments with sparse reward settings. The agents in
these environments, with random exploration, barely achieve the tasks and re-
ceive learning signals, which is known as the sparse reward problem.
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Fig. 1: Multi-agent environments with
sparse reward settings: (a) 2-Agent Nav-
igation, (b) Communicative Navigation.

Figure 1 shows two 2D navigation
environments with two agents and
sparse reward settings. In the 2-Agent
Navigation task, agents need to co-
operate to cover both landmarks si-
multaneously. For the Communicative
Navigation task, the speaker guides
the listener towards the target land-
mark by uttering a communication
signal. In both tasks, agents receive
a learning signal only when the land-
mark is covered.



The most common approach to deal with a sparse reward is by introducing an
intrinsic reward as a bonus to encourage the agents to explore. For single-agent
environments, this has been done extensively [21,26,27]. Since intrinsic reward
methods work well in single-agent problems, we are interested in their perfor-
mance in the multi-agent domain. Multi-agent reinforcement learning (MARL)
has intrigued the interest of many researchers in recent years because many
real-world applications are naturally modeled as multi-agent learning problems,
such as team sport [11], multi-robot control [33], and autonomous vehicles [25].
Contrary to a single agent, cooperation is required to explore an environment
efficiently with multiple agents.

To encourage the cooperation between agents, Jaques et al. [8] and Wang et al.
[35] strengthen team coordination and communication by encouraging agents to
choose actions with more social impact. Compared to their methods that focus on
cooperation, we present an exploration method that encourages agents to explore
the environment and collaborate with teammates simultaneously. Inspired by
the centralized training method [14], we adopt a single-agent intrinsic reward
method, Count-Based to Multi-Agent Count-Based (MACB), which considers
the information of all the agents for counting. The idea behind the Count-Based
method is that agents that can visit more different states in a limited time have a
higher chance to find an optimal policy. By counting the occurrences of the joint
observations and actions of all agents, the MACB method encourages the agent
to visit the states that are new for itself and new for its teammates and therefore
achieves simultaneous exploration for both environment and cooperation.

However, all joint observations and actions may only occur once because of the
continuous state and action space, making it impossible to determine which state
is relatively novel based on counting methods. To solve this problem, we consider
using a hash function (SimHash) [32] to map similar state-action pairs to the
same hash code before counting.

We evaluate our method with 2-Agent Navigation and Communicative Navi-
gation, which are fully observable and partially observable, respectively. Our
results show that the MACB method can help the agents receive the learning
signals faster and therefore decrease the number of training episodes that the
agents need to master the task by at least half. We also show that our method
is easy to implement with existing multi-agent learning algorithms.

2 Related work

For simple RL problems, like MountainCar or CartPole, the basic exploration
strategies guarantee finding the optimal decision [12,36]. The ε-greedy method
[16,34] uses a probability of ε to randomly select an action for exploration and a
probability of (1− ε) to choose an optimal action. Instead of choosing a random
action with a certain probability, the noise-based methods [36] add random noise
to action or parameter space directly [4,24]. Random exploration is easy to apply,
but it is the least efficient strategy [15,33].
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Intrinsic reward strategies are commonly used in hard to explore environments
where the agents barely receive learning signals. The intrinsic reward strategies
provide bonus rewards as learning signals to the agents through other crite-
ria and therefore boost the progress of learning. Some studies [2,23,28] use the
prediction error of different feature spaces to encourage the agents to visit the
uncertain parts of the environment. Variational Information Maximizing Ex-
ploration (VIME) [6,17] encourages the agents to visit the states, minimizing
the uncertainty of the environment dynamics distribution. Count-based meth-
ods such as MBIE [29] and MBIE-EB [30] encourage the agent to discover novel
states using the state and action count.

Computer scientists took some more RL-related inspiration from the field of
psychology [37] by introducing intrinsic rewards in order to encourage cooper-
ative exploration in multi-agent problems. In Jaques et al. [8], the agents are
encouraged to select the action which can influence the behavior of the other
agents the most. The influence is calculated by how much the selected action
can change the distribution over other agents’ next actions. In Wang et al. [35],
the agent is encouraged to visit the states where that influence the transition
distribution of other agents the most. Iqbal et al. [7] use a hierarchical policy
where the top-level agent chooses the best among five intrinsic reward functions,
and the low-level agents follow this bonus to learn.

In the environments with continuous state and action space, some extensions
of the Count-Based method in order to solve the high-dimensional state and
action space problem include [1,20], where they propose using a density model
to generate pseudo-counts and Tang et al. [32], where they use a hash function
to decrease the dimensionality. Instead of the hash function, they also propose a
learned hash model (an autoencoder [9,19]) to extract features from the state and
reduce the dimensionality. Besides autoencoders, a convolutional neural network
that can recognize the pattern of high-resolution images to solve classification
tasks can also be used to extract the features [10].

3 Background

We consider an extension of MDP [31] called Markov Games (MGs) [13] to
model the MARL problems. For an N agent RL problem, MGs are defined by a
set of states S for all agents, sets of actions A1, ..., AN and sets of observations
O1, ..., ON for each agents. The state transition function P (st+1|st, xt) considers
actions from all the agents xt = (at1, ..., a

t
N ) and the state st is the concatenation

of the observations of all the agents st = (ot1, ..., o
t
N ). We consider the cooperative

tasks where all the agents receive the same reward rt = R(st, xt). Agents aim to

maximize the expected reward R =
∑T
t=0(γtrt), where γ controls the effect that

future rewards have on current decisions.

Centralized Critic Algorithm (MADDPG). The centralized critic tech-
nique is used to solve the non-stationarity problem in MARL [5,22]. The prob-
lem is that all individual policies continuously change during training, making it
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impossible to explain the rewards received by each agent with their policies. The
multi-agent deep deterministic policy gradient (MADDPG) [14] algorithm uti-
lizes the information from other agents when training the action-value function
(centralized critic) but only uses the local information when choosing actions
(decentralized actor). Since each agent knows the information of other agents
with a centralized critic, it can explain the changes of rewards caused by other
agents. Specifically, each agent i has its own centralized action-value function
Qi(st, xt|θQi) which considers the states and actions from all the agents and
aims to minimize the loss function:

L(θQi) = Est,xt,rt,st+1 [(Qi(st, xt|θQi)− yt)2], (1)

where

yt = rt + γQ̄i(st+1, µ̄1(ot+1
1 ), ..., µ̄N (ot+1

N )). (2)

The Q̄µi is a copy of Qµi that slowly updates towards the critic. Each agent has
its own actor µi(oi), which only considers its local observations oi. The gradient
of the policies is given as:

5θµi J(θµi) = Es∼pµ,x∼µ[5aiQi(s, a1, ..., ai, ..., aN )|ai=µi(oi) 5θµi µi(oi)]. (3)

Count-Based Exploration. The MADDPG method adds random action noise
to achieve exploration. When an environment has a sparse reward setting, ran-
dom exploration is the least efficient strategy and may cause the agents to re-
peatedly explore areas they have been before.

Instead of requiring the agents to complete a task, intrinsic reward methods
give a bonus to the agents based on other criteria, such as visiting new states
or gathering effective information. When training the policy, a new reward r′t is
used to update the action-value function. It includes an extrinsic reward rt from
the environment and an intrinsic reward r+t [36]:

r′t = rt + βr+t (4)

where β is the bonus coefficient that balances exploration and exploitation. The
Count-Based exploration strategy uses the state-action count to encourage the
agent to visit new state-action. At the time t, the bonus r+t equals the inverse
square root count of the state-action pairs:

r+t (st, xt) =
1√

n(st, xt)
(5)

where n(st, xt) is the number of times this state-action pair has occurred before.
With the inverse count bonus, the agent is encouraged to visit the less-visited
states. The count is stored in a tabular C.
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4 Method

4.1 Multi-Agent Count-Based

The simplest way to adapt Count-Based to the multi-agent domain is assigning
each agent i its own count table Ci that uses its local information n(oi, ai) for
counting. However, the agent may only focus on individual exploration by using
the local information and neglect the search for different ways of cooperation
with its teammates.

Inspired by the centralized training method, we propose a Multi-Agent Count-
Based (MACB) strategy, which takes the joint observations and actions of all
the agents n(o1, ..., oN , a1, ..., aN ) for counting and all the agents share a count
table C. The joint observations unify all agents information in one central place,
allowing cooperation by simultaneously exploring the environment. Sharing a
count table can keep the exploration progress of all agents consistent, which
helps them achieve the same learning process with the same amount of training.

However, if the environment is with continuous state and action space, all the
joint observations and actions will only appear one time. The Count-Based
method becomes meaningless if we cannot tell which joint is less visited. This
further causes higher storage memory and searching time problems with the
count table.

4.2 SimHash Function

Learning from [32], we utilize the SimHash [3] function to discretize a concate-
nated state-action pair s||x into a k length hash code in the form of {−1, 0, 1}k,
and use the hash code for counting. The main idea is to map similar state-action
pairs into the same hash code. The SimHash function φ(s||x) discretizes the
state-action by the angular distance:

φ(s||x) = sgn(A · s||x) ∈ {−1, 0, 1}k, (6)

whereA is a k×D matrix with i.i.d. entries sampled from a Gaussian distribution,
where D is the size of the state-action s||x and k is the length of the hash code
which controls the granularity. To demonstrate how the SimHash function maps
similar states into the same code, we randomly draw 2000 points in range (−1, 1)
and show the grouping results based on their position with k = 8, 16, 32. Figure
2 shows how the SimHash function groups 2-dimensional points angularly. With
a larger k, the hash code is longer, and fewer state-action pairs map to the same
code. If the hash code is too short, useful information can be lost, which can
affect the learning process negatively. Therefore, a suitable k needs to be chosen
for optimal results.

After decreasing the scale of state-action pairs using the SimHash function, we
can use the corresponding hash code in the MACB strategy. The intrinsic reward
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(a) 2000 points (b) k = 8 (c) k = 16 (d) k = 32

Fig. 2: Using a SimHash function to group 2000 points with k = 8, 16, 32. Points
mapped to the same hash code are grouped in the same color.

is calculated by:

r+t (st, xt) =
1√

n(φ(st||xt))
(7)

The pseudo-code of MACB with the SimHash function is shown in Algorithm
1. We update the count of a joint state-action pair in table C after collecting
a transition and calculate the new reward after sampling a random transition.
The MACB strategy may fail if we update the count after sampling a transition
because this transition can be sampled multiple times during training, which will
cause the count to increase too quickly, and the intrinsic bonus will vanish after
the first few episodes. In addition, the intrinsic reward should not be included
in the replay buffer because identical transitions in the replay buffer will have
different rewards, leading to inaccuracies as earlier transitions will not have the
corresponding rewards for the current situation.

Algorithm 1: Multi-Agent Count-based (MACB)

Initialize multi-agent learning algorithm (e.g. MADDPG)
Initialize an empty hash tables C where the new key initialize with value 0
Initialize hyper-parameters β for trade-off and k for hash code granularity
Initialize matrix A ∈ IRk×D with i.i.d. entries sample from a normal distribution
for episode = 1 to M do

for t = 0 to T do
Collect transition (st, xt, rt, st+1) and store in the replay buffers
Compute hash code using SimHash function
φ(st||xt) = sgn(A · st||xt) ∈ {−1, 1}k

Update the count in the table C, n(φ(st||xt)) = n(φ(st||xt)) + 1
for agent i = 1 to N do

Sample a minibatch of transitions (sj , xj , rj , sj+1) from replay buffers
Compute hash code of each state-action pair φ(sj ||xj)
Calculate the new reward r′j = rj + βr+j where r+j = 1√

n(φ(sj ||xj))

Update critic and actor using the new reward r′j
end

end

end
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5 Experiments

We evaluate MACB in 2 different cooperative multi-agent tasks, 2-Agent Nav-
igation and Communicative Navigation [18], as shown in Figure 1. Both of the
environments are 2-dimensional with a continuous state and action space. 2-
Agent Navigation is fully observable, which means that the agent can see all
relevant information that it needs to make a decision. Communicative Naviga-
tion is a partially observed environment, where only the speaker knows which
landmark is the target, and the listener has to decipher it based on the speaker’s
signal.

In both tasks, we set 20 timesteps for each episode. After an episode of training,
we run ten more episodes without random action noise for evaluation. All the re-
sults are smoothed and averaged over three random seeds with a 75% confidence
interval. Our code can be found in Github 1 and we include the hyper-parameters
for the learning algorithm in Appendix A.

5.1 Performance in the fully observed environment

Figure 3a shows the average success rate of MADDPG with and without MACB
on the partially observed 2-Agent Navigation task. Without the help of MACB,
MADDPG learns gradually over episodes and fully grasps the problem at around
4×104 episodes. All 3 MACB variants accelerate learning and reach success rate
convergence earlier (2 at 2 × 104 and 1 at 3 × 104 episodes). However, if we
continue training after convergence, the success rate gradually decreases, which
can be addressed by using Early Stopping.

(a) Success rate (b) Number of collisions

Fig. 3: (a) The success rate in the 2-Agent Navigation problem with and without
MACB exploration. (b) The number of collisions of DDPG and MADDPG with
and without the MACB method. The MACB method can promote the learning
process and decrease the number of collisions.

Since the environment is already fully observable, the performance of local
[MACB(oi, ai)] vs global [MACB(s, x)] information does not differ much. More-
over, contrary to [32], state-action pair counting improves performance in our

1 https://github.com/JianingWang99/CentralizedCountBased
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experiments. The probable reason for this difference is that [32] applied it in a
single-agent environment. Furthermore, in comparison to [32], where the state-
action pair counting has almost the same result as only counting the state, our
results show that counting the state-action pairs has a better performance. This
may be because there are two agents in the environment and the action infor-
mation is more important than in a single-agent environment.

We compare the accumulated number of collisions between DDPG and MAD-
DPG with and without MACB in Figure 3b. According to [14], the MADDPG
agents only have half of the number of collisions than DDPG agents, but our
result shows that the number of collisions of the MADDPG is more than that of
DDPG. However, after applying the MACB strategies, the accumulated number
of collisions vastly decreases. These results indicate that the MACB exploration
can help the agents find the optimal cooperation strategies within fewer episodes,
and in turn, the total number of collisions decreases.

5.2 Performance in the partially observed environment

Fig. 4: The success rate of MADDPG
and MACB strategies in the Commu-
nicative Navigation with sparse and dis-
tance reward settings.

Figure 4 shows the success rate of
MACB strategies in the partially ob-
served environment with 2 different
reward settings. With sparse rewards,
the MADDPG agents learn slowly
and only surpasses a 40% success rate
after 4 × 104 episodes of training.
While with the help of MACB(oi, ai)
the success rate increases to around
70% at 4 × 104 episodes, the agents
with MACB(s, x) can reach 100% suc-
cess rate with only 1.5×104 episodes.
Both MACB strategies have the same
β (0.8) and k (512). This underlines
the positive effect of centralization in
partially observed environments.

In the sparse reward setting, the agent requires more time before receiving a
steady learning signal. Distance rewards seem to mitigate this and enabling
instantaneous learning. We can see that the MACB method can reduce the
number of episodes that the agents require to receive learning signals. And once
the agent starts learning, the success rate increases faster than the agent in the
dense reward environment.

5.3 Trade-off between exploration and exploitation

Table 1 concludes the average success rate and the count-1 percentage (sr, c-1)
after 4 × 104 episodes of training with different combinations of β and k. The
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Count-1 percentage reflects how many state-action pairs only appear one time in
the count table. We evaluate using the Communicative Navigation environment.

Without the help of MACB, the MADDPG agents reach a 47% success rate.
With the help of MACB, most of the time, the success rate is higher than 47%
with different hyper-parameters. When k is 32, the success rate just increases
a little with different β values. The results indicate that a hash code will lose
important and relevant information if k is too small, making it slower to learn
the task. We also see that the count-1 percentage increases as k , and when k
is 512, the count-1 percentage converges to 100%, and the success rates surpass
75% in most of the cases.

When tuning k, we can increase the value of k until its count-1 percentage
converges at 100%. When k is too big, the hash function may lose its meaning
and the search time and storage memory becomes high. With a larger value of
k, the agents need to explore more state-action pairs and require a larger β. In
addition, we control β smaller than 1 because we do not want the exploration
bonus to overwhelm the extrinsic reward, as it would lead to the agents only
exploring and never exploiting.

Table 1: The table concludes the success rate (sr) and count-1 percentage (c-1)
of the MACB with MADDPG in the Communicative Navigation with different
ratios of exploration (β) and length of hash code (k).

k
β 0.0 0.05 0.2 0.4 0.8

sr, c-1 sr, c-1 sr, c-1 sr, c-1 sr, c-1

- 47%, - - - - -
32 - 59%, 67% 60%, 68% 56%, 71% 53%, 74%
64 - 72%, 91% 60%, 91% 34%,91% 72%, 94%
256 - 25%, 99% 82%, 99% 43%,99% 81%, 99%
512 - 75%,100% 48%,100% 75%,100% 100%,100%

6 Conclusion

Our work has succeeded in improving the exploration in multi-agent environ-
ments with a sparse reward setting, specifically: 2-Agent Navigation and Com-
municative Navigation (see Figure 1). By centralizing the count table of our
Count-Based method, we have improved cooperation between agents. Moreover,
we have successfully reduced the high-dimensionality of the continuous environ-
ment without losing training-relevant information by applying SimHash. After
tuning its two parameters β and k, we were able to accelerate learning dra-
matically. For future work, there are two interesting paths to pursue. First, it
remains to be seen what other multi-agent tasks our extensions work well on and
how they perform in settings with more than just two agents. Second, solving
the same task solely from an image input. SimHash requires knowledge about
the entities’ position, so an auto-encoder extracting them would be required.
Alternatively, one could utilize a density model to predict the pseudo-counts of
state-action pairs instead of using a table to record the counts directly.
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A Appendix

A.1 Training Details

The networks for actors and critics are with two hidden layers with the size of
400 and 300. The activation function for both actor and critic is ReLU. After
collecting 100 transitions, we begin updating the network parameters at each
time step. An episode consists of 20 time steps. After an episode of training, we
evaluate the algorithms with 10 more episodes without exploration action noises.
All the results are averaged over 3 random seeds. The hyper-parameters used in
the experiments are summarized in Table 2.

Table 2: Hyper-parameters used in experiments
Hyper-parameter Value

Buffer size 106

Batch size 100

Time-step per Episode 20

Learning rate for optimizer 0.001

γ 0.99

τ 0.005
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