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Abstract—With the ongoing energy transition, there is a push
for the electrification of various appliances and the use of
Behind-the-Meter (BtM) smart batteries. In combination with
photovoltaic panels, the carbon footprint and household expenses
can be reduced by intelligently managing the power flow around
the battery. This can be formulated as a sequential decision
making process, where the energy consumption of a residential
household must be minimised by the Home Energy Management
System (HEMS) by intelligently charging and discharging the
BtM battery. Recently, reinforcement learning has been proposed
as an alternative to classical approaches to model the HEMS.
In this work, we have conducted an extensive comparison be-
tween various optimisation algorithms; predominantly from the
reinforcement learning paradigm, but also Mixed-Integer Linear
Programming (MILP) with perfect foresight and an expert sys-
tem. In addition, we propose an extension to the Deep Q-Network
algorithm by incorporating shared state representation learning
over two ensembles, which we refer to as Multi Dynamics- and
Q-Learning (MDQL). We empirically demonstrate that MDQL
outperforms all other approaches by a significant margin, with
the exception of MILP. An in-depth behaviour analysis shows
that there are still gains to be made by MDQL in terms of grid
tariff exploitation.

Index Terms—Battery Dispatch Optimisation, Deep Reinforce-
ment Learning, Home Energy Management Systems, Mixed-
Integer Linear Programming.

I. INTRODUCTION

IN order to limit the rise of the global temperature, electric-
ity generation from renewable power sources (e.g., solar,

hydro and wind) will have to be scaled up significantly. How-
ever, this increase poses as a major challenge for the power
grid, which is often already operating at its maximum capacity.
Subsequently, overloading the grid will occur more frequently
if no further investments are made into the infrastructure.
By investing in smart Behind-the-Meter (BtM) batteries, each
building will be able to locally store its surplus of self-
generated power through photovoltaic (PV) panels, instead of
netting it back into the power grid. Consequently, the load
on the grid will be decreased, and the building reduces its
consumption costs and carbon footprint by maximising its
utilisation of PV-power.

In this work, we consider a residential household equipped
with PV-panels, BtM battery and a heatpump as its only
appliance. Given this, a Home Energy Management System
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(HEMS) [1] is able to control the power flow around the BtM
battery. At each timestep, the HEMS can select the operation
of the battery; charge, discharge or remain idle. This poses an
optimisation problem, where we want to intelligently manage
the power flow such that the PV utilisation and consumption
costs are maximised and minimised, respectively. Moreover,
we can model this as a sequential decision making problem.

There is a gap in the current literature regarding extensively
comparing expert systems and general optimisation
approaches, such as reinforcement learning (RL). Moreover,
the HEMS paradigm lacks a widely accepted problem setting
for benchmarking [2], resulting in the fact that work can not
be compared directly with each other. Altogether, this research
space lacks work that extensively benchmarks algorithms for
HEMS.

In addition, RL algorithms tend to be unstable in this
problem setting, for which we propose a novel extension
to the Deep Q-Network [3] algorithm, which resolves its
instability and can function as the foundation for future work.

Following this, the main contributions of the paper are
three-fold:

• Providing an extensive benchmark study, with the empha-
sis on algorithms from the reinforcement learning (RL)
paradigm. For context, Mixed-Integer Linear Program-
ming (MILP) with perfect foresight and a Heuristic-Based
System are also evaluated on this problem setting.

• Introducing a novel extension to the Deep Q-Network [3]
algorithm, where we utilise shared state representation
learning in order to improve its performance, stability and
sample efficiency. We refer to this as Multi Dynamics-
and Q-Learning (MDQL).

• A novel take on the HEMS problem setting, in the form of
an environment that aims to accurately model a residential
household located in The Hague.

By means of experimentation, we demonstrate that MDQL is
able to outperform all other algorithms, with the exception of
MILP with perfect foresight. A behaviour analysis of MDQL
shows that there are still gains to be made in terms of grid
tariff exploitation.

The remainder of the paper is structured as follows:
Section II contains related work; Section III discusses the
required preliminaries; Section IV describes the problem
setting; Section V contains all optimisation algorithms that are
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included in this benchmark study; Section VI and Section VII
contain the experimental setup and results, respectively; and
lastly, Section VIII discusses the main takeaways along with
future work suggestions.

II. RELATED WORK

HOME Energy Management Systems (HEMS) have be-
come an increasingly relevant research topic due to the

energy transition. The main task is to efficiently manage the
energy flow within a house/building, for instance through
managing the charge and discharge cycles of a smart battery,
Heating Ventilation and Air Conditioning (HVAC) manage-
ment, scheduling household devices and/or predicting future
power demands based on historical data.

For instance, (Mixed-Integer) Linear Programming (LP) [4],
[5] solvers have been proposed to optimise the scheduling of
appliances with a set of defined constraints (e.g., an appliance
must run within the next 12 hours, the smart battery can not
exceed a State of Charge of 13 kWh, etc.). However, these
solvers scale exponentially with the horizon, which makes the
method computationally expensive and quickly intractable. In
addition, a (near-)perfect foresight or accurate forecasts over
the horizon is a prerequisite, which makes it less suitable for
deployment in the real world. Instead, LP can quantify an
upper-bound on the performance and function as a baseline
for other optimisation approaches.

Other work proposes the use of evolutionary algorithms
to optimise the scheduling. For instance, Hu and Xiao [6]
make use of genetic programming to deal with demand
response. A population of candidates can be altered by
repeatedly applying mutation, cross-over and selection to the
population. With every generation, the population converges
closer to an optimum in the search space. The selection after
each generation is based on a hand-crafted fitness-rule (i.e.,
objective function) that incorporates the user-comfort and
costs. Similarly, particle swarm optimisation has also been
applied to this domain, for instance by Lugo-Cordero et al. [7].

Lastly, machine learning techniques have also been proposed
as HEMS. For instance, deep neural networks, which are
optimised by a genetic algorithm, have been applied to
managing the power-flow [8], appliance scheduling [9] or
lighting control [10], [11] in a residential house.

Moreover, reinforcement learning [12] has also been
applied to energy management within a household.
Various papers have been dedicated to HVAC-management
optimisation [13], [14], appliance scheduling [15], [16]
and power generation optimisation [17], [18]. A survey by
Vázquez-Canteli and Nagy [2] provides an elaborate overview
on the work that has been done in the HEMS-domain with
reinforcement learning. The authors make the observation that
it is difficult to compare the algorithms, due to the varying
nature of the problem settings that are being solved over
the papers. There is no mainstream benchmark available to
evaluate a RL-agent against.

III. BACKGROUND

A sequential decision making problem can be formalised
into a Markov Decision Process (MDP) [19] M .

={
S,A, T ,R, p(s0), γ

}
, where S defines the state space (s ∈

S); A is the set of actions (a ∈ A); T is the transition function
which provides a mapping from state-action pairs to states,
i.e.: T : S ×A 7→ p(S); R is the reward function, mapping a
transition to a numerical value: R : S ×A×S 7→ R; p(s0) is
the probability distribution of the initial state of an episode;
and γ is the discount factor.

Given the MDP, the objective of the agent is to maximise
its discounted cumulative reward Gt:t+k, denoted in (1), from
timestep t to t+k on-wards, and doing so will result in solving
the problem that the environment represents.

Gt:t+k
.
= rt + γrt+1 + γ2rt+2 + ...+ γkrt+k

=

k∑
n=0

γnrt+n

(1)

The main idea is that the RL algorithm will estimate Gt:t+k for
a given state or state-action pair. These estimators are referred
to as value functions v and q, respectively. The strategy of
selecting the next action based upon the estimators is referred
to as the policy π of the agent. The value functions are defined
in (2).

vπ(s)
.
= Eπ, T

[
G | s

]
= Ea∼π(· | s), s′∼T (· | s, a)

[
R(s, a, s′) + γvπ(s

′)
]

qπ(s, a)
.
= Eπ, T

[
G | s, a]

= Es′∼T (s,a)

[
R(s, a, s′) + γEa′∼π(· | s′)

[
qπ(s

′, a′)
]]
(2)

Given this, the objective of the algorithm is to obtain the
optimal policy π∗, which makes use of the q- and/or v-value
functions.

IV. PROBLEM SETTING

W ITH the preliminaries discussed, we can now define the
outline of the environment with which we model the

battery dispatch optimisation setting. We consider a residential
household equipped with a smart BtM battery, PV panels,
access to the power grid, and a heatpump as its sole appliance.
The objective is to provide cheap and green power to the
heatpump by intelligently managing the battery power flow.
Moreover, the environment models Shell’s EcoGenie house
which is located in The Hague, and makes use of historical
data for the weather (forecasts) and grid tariff features. We
now discuss the problem setting in its MDP-form, covering
the state space, action space and reward function.

A. State Space

The state space S consists out of features describing the time,
weather (forecasts), grid tariff, battery state of charge (SoC),
and heatpump status. The environment is partially based on
historical data, namely the weather and pricing features are
sampled from a dataset. Specifically, day-ahead market prices
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have been obtained from ANWB Energy1, weather features
and forecasts have been sampled from the National Solar Ra-
diation Database (NSRDB)2 and the ERA5-Land dataset [20],
respectively. For these features holds that we have one trace
available, and subsequently an entry of the dataset will always
be followed by the same next entry. This means that we are
not dealing with a traditional online environment, since it
contains on offline component in the form of these features.
Subsequently, epistemic uncertainty might play a significant
role in this setting since an algorithm will not be able to
continuously sample new transitions from the environment.

B. Action Space

The action space A has been discretised. It consists out of five
actions, where each action corresponds to an operation of the
smart battery. Below are the five possible actions denoted that
a ∈ A can take:

• IDLE: Do not charge nor discharge the battery.
• CHARGE_GRID: Charge the battery from the power grid.
• CHARGE_PV: Charge the battery with the PV-panels.
• DISCHARGE: Deploy battery-power to the heatpump.
• NETTING: Sell battery-energy to the power supplier.

By limiting A to these five discrete actions, the sample
efficiency of the agent will be improved at the cost of
not being able to fully control the (dis)charge rates of the
battery. However, based upon domain knowledge we argue that
operating below the maximum possible rate is only beneficial
under very specific and rare circumstances.

Note that concurrently charging and discharging (i.e., float
charging) is not available, since it severly deteriorates the
battery’s state of health (SoH) [21]. In case DISCHARGE is
not selected, the heatpump power requirements will be met by
drawing power from the grid. This is to ensure that the user
comfort level is maintained at all times. Important to note is
that the heatpump can only receive power from one source
at a time, which means that if the action DISCHARGE is
selected despite the battery having insufficient power to fullfill
the requested power, the power will instead be entirely drawn
from the grid and the effect of the DISCHARGE action will
be nullified.

C. Reward Function

The reward function R consists out of two compnents: (i) the
costs c made over the previous timestep; and, (ii) the deterio-
ration of the battery SoH as a result of performing the selected
action. This deterioration is approximated by considering the
total number of discharge cycles it has endured and the rated
number of discharge cycles set by the manufacturer3. The
reward function is denoted in (3), where λSoH is an importance
scalar for the SoH, κ the cost per percent of SoH, and λw,t

1The day-ahead market prices can be found here: https://energie.
anwb.nl/actuele-tarieven.

2The data viewer of NSRDB can be accessed here: https://nsrdb.
nrel.gov/data-viewer.

3As the battery model, we used the sonnenBatterie10 as a reference. Its
specifications can be found here: https://sonnenbatterie.co.uk/
products/sonnenbatterie-10/.

a scalar for the overall reward. The cost per percent of SoH
is computed by dividing the rated number of discharge cycles
with the cost of purchase.

rt
.
= λw,t

(
− ct − κ · λSoH · SoH∆

)
SoH∆

.
= SoHt−1 − SoHt

(3)

The scalar λw,t is added to the reward function to penalise
the agent when an action was selected that did not change
the battery SoC, thus wasting an action. Its value at a given
timestep t is determined based on (4).

λw,t =

{
m, if at ∈ A \ {IDLE} and SoC∆ = 0

1, otherwise
(4)

V. METHODS

WE now turn our attention to the optimisation algorithms
that are part of the benchmark study. First, we discuss

an expert system in the form of a set of heuristics. Next, the
Mixed-Integer Linear Programming (MILP) solver is briefly
discussed, and lastly, we summarise the reinforcement learning
approaches. The expert system and MILP-solver serve as
baselines and provide context to how well the reinforcement
learning approaches perform. In addition, a lower-bound on
the performance is also quantified in the form of the ‘Idle’-
baseline. This baseline demonstrates what the performance in
the environment would have been, given that there are no smart
BtM battery nor PV-panels present.

A. Heuristic-Based System

The Heuristic-Based System (HBS) is modelled as a chain
of six handcrafted if-statements. These if-statements contain
thresholds regarding PV-production, battery SoC and/or grid
tariff. Moreover, the thresholds are modelled as parameters
which have been optimised through Bayesian optimisation.

The HBS first considers charging the battery with PV-power,
after which it considers discharging its power into the heat-
pump, such that the power consumption of the household will
be minimised. If the current environment state is not beneficial
for charging from PV nor discharging to the heatpump, only
then does the HBS consider charging/discharging the battery
from/to the power grid in case it is beneficial given the current
tariff. If this is also not the case, then the IDLE-action is
selected.

B. Mixed-Integer Linear Programming

Next, we developed a Mixed-Integer Linear Programming
(MILP) solver that is able to determine the optimal sequence
of actions over a horizon, which results in the lowest power
consumption costs. The solver receives the perfect information
of the next h timesteps, which contains the battery SoC,
PV-production, grid tariff and heatpump power requirements.
Providing perfect foresight is not feasible in practice, and this
baseline is instead aimed at quantifying an upper-bound on the
performance that can be achieved in this setting. In order to let
the program take the near future into consideration during the
decision making process, we introduce the execution horizon
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e. With this, the program still solves the first h timesteps, but
only the first e actions are executed in the environment. Thus,
the first h − e states of the next horizon will be equal to the
last h− e states of the previous horizon.

Due to the nature of MILP, where the decision variables
scale exponentially with the horizon h, it is infeasible to solve
horizons of multiple weeks or months at once. Subsequently,
MILP quantifies an upper bound that is tractable given the
time and compute power constraints. In the end, h and e are
set to 12 and 6, respectively.

C. Reinforcement Learning

Lastly, we have benchmarked a set of model-free
reinforcement learning (RL) algorithms from differing
domains. Below, we give an overview of the collection of
algorithms selected for the benchmark, along with our novel
extension called Multi Dynamics- and Q-Learning (MDQL).

Deep Q-Network (DQN) [3]: Online off-policy RL
approach that approximates the q-values with a function
approximator Q. This algorithm has been included since it
is one of the building blocks of MDQL. It computes the
TD-error δ according to (5), in which a target network is
used to compute the target q-values. Here, Q is parameterised
by the weights θ or θ′ for the online and target network,
respectively.

δ
.
= r + γmax

a′
Qθ′(s′, a′)−Qθ(s, a) (5)

Batch Constrained Q-learning (BCQ) [22], [23]: Offline off-
policy RL algorithm that restricts the policy to the action
distribution Gω present in the offline dataset. The discrete
version of BCQ largely follows DQN, with the main difference
being the action selection strategy, where DQN selects the
action greedily. In contrast, BCQ considers the probability of
the behaviour policy derived from the offline dataset, see (6).
The probability of a′ is scaled by the action â that has the
highest probability for s′. Given this, only the subset of actions
that exceed threshold ΦBCQ are considered when taking the
(arg)max. Note that setting τ to 0 or 1 results in Q-learning
or behaviour cloning, respectively.

a′ |Gω(a
′ | s′)

maxâ Gω(â | s′)
> ΦBCQ (6)

However, since we are dealing with a semi-offline environment
(i.e., only a subset of the features are sampled from the
offline dataset), the agent still has to collect its transitions.
Subsequently, we have made some minor adjustments to
the algorithm; we added a replay buffer and ϵ-greedy as
exploration strategy. With this, the agent creates its own
dataset in order to compute Gω .

Proximal Policy Optimisation (PPO) [24]: On-policy
gradient approach that limits the size of the policy update
by clipping the difference between the current and old
policy. Consequently, the training becomes more stable and
it prevents the policy from falling off the cliff. Its clipped
objective function LCLIP is denoted in (7), where Â is the

advantage. Its final objective function also consists out of
a value loss and entropy component to ensure sufficient
exploration.

LCLIP(θ)
.
= Ê

[
min

(πθ(a|s)
πθold

Â,

clip
(πθ(a|s)

πθold

, 1− ϵ, 1 + ϵ
)
Â
)] (7)

In addition, we have also included its recurrent variant; rPPO.
Here, the forward layers have been replaced by LSTM [25]
layers.

Multi Dynamics- and Q-Learning (MDQL). Online off-
policy algorithm that makes use of shared state representation
learning between a set of ensembles to make the learning
more robust. It is an extension to DQN, and learns the
transition and reward dynamics next to the state-action
values. The predictions that MDQL can make are summarised
in (8), where F is the shared feature extractor, Q, D̂
and R̂ the ensembles that learn the q-value, transition and
reward dynamics, respectively. Variable i is a member of the
ensemble, and s∆ the state difference such that s′ = s+ s∆.

Qθ,i

(
Fθ(s)

)
7→ qi

D̂θ,i

(
Fθ(s), a

)
7→ s∆,i

R̂θ

(
Fθ(s), a

)
7→ r̂

(8)

At decision making time, the action is selected based on the
aggregation of the Q-members. As aggregation strategy, we
take the Confidence Lower Bound [26] over the estimations.
Consequently, we penalise actions with high disagreement
between the Q-heads, which should be higher in state-action
regions with sparse datapoints. Thus, we penalise actions
that have high epistemic uncertainty. We also introduce its
recurrent counterpart, rMDQL, where the forward layers in F
are replaced by LSTM layers.

VI. EXPERIMENTAL SETUP

IN this section, we cover the main details and configurations
regarding the experimental setup. All experiments have

been conducted on a shared compute cluster, from which we
requested a compute unit with the following specifications:

• CPU: 1 Intel Xeon Gold 6248 core @ 2.50 GHz
• GPU: 1 NVIDIA Tesla V100 (32GB HBM2 VRAM)

Additionally, we report on the mean and standard deviation
over three replications. Learn curves are smoothed with the
Savitzky-Golay filter, with its implementation taken from
SciPy [27]. The window length is set to 21 and the order
of the polynomial fitted to the samples is set to 4.

A. Environment Configuration

Since we are dealing with a non-traditional RL environment
(see Section IV) due to the presence of three years of historical
data, we have opted to split the data into a train, validation
and test set, with a split of 26:5:5. The training set contains
the first 26 months, while the remaining months are divided
over the validation and test set by alternating between the sets
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when assigning the next month. The reasoning behind this
assignment strategy is to ensure that the validation and test
sets contain roughly the same number of spring, summer, fall
and winter months. See below for an overview of the three
sets:

• Train set: 2017, 2018, {January, February} of 2019.
• Validation set: {April, June, August, October, Decem-

ber} of 2019.
• Test set: {March, May, July, September, November} of

2019.
Furthermore, a training episode takes 1,420 hours (i.e., ∼2
months), irrespective of the action taken by an optimisation
scheme. The RL methods are trained for 100 epochs, where
each epoch consists of 20 training episodes. Subsequently,
each model is trained on 2.8M timesteps. During evaluation,
all five months are included in an evaluation round, where an
episode takes exactly one month. Subsequently, each evalu-
ation round consists of five episodes. The attributes that are
not based on historical data are randomised at the start of an
episode.

Lastly, the reward function is configured such that the
battery SoH-penalty is only applied to the NETTING action,
with its scalar λSoH set to 1. The penalty multiplier m is set
to 1.05.

B. Hyperparameter Configuration

The hyperparameter configuration of each RL algorithm
largely follows the default configuration set by the used
implementation. For DQN and (r)PPO, we used the Stable-
Baselines3 (Contrib) library [28], and for BCQ we used the
author’s implementation which can be found at https://
github.com/sfujim/BCQ. As for MDQL, the majority
of the hyperparameter settings have been copied from DQN.
The remaining settings, such as the ensemble size and learning
rate, have been optimised specifically for MDQL.

A subset of the hyperparameters have been optimised
through grid search. The resulting best found values have been
summarised in Table I.

TABLE I
THE VALUES FOR EACH HYPERPARAMETER THAT HAS BEEN OPTIMISED.
IN CASE A HYPERPARAMETER IS NOT APPLICABLE TO AN ALGORITHM

(I.E., GAE FOR DQN), WE INSERT ‘×’. NOTE THAT THERE ARE NO
LAYERS IN THE Q-ENSEMBLE FOR (R)MDQL, RESULTING IN A LINEAR

MAPPING FROM THE FEATURE EXTRACTOR TO THE ESTIMATED q-VALUES.

Hyperparameter DQN BCQ (r)PPO (r)MDQL

Network arch. [256, 256] [64, 64, 64] [256, 256] F : [1024, 1024]
Q: —

D̂: [256, 256]
R̂: [128, 128]

Learning rate 0.001 0.00001 0.0001 0.0001
Initial ϵ 1.00 1.00 × 0.90
Final ϵ 0.05 0.05 × 0.40
ΦBCQ × 0.10 × ×
GAE × × 0.95 ×
Entropy coef. × × 0.01 ×
Ensemble size × × × 4

VII. EXPERIMENTAL RESULTS

BY means of experimentation, we study how all optimisa-
tion approaches compare against each other, and discuss

an analysis on the decision making process of MDQL.

A. Benchmarks

In this experiment, we evaluate all algorithms against each
other. First, we show the smoothed learning curves on the
validation environment in Figure 1. It shows how MDQL, and
to a lesser extent rMDQL, outperform all benchmarks, with
the exception of MILP. MDQL has an asymptotic learn curve,
while rMDQL slightly drops off after its initial peak at 500k
timesteps. Noteworthy is the curve of DQN, which initially
shows a similar trend as MDQL. However, it then drops off
significantly to the level of the ‘Idle’-benchmark. This is the
result of diverging q-values due to bootstrapping. It is caused
by the fact that the environment returns a negative reward for
almost all actions.
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Fig. 1. Smoothed learn curves on the validation environment. Algorithms
without a learn curve are denoted with the dashed lines. Note that the
parameters of the HBS are optimised on both the training and validation
environment. As the figure shows, MDQL performs the best out of all
benchmarks, barring MILP with perfect foresight (which serves to quantify an
upper bound). Somewhat surprisingly, adding recurrent layers to the feature
extractor results in a measurable deterioration of the overall performance.

Moreover, the difference between DQN and BCQ is note-
worthy. It shows that the offline aspect of the environment
plays a minimal role in obtaining a high cumulative reward. In-
stead, constraining the updates to the data distribution resulted
in a conservative policy, since BCQ only barely outperforms
the lower bound.

Lastly, PPO shows a stable learning curve and obtains
a performance similar to HBS. Notably, PPO seems to not
have settled yet, and more training time might result in
approaching or exceeding MDQL. Its recurrent counterpart
proves to be rather unstable, with the widest error out of all
algorithms. This, along with the performance of rMDQL,
demonstrates that recurrent layers seem to be more sensitive
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TABLE II
METRICS OF EACH METHOD ON THE TEST ENVIRONMENT. FOR EACH METRIC, WE REPORT ON THE MEAN AND (IF APPLICABLE) STANDARD DEVIATION,

WHICH ARE TOP AND BOTTOM PER METRIC, RESPECTIVELY. IN ADDITION, WE HIGHLIGHT THE OVERALL BEST METRICS IN BOLD, WHILE WE ALSO
UNDERLINE THE BEST METRICS EXCLUDING MILP. LASTLY, FOR NETTING, WE ONLY CONSIDER THE REPLICATIONS THAT HAVE NETTED SOME POWER.

Metric Idle MILP HBS DQN BCQ PPO rPPO MDQL rMDQL

PV util. (%) 0.00 64.00 52.63 72.32 50.27 74.73 75.69 76.54 74.01
4.40 13.96 1.74 9.44 12.45 2.67 0.03

Montly costs 89.07 79.87 83.13 82.35 86.49 82.99 82.72 80.78 81.92
0.29 0.52 0.09 0.53 1.17 0.30 0.57

Cum. reward -445.34 -400.69 -417.89 -414.35 -436.94 -418.24 -421.55 -405.76 -413.84
1.29 1.98 0.61 1.69 7.93 1.06 3.64

Consumption
No. MWh 8.73 8.38 8.45 8.37 8.48 8.35 8.35 8.35 8.36

0.02 0.07 0.01 0.04 0.05 0.01 0.01
Costs 445.34 399.59 415.65 411.77 433.51 414.96 413.62 403.97 409.75

0.01 2.56 0.31 2.66 5.84 1.48 2.91
Mean tariff 0.051 0.048 0.049 0.049 0.051 0.050 0.050 0.048 0.049

0.000 0.000 0.000 0.000 0.001 0.000 0.000

Netting
No. kWh 0.00 3.96 0.00 0.91 16.66 0.42 0.00 0.86 3.01

0.00 1.28 6.13 0.59 0.00 0.67 1.40
Profits 0.00 0.24 0.00 0.04 1.06 0.02 0.00 0.05 0.16

0.00 0.05 0.39 0.03 0.00 0.04 0.08
Mean tariff — 0.061 — 0.050 0.064 0.042 — 0.057 0.053

— 0.001 — 0.000 0.002

in terms of hyperparameter settings. Moreover, the benefit
also seems to be underwhelming, which can be attributed to
the fact that S already provides weather forecasts for the near
future.

Next, we take the best weights of each algorithm and
evaluate them on the test environment, from which we denote
a set of metrics in Table II. Noteworthy is that no method
makes extensive use of the NETTING action. The action is
selected in rare occassions, mainly when the grid tariff is
relatively high. It demonstrates that only with high tariffs it is
possible to overcome the battery SoH-penalty. This behaviour
indicates that it is not cost-effective to use the battery, since
the operating costs outweigh the return. To solve this, cheaper
and/or more durable batteries as well as higher grid tariffs
seem to be necessary to reach and surpass the crossover point
in order to make NETTING worthwhile.

The available power is instead consumed by the heatpump.
Compared to the ‘Idle’-baseline, all other methods consume
less power from the grid, which can accumulate up to 0.5
MWh’s over the five test months. MDQL and PPO consume
the least amount of MWh, closely followed by MILP despite it
obtaining the highest cumulative reward. Overall, the methods
are able to save up to nine euros each month.

Interestingly, all methods have a PV-utilisation below 80%.
This can be explained by the fact that the battery is only able
to perform one action at a time, so achieving a PV-utilisation
of 100% and having a high cumulative reward is extremely
difficult, if not impossible. It would mean that in order to
achieve this, the battery must charge continuously during
daytime, and is only able to discharge during nighttime. This
in itself is not cost-effective, since the general trend of grid
tariffs have shown to be higher during daytime than nighttime.
So instead, it is optimal to sometimes waste PV-power. For

instance, MILP has one of the lowest PV-utilisations (64%)
and a higher grid consumption than MDQL, and makes up for
this by exploiting the grid tariffs to a greater extent.

B. MDQL Decision Making Analysis

In order to analyse the behaviour and reasoning of the agent,
we have plotted one week from the test environment in
Figure 2. During this week, the agent mainly charges the
battery via the PV panels. As the figure shows, the majority
of the available PV power has been covered by the agent.
Then, this power is consumed by the heatpump in the hours
where there is little to no PV radiation. In addition, the agent
sometimes opts for a quick charge from the grid at midnight,
possibly since the grid tariffs are often relatively low during
that point in time. Unfortunately, these drops in tariff are not
fully exploited. For instance, the agent does not opt to charge
the battery during the low tariff at the end of the 6th of July,
despite the battery being nearly depleted. Another example
would be at the start of the 2nd of July, where the drop should
have been used to charge the battery.

VIII. DISCUSSION

IN this work, we have benchmarked a set of optimisation
algorithms on the battery dispatch setting, with a focus

on reinforcement learning (RL) approaches. In addition, we
propose Multi Dynamics- and Q-Learning (MDQL), which
is a novel extension to the Deep Q-Network algorithm by
sharing state representations between q-, dynamics- and
reward-approximators for weight regularisation.

Based upon the experiments, we demonstrate that the RL
approaches fall short of Mixed-Integer Linear Programming
(MILP) with perfect foresight, which quantifies an upper
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Fig. 2. MDQL decision making over one week in July. It consists out of four
plots, from top to bottom: the reward signal, PV radiation in kWh, grid tariff
in C/kWh and progression of the battery SoC in percentages. Moreover, the
background color denotes the action that has been selected at that point in
time. As the figure shows, the agent tries to maximise its PV-utilisation, and
deploy this power during nighttime.

bound on the performance4. Among the RL algorithms,
MDQL obtains and settles to the highest cumulative reward.
Noteworthy is how recurrency introduces instability and/or
an overall worse performance. This instability is also present
in DQN, where it falls off the cliff at 500k timesteps, after
which it settles to the performance of the ‘Idle’-baseline.
Overall, PPO, MDQL and rMDQL obtain asymptotic learn
curves, and are able to match or exceed the expert system.

A decision making analysis of MDQL shows that the strat-
egy consists of maximising the PV utilisation, and deploying
it to the household outside sun-hours. In addition, the battery
is often charged from the grid at midnight since the power is
relatively cheap at that point in time. However, the analysis
also shows that there are still gains to be made by exploiting
the spikes more effectively, as is demonstrated by MILP. In
the current problem setting, this can be at least 1 euro every
month, but with higher grid tariffs the potential savings will
become more significant.

Moreover, the lack of NETTING shows how the battery
SoH penalty is too severe to overcome. It indicates that
the current setup is not cost-effective in order to use the
NETTING action. Cheaper batteries and/or higher grid tariffs
might be required in order to overcome the cost of purchase.

One of the main future work suggestions is regarding
the MILP baseline. Currently, MILP has access to the perfect
information, resulting in an unfair comparison against the
other approaches. In addition, a set of constraints have been
imposed on MILP due to its computational properties. This
does raise the question as to how its performance would
be with less restrictive constraints and making its decisions
based on forecasts or historical data.

Other possible future work directions could lie in improv-
ing MDQL by utilising the learned transition- and reward-

4Note: this is not the absolute upper bound, due to a set of constraints (time
budget, limiting the horizon) that have been imposed on MILP.

dynamics for decision-time planning. Subsequently, MDQL
will become model-based, and we believe that planning at test-
ing time should result in performance improvements. Another
important aspect to investigate is the computational costs of
the algorithms from the differing domains in case of real-world
deployment. In general, RL poses to be a promising approach
to battery dispatch optimisation, due to its low deployment
costs compared to MILP and overall performance.

Lastly, more accurate/realistic battery dynamics and state
of health approximations might result in a more nuanced
perspective of discharging to the power grid (i.e., NETTING)
or to the household, as it has been shown that it is not cost
effective in the problem setting to take the battery lifespan into
consideration due to its cost of purchase.
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[20] J. Muñoz-Sabater, E. Dutra, A. Agustı́-Panareda, C. Albergel, G. Ar-
duini, G. Balsamo, S. Boussetta, M. Choulga, S. Harrigan, H. Hersbach
et al., “Era5-land: A state-of-the-art global reanalysis dataset for land
applications,” Earth system science data, vol. 13, no. 9, pp. 4349–4383,
2021.

[21] J. Wang, P. Liu, J. Hicks-Garner, E. Sherman, S. Soukiazian, M. Ver-
brugge, H. Tataria, J. Musser, and P. Finamore, “Cycle-life model for
graphite-lifepo4 cells,” Journal of power sources, vol. 196, no. 8, pp.
3942–3948, 2011.

[22] S. Fujimoto, D. Meger, and D. Precup, “Off-policy deep reinforcement
learning without exploration,” in International conference on machine
learning. PMLR, 2019, pp. 2052–2062.

[23] S. Fujimoto, E. Conti, M. Ghavamzadeh, and J. Pineau, “Bench-
marking batch deep reinforcement learning algorithms,” arXiv preprint
arXiv:1910.01708, 2019.

[24] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[25] H. Sak, A. Senior, and F. Beaufays, “Long short-term memory based
recurrent neural network architectures for large vocabulary speech
recognition,” arXiv preprint arXiv:1402.1128, 2014.

[26] J. Smit, C. T. Ponnambalam, M. T. Spaan, and F. A. Oliehoek, “Pebl:
Pessimistic ensembles for offline deep reinforcement learning,” in Robust
and Reliable Autonomy in the Wild Workshop at the 30th International
Joint Conference of Artificial Intelligence, 2021.

[27] P. Virtanen, R. Gommers, T. Oliphant, M. Haberland, T. Reddy, D. Cour-
napeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright et al.,
“Fundamental algorithms for scientific computing in python and scipy
1.0 contributors. scipy 1.0,” Nat. Methods, vol. 17, pp. 261–272, 2020.

[28] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dor-
mann, “Stable-baselines3: Reliable reinforcement learning implementa-
tions,” The Journal of Machine Learning Research, vol. 22, no. 1, pp.
12 348–12 355, 2021.

Jerry Schonenberg received the B.Sc. and M.Sc.
Computer Science degrees from Leiden University,
Leiden, The Netherlands, in 2020 and 2023, re-
spectively. During this period, he has been active
as teaching assistant for various computer science
courses given at the university. His research interests
include reinforcement learning, computer vision and
natural language processing.

Kapil Mathur was born in Udaipur in the Rajasthan, India, on March 23,
1983. He graduated from the Gyan Vihar College of Engineering and studied
at the University of Rajasthan. Post Graduation from Centre for development
of Advanced Computing. His employment experience included Senior Techni-
cal Officer at C-DAC R&D, Pune, India and Principle IoT & Edge Computing
SME in Shell Technology Centre Bangalore. His specialization in the fields of
High Performance Computing, with the focus on weather forecasting, seismic
data processing and reservoir modelling, along with Reinforcement learning,
IoT & Edge Computing for energy optimization.

Carlos Ros Perez was born in Valencia, Spain. He graduated with a
Bachelor’s degree in Physics from the University of Valencia and an MSc in
Applied Mathematics at Imperial College London. His professional experience
includes a research internship in computational biology at I2SysBio. Currently,
he is working as an AI researcher for power markets at Shell, where he
contributes to projects focused on power dispatch and renewable energies.

Detlef Hohl holds a Master’s degree in chemistry
from the Technical University of Munich and a Ph.D.
in theoretical physics from the Technical University
of Aachen. Before joining Shell in 1997, he was
senior staff member at Forschungszentrum Jülich,
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