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Abstract—While Deep Blue and AlphaGo make it seem like
board games have been solved, there are still plenty of games out
there that are combinatorically similarly complex, yet the rules of
the game make it too difficult for AI to mimic and best us in our
game-play strategies. With Hive we present one such example.
The current methods can barely beat a randomly playing agent.
By applying state of the art methods and trying to improve
them by baking in our human domain knowledge we attempt to
improve upon the current dire state of Hive agents. While our
AI still fails against actual Humans, it has still improved upon
related work.
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I. INTRODUCTION

Creating human-like game playing agents for the board-
games or games we like to play has been done for genera-
tions [1, 2]. These game playing programs become increas-
ingly complex and good at beating us, e.g. Deep Blue[3, 4],
AlphaZero/Go [5, 6] etc.. However, there are only few games
where human world champions have been beaten. Still many
games remain that AI can not properly play, as it requires
years of domain knowledge engineering or millions of dollars
in compute resources (AlphaZero). The state of AI in Hive
leaves a lot of room for improvement (Section II-D), hence
we attempt to improve this by taking a look at the theoretical
background of Hive (Section II). We then attempt to bake
this knowledge into human-like agents via different methods
(Heuristic, MiniMax, MCTS) and compare their performance.

A. Technical Context

Combinatorial games like chess or checkers are played by
two players taking alternating turns playing their move Browne
et al. [7]. Because both players have a free choice to make on
what move to take, the state-space grows exponentially with
the amount of moves. For a simple game like tic-tac-toe, this
exponential growth is counteracted by the small amount of
available moves at every turn, and as such its state-space can
be fully explored. Even more complex games like checkers
have had their optimal path fully explored, and as such can
define the entire game as a draw [8]. However, when increasing
the complexity of the game, this space can easily become too
large to be explored within reasonable time.

For example, in chess, there are on average 40 moves
available at every turn [9]. Adding on the average length of the
game of approximately 80 turns [10], the tree search would

have to explore 4080 ≈ 10128 possible states. One can see this
space is too large to fully explore. As a result, tree-searching
algorithms have to work around searching the entire space
somehow.

Instead of trying to solve the game, we apply Heuristics,
that attempt to make a best-estimation of what the most
likely outcome is of a board-state. Examples of algorithms
using such estimations are Minimax or Monte-Carlo Tree
Search, which both have a different approach to reaching
these estimations. A third, fundamentally different approach
uses machine-learning to reach these estimations. Due to the
increased amount of available computational power, machine-
learning is increasingly being used. As a result, it has also
joined the subject of game-playing programs [5, 6]. To further
boost the performance of these machine-learning approaches,
a mix of tree exploration and machine-learning is typically
used. For example, AlphaZero uses Monte-Carlo Tree Search,
where their neural network decides which branches to take,
rather than it being a fully random choice.

B. Objective

Instead of chess, we will be looking into a different game
combinatorial game, called Hive. While not a lot of research
has been performed on Hive specifically, we can make use
of the existing body of knowledge for chess, and attempt to
apply it to Hive. Creating a game-playing program in itself
is not a challenging problem, but making a program play
well is. However, the term well cannot be easily converted
into a metric. For example, if a new chess-playing program
were to be created, its playing performance can be compared
to existing programs. As Hive does not have many existing
programs, and none that plays it well, this comparison is much
more difficult to make.

In this research, we will explain the thought process behind
creating heuristics for new games. Additionally, we will com-
pare the application of these heuristics to MCTS and Minimax.
Next, we will define metrics which can be used to rank
different game-playing algorithms. Having such a ranking in
place would allow us to compare different algorithms without
having to play every individual version against each other.



Fig. 1: The Hive game after many moves, the two stacks in
the back are yet to be played.

II. HIVE

Hive is, similar to chess, a turn-based two-player full-
information game. This means that, in theory, the same al-
gorithms that are applicable to chess can be applied to Hive.
However, there are some unique properties to Hive which
make it an interesting game to explore further. The first and
most obvious difference is that Hive is not played on a board.
Instead, the tiles with which are used are placed next to
each other, thus creating a dynamically changing playing field.
Additionally, not all the tiles are in the game when it begins.
Both players have a pool of (eleven) tiles, and a turn consists
of either of two actions:

1) Placing a new tile on the board
2) Moving an existing tile to a new location
In total, there are five unique classes of tiles, with each their

unique rules to movement (the rules can be read in more detail
here 1). The ultimate goal of the game is to surround the queen
tile of the opponent. The first person to accomplish this will
win the game.

For our research, we will be using Beekeeper 2 as our game-
engine. This means Beekeeper will keep track of all board
states, generate possible moves, and free all memory whenever
it is done being used.

When doing a tree-search, it is beneficial to know some
properties which heavily influence the search time.

A. Branching factor

Doing a branching-factor analysis gives us one factor which
influences the complexity of our tree-search. To do this, we
can generate random moves for n turns, and plot the average
amount of available moves at each turn. This shows us a trend
of the branching factor during the span of the game.

Figure 2a shows the average branching factor throughout
the game, with the standard deviation at every move. This
indicates that, during later stages of the game, the branching

1https://www.ultraboardgames.com/hive/game-rules.php
2https://github.com/fjf/hive engine

(a) Average branching factor per
turn. Blue area is the standard
deviation.

(b) Performance of the move
generation per turn. Average
taken over 100 turns.

factor stays stable at 60. Thus, the exponential growth of Hive
is approximately twice larger than that of chess, which is
around 30 [9].

B. Generator Performance

A second large influence of the search time is the actual
time spent by the move generator. The trend of time-per
move can be seen in Figure 2b. For Hive, a highly optimized
engine can only generate around 400k nodes per second during
later stages of the game. Combining this with an average
branching factor of 60, doing a full search to depth 4 will
take 604/400.000 = 32.4s. This means that rather than being
able to do a full search to a very high depth, making good
choices on what branches to explore is much more important.

C. Creating Heuristics

For many of the classical games being played by computers,
like chess or checkers, there has been created a large body
of work spanning many years. For a new game like Hive,
this same body of work does not yet exist. There are some
resources available on how to play Hive, specifically catered to
human play [11]. The issue with these strategies are that these
concepts are not directly transferable to an efficient algorithm
identifying them. To name an example, placing two beetles on
top of the Hive near your own queen is good when defending.
However, identifying when you are defending is not something
that can be counted as easily.

As we have no Hive-related work to build upon for cre-
ating heuristics, we have to identify (and implement) them
ourselves. To this end, we adopted an iterative process, empir-
ically evaluating the play of the engine and finding out a way
to improve upon it. While we later on used our heuristics for
both Minimax as well as MCTS, we evaluated our heuristics
exclusively using Minimax. We did this because Minimax
will more clearly show the tendencies of the heuristic, as
it will have no other information to base its decisions on,
whereas MCTS will have the added information of the random
playouts.

Our initial heuristic is simply based on the actual rules of
the game: winning gives you +∞, and losing −∞. The issue
with this was that it would not converge towards winning
states. Essentially, it would play random moves, until it would
by sheer luck find a forced win in ≈ 4 turns. To attempt to
combat this, we added a simple convergence component to our

https://www.ultraboardgames.com/hive/game-rules.php
https://github.com/fjf/hive_engine


heuristic: tiles around the queen. This is likely on of the most
straight-forward heuristic enhancements that can be made to
a Hive engine. It is so straight-forward, that we found other
open-source Hive implementations using exactly this for their
Hive agent 3.

The issue we found does not occur when only bots play
against each other. Instead, when faring up against humans the
problems of this agent quickly surface. After playing a single
game against this agent, the (human) player would know the
agent plays very aggressively, and will place tiles around the
opponents queen as soon as it can. The issue with this was:
it does not identify it is behind in progress of placing tiles
around the queen. This means that, if there are 4 tiles around
the agent’s queen, and two are ready to fill the remaining
two spots, and the agent has the option to either block the
movement of a tile, or place the tile next to the opponent’s
queen, it will always pick the latter. While this behaviour is
obvious when looking at the heuristic is playing with, it is still
difficult to preemptively assess the playing strength of such an
agent.

The next step to attempt to make the agent play more like a
human was to make it prioritize placing new tiles on the board.
It would get a higher positive value the more tiles would end
up on the board. This is easily countable, and as such easily
implemented in the agent.

To attempt to make the engine play a more elegant game,
rather than throwing tiles at the opponents queen until the
game ends, we added the first heuristic component based on
strategy. This component was based blocking of tiles, based
on their relative value. While this relative value has not yet
been completely defined, there are some indications of what
the strongest players think is more important. The queen is
the most important piece, so blocking this is (of course)
helpful. After this, the ant is the most mobile tile which allows
for the blocking of tiles. For the other three tiles, there is
no clear ordering of strength. Instead, they have advantages
and disadvantages based on the state of the Hive, and what
movement options they have. This makes it very hard to give
the other three tiles relative values which are an indication of
their actual importance in the game. In the end, we set the
relative values to 5, 3, 1, for the queen, ant, and rest of the
tiles. Now we have three parts in our heuristic function, we
have to combine them into a single value. For this, we use the
following formula;

h =

P∑
n=0

cp ∗ fp(board) (1)

Where h is the resulting heuristic value, P is the amount
of parts of our heuristic, c is a vector of weights, and f is a
vector of functions which extract a value from the board.

While Formula 1 is not expensive to compute, the problem
comes from assessing the best values for c. The values of these
weights then also need to be optimized, as this is what strongly

3https://github.com/shaw3257/hive/blob/76ed671366f3d844266fd06209d992010bea0b65/
app/public/ai.js#L89

influences the eventual playing strength of our agent [12]. We
will set our initial weights to 10, 1, and 5 respectively, values
chosen by relative importance.

D. Related Work

We are not the first to try to build a Hive-playing program,
nor the first to document it. Multiple projects have attempted
to create a good Hive agent, using various game-playing
algorithms. For example, Barbara Konz [13] created a Hive
program using MCTS. They reported an 80% win rate of their
MCTS implementation against random, where the last 20% of
games ended in early terminations due to turn limit or draws.
They found their game-playing strength to be best when the
UCT exploration factor was set to 100. Lastly, their engine
takes approximately 30 seconds per turn. This makes their
tests very computationally intensive, and, as such, their UCT
parameter is likely good specifically for their low amount of
generated MCTS playouts.

Another group attempted to use reinforcement learning to
play Hive [14]. They had a similar issue to the implementation
described above: running simulations to let the neural network
learn from took too much time. To give an example, to play
200 games, their experiment ran for 14 hours. Of course, with
a complex game like Hive, 200 games is not a large enough
sample size to let a neural network learn how to play.

Tamás Bunth [15] also used reinforcement learning to play
Hive. They used the same strategy as was used in AlphaZero
to train the network how to play: using MCTS simulations
and a pool of players iteratively replacing the worst one. As
they had too many hyperparameters to search, they picked
values that were comparable to that of AlphaZero, and lowered
the amount of MCTS simulations to speed up the training
process. This resulted in their final version to achieve a 71%
win rate against random, where the remaining 29% of games
were draws.

Connor Michael McGuile attempted to create a Swarm AI
for Hive [16]. They compared their AI to a fully random
agent and a true MCTS agent. To speed up their experiments,
they did make some alterations to the game, by using used
randomly initialized board-states, instead of starting from an
empty board. While this alteration might make sense in the
context of a swarm AI, it does remove some complexity in the
game. Additionally, they only allowed for 40 turns to be played
after this initialization. When looking at the average game
analytics for game length, as shown previously in Figure 2a,
this 40 turn limit (or 20 moves), seems to be on the low end.
Additionally, for their MCTS agent, they limited the playout
depth to 13, reducing the amount of time spent generating
MCTS playout samples. Their swarm AI performed equally
well compared to a true MCTS agent, with an approximate
50% split between wins and draws.

Lastly, an AlphaZero-like approach was taken by Danilo
de Goede [17]. They quickly ran into the problem that it
was very computationally expensive to explore all the factors
that come with using deep RNNs. As such, they simplified
the game-rules, and managed to barely outperform the fully

https://github.com/shaw3257/hive/blob/76ed671366f3d844266fd06209d992010bea0b65/app/public/ai.js##L89
https://github.com/shaw3257/hive/blob/76ed671366f3d844266fd06209d992010bea0b65/app/public/ai.js##L89


random agent after four hours of training. In comparison to all
previous work, they did use Elo ratings for a more accurate
representation of the playing strength of their algorithm.

Compared to previous research, our work highlights the
advantages and disadvantages of available metrics for playing
strength, and decide which ones are best to use for our purpose.
We will use Beekeeper 4 as our Hive engine, which is the best
performing engine currently available. Lastly, we compare a
larger set of algorithms to each other and attempt to order
them by playing strength.

III. EVALUATION

This section presents the evaluation of two different tree-
search algorithms, MCTS and Minimax. We will compare the
playing strength of the algorithms to each other, and also
investigate what the impact of some enhancements are on the
playing strength or their respective algorithms. All experiments
discussed below are run on a DAS-5 node [18], featuring dual
8-core 2.4GHz (Intel Haswell E5-2630-v3) processors, with
64GB memory.

A. Metric for Playing Strength

Evaluating the playing performance of a tree-search algo-
rithm is difficult to do, because there are no proven objective
metrics that can be easily measured. For long-standing estab-
lished games, like chess, there exist algorithms against which
a new algorithm can be compared. However, as Hive does not
yet have this luxury, we have to propose a different metric to
assess playing strength.

One possible objective metric is the win-rate versus a fully
random agent: the higher the win-rate, the better the algorithm
would be. This metric has been proposed and used before as an
indication of Hive playing strength [13, 15]. The disadvantage
of this approach is that as soon as a version of an algorithm
starts performing reasonably well, it will win all of its games
against the fully random agent. Especially in Hive, there are
very specific moves that need to be made from a given position
to result in a win. This makes it very difficult for a fully
random agent to generate any kind of advantage, as it has to -
by chance - pick several correct moves in a row. Consequently,
if an algorithms only looks one move ahead, ensuring that it
will not lose immediately, the random agent will likely never
win.

Thus, as an extension on the win-rate, we propose to also
take into account the average amount of moves required to
win. This is useful information, because we expect a better
algorithm to converge quicker towards winning positions on
the board. As a result, having a lower average amount of moves
required to win would correlate to having a stronger algorithm.
This same metric has been used several times before in Hive
implementations [13, 16], allowing us to also compare our
algorithm to other implementations.

Lastly, we can use relative playing strength as a metric.
Instead of comparing all algorithms using some baseline,

4https://github.com/Fjf/hive engine/tree/master/c

Algorithm variant Win-rate Average turns to-win
True MCTS 0.7 60.26
UCB1 c=1.4 0.8 57.5
UCB1 c=100 0.66 53.17
Minimax 0.66 47.0

TABLE I: Win-rate and average game-length for various
algorithm variants. Allotted time set to 1 second per move.

we can make them play against each other, and use wins
against each other as an indication of strength. One issue
with this approach could be that the so-called ”rock-paper-
scissors situations” may arise. For example, assume algorithm
A employs strategy 1, which works very well against strategy
2, used by algorithm B. If strategy 2 works very well against
strategy 3 by algorithm C, and strategy 3 works well against
strategy 1, no objective best algorithm can be declared. Thus,
to be able to determine which algorithm is best, one has to
always play every version of every algorithm against all the
others.

However, as this all-against-all approach is very time-
intensive, alternative ways are strongly preferred, to ensure
timely analysis on algorithm variants. Thus, to reduce the re-
quired evaluation time, and still use relative playing strength as
a metric, we propose to assess the algorithms in a tournament-
setting. Specifically, the algorithms play each other, and have
a rating assigned to them. In our case, as Hive is a two-player
zero-sum game, we can simply use Elo rating [19]. Elo rating
allows for wins, losses, and draws to influence the rating of an
agent. This is beneficial for us, as we can use a fully random
agent as a control-group in the tournament pool. As we expect
the fully random agent to never win a game, its rating will be
lower than all other agents in the pool. However, if a higher
rated agent draws against the random agent, the higher rated
agent will lose rating points, as it was expected to win.

Because it is the simplest and most straightforward metric to
estimate playing strength, we will use the win-rate against ran-
dom, combined with the average amount of moves required to
win. However, if this metric turns out to be not sufficient to still
distinguish between different algorithms’ playing strengths, we
will use Elo-rating instead.

B. Experiments

Our initial experiment matched MCTS up against Min-
imax [20], using the win-rate against random as a metric
for success. MCTS had UCB1 implemented, and we tested
two different values for the exploration constant: 1.4 as the
theoretical optimum [21, 22], and 100 as the empirically found
optimum for Hive [13]. For Minimax we implemented α− β
pruning [23], iterative deepening [24, 25], and transposition
tables [26, 27]. The results of this experiment can be found in
table I.

While this initial result would indicate Minimax is much
more promising to explore, MCTS does not have any heuristics
to base its decisions on. As the performance of our engine does
not allow for many MCTS playouts to be completed, there is
not a lot of information it can base its moves on. Thus, we

https://github.com/Fjf/hive_engine/tree/master/c


implemented two additional enhancements to MCTS: random
playout guidance, and First-move urgency [28].

While the win-rate against a random agent does show very
large differences in performance, it struggles to show smaller
differences. This becomes more and more clear as the average
game-length gets lower, as there is a fixed lower bound for
the game-length. To be able to more clearly identify the
differences in playing strength, we opted into using an Elo-
system for our next experiment with more different agents.

However, such an evaluation has a much higher cost com-
pared to playing against random. For most versions, a game
against random take 50 turns on average, which means there
are 25 turns for the algorithm. With one second per turn, we
only need to wait 25 seconds per sample. By comparison,
to compute an accurate Elo rating, we need to play multiple
games for each algorithm. Ideally, we want to:

1) Match-up all pairs of algorithms.
2) Let each algorithm play both sides of a match-up. While

the analysis on Hive games has shown that there is no
statistical advantage on playing white or black, we are
not sure if this is the case for (all) our algorithms. It
could be that a certain strategy employed by Minimax
strongly benefits having the first, or the second move.

3) Play all match-ups multiple times, because Elo ratings
become more defined after more games.

This as the pairing of algorithms creates an exponentially
growing set of pairs, this will very quickly become too big
a space to fully explore. For us, as we have 5 base versions (2
MM and 3 MCTS), and a random agent, that already gives us
15 ∗ 5 ∗ 2 ∗ 100 = 15000 5 seconds. If we double the amount
of versions from 5 to 10, it goes to 55 ∗ 5 ∗ 2 ∗ 100 = 55000
seconds, a little over 15 hours. Additionally, this assumes every
move will take one second, while we would prefer the agents
to have more time to think. So evaluating a large amount
of versions quickly becomes very expensive, especially if we
want also increase the allotted time.

We initialize Elo to 1500, which is the theoretical initial
seeding value. For this test, we picked the best versions of
our previous tests, and added the two new MCTS enhanced
versions. Meaning, MCTS uses the exploration constant of 1.
Additionally, we gave minimax various amounts of time per
turn, ranging from 0.01 seconds to 1 second.

Initially, the minimax results were very surprising. We
expected the minimax versions to converge towards higher
ratings for versions with higher allocated time per turn. The
actual results showed 0.1s as the highest rated, followed by
0.01s, with the 1s-minimax rated third. We believe this was
caused by shared access to the transposition table, combined
with some randomness of move selection. After removing the
transposition table cross-accesses, we re-ran the experiment to
ensure no interference existed between versions anymore.

The Elo rating results are presented in Figure 3.

515 total pairs of 6 versions, playing each matchup 5 times, and every
matchup gets played from both white as black perspective (2). Assuming
every game takes up all possible moves, it will go for 100 moves.

Fig. 3: Elo rating for different algorithms and different allo-
cated time-shares. Red line shows the initial rating for every
algorithm.

We observe that the minimax versions are ordered slightly
more logically, but the 0.1s version is still rated higher than
the 1s version. Investigating this further, we discovered that
the individual game results show that the 0.1s version drew
less games against the random player during this specific
tournament. As drawing against a significantly lower player
also results in a loss of rating, these results penalized the 1s
version more, resulting in this peculiar ordering of algorithms.

Despite this rather odd ranking, we believe Elo-ratings to be
a better method of comparing a large set of algorithm versions.
However, the exact placement of these versions should not
be taken at face-value. Instead, the rating can be taken as
an approximation of strength. Moreover, we believe that, as
the algorithms strength increases, the variance in the results
decreases, and the Elo rating will become more accurate, as
we expect stronger algorithms to never draw against a random
agent.

C. Optimizing the evaluation function

As described in Section II-C, our initial heuristic compo-
nents are unlikely to be optimal. So, to increase the perfor-
mance of our initial version, we need to do a parameter sweep
to find the best configuration of weights. There are a few
problems with finding these best values for c in Equation 1.
Firstly, to do a parameter sweep, we need to define a lower
and an upper bound. Luckily, as the total heuristic value can
be scaled by a constant, we only need to bother with the
ratio between the different parts. As we can use floating point
values, we do not need to set a large bound, and can instead
use as many intermediate values as we want.

To then find these values, we can define some values within
our bounds, and simply brute-force over all combinations.
However, this will quickly grow to become a large volume
of permutations. In combination with the expensive evaluation
of our agent this becomes infeasible to do within reasonable
time. Instead, we can use a smarter method of parameter
optimization. Our parameter optimization is similar to the
hyperparameter optimization employed for neural-network ar-
chitectures for two reasons: we have a large exploration space,



and the game-results are non-deterministic. Thus, as we will
be using the python framework Optuna [29].

a) Using Optuna: As we have three components to
optimize for, which are represented as floats, we have to tell
Optuna what the search space is for each of our parameters.
The range chosen has to be large enough such that it does not
get influenced by the random initialization of the evaluation
value. As this randomization is in the hundreds of a digit, a
sufficiently large enough range should not have meaningful
random influence. Initially, we simply the range from 0 to 10.
Because the values have relative importance, Optuna should
be able to find a good configuration in here.

To measure the efficacy of any new configuration, we com-
pare it to our base-line configuration. Our initial configuration
set the weight values to: UnusedT iles = 1, Movement = 5,
and Queen = 10.

For Optuna to distinguish between the goodness of two
difference configurations, we will use the win-rate of our
agents, which is computed as follows:

f =

N∑
n=0

r

N

Where r = 0, 0.5, 1 for a loss, draw, or win respectively, and
N the total number of games.

After running Optuna for 100 trials, we can perform a
rerun against these newly accrued values, and let the optimizer
attempt to find an optimum again. This process should identify
if there is a rock-paper-scissors scenario in the parameters,
where it might be impossible to find an optimum.

As Optuna naturally has very spiky parameter values, we
smoothed the parameter values (Figure 4(c,d)) using a 1d
convolution with a 3-wide Laplace stencil [0.25, 0.50, 0.25].
This procedure obfuscates the actual values per trial, but it
illustrates better the overall trend of the values, which is more
important. The win-factor is not smoothed in any way.

Figure 4 shows the Optuna results. To interpret them, we
look for correlations between different parameters combina-
tions with the win factor. Thus, we see in Figure 4c and Fig-
ure 4d that the Queen component of the evaluation function
should not be heavily factored into the eventual evaluation
function. Especially in the rerun, we can see that when the
queen is factored in more (i.e., the parameter value is high in
Figure 4c and Figure 4d), the win factor drops significantly.
This indicates that, for a more effective evaluation function,
we should not use the amount of tiles around a queen as an
indication of board goodness.

Looking back at our other experiments, specifically the eval-
uation of MCTS enhancements (Section III-B), the degradation
of playing-strength after implementing these enhancements
makes sense. Those enhancements specifically looked at pri-
oritizing moves to surround the opponent’s queen, but this is
apparently not the best strategy to employ.

1) Refining the components:
a) Refinement per tile: We can build upon this experi-

ment by further dividing the evaluation function components

(a) Win factor vs. the random
agent.

(b) Win factor of rerun vs. previ-
ous best.

(c) Parameters vs. the random
agent

(d) Parameters of rerun vs. the
previous best

Fig. 4: Example results from an Optuna run attempting to
optimize the three parameters for the Optuna-3 evaluation
function.

per each specific tile. For example, instead of the amount of
tiles around a queen, we count the amount of ants around
a queen. Such finer-grain components might allow a better
evaluation function than the 3-parameters one (which we will
call Optuna-3), because the evaluation function can prioritize
certain tiles with different importance per tile.

However, while Optuna can likely optimize for 15 param-
eters, it does mean we would have to significantly reduce
the variability in the results. Where before we ran 20 game
simulations, we would need more for the 15 parameters, as
the optimizer would have difficulty finding out which of the
parameters influence the win factor if the win factor is very
inconsistent. Additionally, we would have to run more trials,
as our small amount of trials (100), would likely not allow for
Optuna to find the optimal configuration of values.

We do propose a second experiment, where every compo-
nent is split into two, rather than five parts. Specifically, we
make separate components for the ants, because they are the
most mobile of all tiles, and are generally accepted to be the
most powerful tile nearing the end of the game. We rename
this evaluation function Optuna-6.

In Figure 4c, we see a very spiky win-factor for Optuna-3,
which is what we would like to reduce for Optuna-6, where
we have more parameters. To accommodate for our added
three parameters, we also increased the amount of games to
base the win-factor on. Instead of 20 games, we now set
TotalGames = 100, which should reduce the variability in
the results. The amount of trials is kept the same. The results
are presented in Figure 5. Specifically, Figure 5a shows the
win-rate against the best performing parameter configuration
from Optuna-3.



(a) Win factor vs. Optuna-3. Be-
cause the win factors are very
similar together, the blue line in-
dicates 0.5.

(b) Parameters of new run vs.
Optuna-3.

Fig. 5: Result of an Optuna run attempting to optimize the six
parameters for the Optuna-6 evaluation function.

We observe in Figure 5a a huge reduction in the win-
factor variance. Thus, the increased amount of games played
to compute the win-factor is likely useful to optimize the
configuration parameters. Maybe using an even higher count
of games to base the win-factor on would reduce the variability
further, but this comes with the disadvantage of having to run
more samples.

Sadly, we do not see a significant improvement in the win-
factor when splitting our evaluation function components into
two parts. Additionally, from empirically evaluating the play
of the agent, we noticed our best configuration of weights has
a very specific strategy in play: it attempts to block out the
opponents tiles repeatedly until the opponent has no free tiles
left. After this, it would not necessarily converge towards a
win, or attempt to move its free tiles closer to the opponent’s
queen. While this could be a good strategy to increase ones
win-rate when playing hundreds of games against a computer,
this is not necessarily very interesting to play against for a
human.

b) A convergence parameter: To attempt to combat this
newly-learned strategy, we added a convergence parameter
to Optuna-3. This parameter measures the sum of distances
between all the tiles of one player and the opponent’s queen.
This new parameter would hopefully push the minimax im-
plementation to slowly move its tiles closer to the opponent’s
queen. The results for this new function (i.e., Optuna-4) are
presented in Figure 6.

Similar to the previous results, the parameters in Figure 6b
do not seem to clearly converge towards certain values. While
this is somewhat expected behaviour due to Optuna’s Gaussian
optimization method, we do think that, given more trials, the
values would eventually find an optimum. More interesting is
the win-factor, as shown in Figure 6a. The addition of this
additional distance component to the evaluation function very
quickly results in a positive win-factor against the previously
best version.

IV. DISCUSSION

In our attempt to build a highly-competitive Hive agent,
we have tried many different algorithms, with a multitude of

(a) Win factor vs. Optuna-3. Be-
cause the win factors are close
together, the blue line indicates
0.5.

(b) Parameters of added parame-
ter run vs. Optuna-3.

Fig. 6: Result of an Optuna run attempting to optimize the four
parameters for the Optuna-4 evaluation function. All games
played against the best Optuna-3 configuration.

enhancements for each. In this chapter we analyse the current
status of our best agent, and highlight some of the challenges
to be faced to further improve it. We further analyse how the
current agent fares up against humans.

A. The status of the current engine

Currently, the best version of an engine, by a small margin,
is minimax, with the Optuna-4 weight configuration. However,
the playing-strength of our algorithm implementations did not
manage to consistently beat the best existing engines. The
existing engines likely 6 use minimax with a more fine-tuned
evaluation function.

Finally, we evaluated the engine against human players. We
found that our agent consistently outperforms new players,
and seems not to draw as often as our experiments might
indicate. However, when pitted up against stronger players,
the weaknesses of our engine quickly get highlighted, and it
will consistently lose. Whenever a player employs long-term
strategy to the placement of their tiles, the engine will not be
able to recognize this strategy until it is too late. This places
the strength of our best agent somewhere between a new and
an advanced human player.

1) Minimax and its challenges: In general, an engine based
on the minimax approach is only as strong as its evaluation
function.

Our evaluation function - derived from the game rules and
from strategies discussed in ”Play Hive like a Champion” [11]
- assumed that the amount of tiles around a queen correlates
with higher winning chances. However, our in-depth analysis
into the evaluation function used in minimax (see III-A)
showed that our intuition does not hold.

We have further shown that, with more hand-picked proper-
ties extracted from the current board-state, evaluation functions
can be further improved (see section III-C1). These prelim-
inary results indicate that there are many possible ways to
combine the current set of extracted properties of a board state
in a more intelligent way.

6The best Hive-engines are closed source programs.



For example, we ran into the issue that some extracted
values (e.g., how many tiles are not yet placed) are not equally
important throughout the game. However, to be able to have
this (variable) importance shine through in the evaluation
function, we need scaling weights. As doing this for multiple
types of scaling and multiple weights for both the overall
value, and the scaling of the value is a lot of fine-tuning, it is
not suited for our current method of parameter optimization.

Given a large enough set of properties to which we need to
assign variable weights, we believe this might be a good place
to insert a lightweight neural-network. This neural network
can then mix-and-match the weights to find some optimal
configuration. An added benefit is that the neural network is
not limited to linear addition of weights, and can instead make
any arbitrary combination.

2) MCTS and its challenges: The lower-than-expected im-
pact of the number of tiles around the queen as a parameter
also has implications on the working and success of MCTS.
Specifically, it is exactly this game-state property we were
using to base our MCTS enhancements on. For example, the
move prioritization strategy was solely based on how many
tiles are around a queen in a certain board.

This means that, while we did do experiments on First
Move Urgency and move prioritization (see Section III-B), the
current heuristic is not suitable to increase the playing strength
of MCTS. Ideally, we should have used a better prioritization
strategy, which is cheap to compute, and actually increases
the winning chances. However, to the best of our knowledge,
there is no cheap way to compute a game-state property which
can improve the winning chances.

Until such a strategy is found, MCTS enhancements are
difficult to use for two reasons: simulating playouts is ex-
pensive, the current (good) heuristics for Hive are expensive.
In our experience, we have very little playouts to work with
in MCTS, which means the enhancements we have to use
either have to increase the quality of the playouts, or increase
the amount of playouts. Furthermore, the enhancement may
degrade the performance of the playout simulation too heavily.
While this would increase the quality of some samples, the
reduction of total samples would not result in better playing-
strength of MCTS.

V. FUTURE WORK

We believe the main improvement towards creating a
stronger agent is the addition of more separate optimizable
components in the heuristic function.

We currently have a small set of variables which were
optimized for, but many other components can be added to
the evaluation function. For example, specific structures which
are shown to be good [11] can be identified and counted
(e.g., a c-shape with the queen in the center). Alternatively,
using the current turn to change the weights depending on
game progression may benefit the evaluation function (e.g.,
placing tiles is more important in the first 20 moves). As
the optimization strategy will find a close-to-optimal weight
configuration for any amount of parameters, increasing the

amount of ways for the evaluation function could be a benefit
to the evaluation function. Additionally, it might be useful
to use a small neural network which gets fed the current
components of our evaluation function. This neural network
can take a few pre-extracted board values, and output the
final evaluation. Compared to the AlphaZero approach, this is
significantly less computationally expensive, and is expected to
improve the performance of the minimax evaluation function.

VI. CONCLUSION

Letting artificial agents mimic human behaviour to improve
their game-playing strategies has proven a difficult task.

The lack of simple-to-compute moves makes it rather dif-
ficult to create an efficient move-generator. For Go, doing a
move is as simple as setting a bit to 1, and a move is valid
if this bit was set to 0. Where for Hive this is a lot more
expensive.

Compared to MCTS implementations for different games,
we are at least a factor 50 slower in terms of playout sample
generation. Combining this with the high branching factor
inherent to Hive, creating a version of MCTS which works
well becomes very difficult. The same applies to Minimax,
although there the performance limits the depth of the search.

We have also compared multiple metrics for playing-
strength evaluation, and shown the advantages and disad-
vantages for each of them. While the win-rate and average
amount of turns against the random agent is quick to use as
a comparison, it is not suitable when comparing two different
good agents. Even if one agent wins 80% of its games against
another, they might both have the same win-rate and average
turns against the random agent. This makes it very difficult to
compare all agents to each other using this baseline.

Instead, an Elo-based system should be used, where the
strength of an agent is based on which opponents it wins
against. The better the opponent it wins against is, the more
rating points it gets. This is significantly more expensive in
terms of computing power, but it does allow us to create an
objective comparison between a large set of agents. We have
shown here that even though the win-rate against random was
equal for some agents, the rating difference was 200+ points.
Thus, when comparing agents for Hive, win-rate against
random should be used cautiously, as it might indicate two
agents being equal strength while this is not actually the case.

We have also evaluated the engine against an engine trained
using the AlphaZero approach (based on reinforcement learn-
ing and self-play). Although the AlphaZero variant imple-
mentes a slightly simpler version of the game, our version still
outperforms it [17]. However, we expect that more training
and tweaking of the machine-learning variant will also lead to
improvements.
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