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Abstract

Policy makers involve citizens in decision-making processes
to harvest ideas and to build support for policies. Citizens’
feedback should be analyzed quickly and accurately, and au-
tomated methods can assist in this process. Fully automated
methods suffer from two main problems: (1) they require
large labeled datasets, and (2) they work well for known
viewpoints, but not for novel points of view.
We propose HyEnA, a hybrid (human + AI) method, to com-
bine the speed of automated processing with the understand-
ing and reasoning capabilities of humans. HyEnA extracts in-
sights from textual feedback on policy options in the form
of key arguments. We evaluate HyEnA rigorously on three
feedback corpora on COVID-19 relaxation measures. We find
that, on the one hand, a state-of-the-art automated method
only covers about 50% of the arguments found by HyEnA and
achieves less precision than HyEnA, justifying the need for
human insight. On the other hand, HyEnA requires less hu-
man effort but does not compromise output quality compared
to (fully manual) expert analysis, demonstrating the benefit
of combining human and machine intelligence.

1 Introduction
To make decisions on large public issues, such as enacting
measures to combat the COVID-19 pandemic and transition-
ing to green energy, policy makers often turn to the public
for feedback (Lee, Hwang, and Moon 2020; Kythreotis et al.
2019). This feedback provides insights on the public opin-
ion and contains diverse perspectives. Further, involving the
public in the decision-making process helps in gaining their
support when the decisions are to be implemented.

In the face of crises, decisions must be made swiftly.
Thus, the collection of feedback, its analyses, and recom-
mendations for decision making are done under tight time
constraints. For example, when debating whether to relax
COVID-19 measures in the Netherlands, researchers had a
month to design the experiment, collect public feedback,
and make recommendations (Mouter, Hernandez, and Itten
2021). The time constraint limits the amount of information
researchers can look at, potentially painting an incomplete
picture of the opinions. In the scenario above, researchers

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

analyzed data manually, and they could analyze less than 8%
of the feedback provided by more than 25,000 participants.

Argument Mining (AM) (Lawrence and Reed 2020)
methods can assist in increasing the efficiency of feedback
analysis by, e.g., separating strongly argumentative feed-
back from noise and classifying statements as supporting or
opposing a decision. However, applying AM methods for
feedback analysis poses three main challenges. First, AM
methods generalize poorly across domains (Stab et al. 2018;
Thorn Jakobsen, Barrett, and Søgaard 2021). Thus, they re-
quire large amounts of domain-specific training data, which
is often not available. While contextualized representations,
using the pre- or fine-tuning paradigm yield more promis-
ing results (Reimers et al. 2019b), they still rely on large
amounts of data to be effective. Second, although AM meth-
ods can automatically detect logical connections between
comments and policy decisions, they do not compress the in-
formation. That is, they do not recognize whether two iden-
tified arguments describe the same concept, leaving the pol-
icy makers with significant manual labor. Finally, analyzing
a small sample of comments might cause minority opinions
to be ignored (Klein 2012), creating a bias toward popular
(repeated) arguments, which can perpetuate echo chambers
and filter bubbles (Price 1989; Schulz-Hardt et al. 2000).

The key point analysis (KPA) task (Bar-Haim et al. 2020a)
seeks to compress argumentative discourse into unique key
points, which can be matched to arguments. However, syn-
thesizing key points is a significant challenge. Bar-Haim
et al. (2020a) employ domain experts (skilled debaters)
to extract key points. However, such key points are not
grounded in data (public opinion) and are subject to the per-
spectives and biases of the human experts. Further, making
use of a few experts to generate key points defeats the pur-
pose of engaging the public in the decision-making process.

We argue for a joint human-machine approach, taking
advantage of the speed of automated methods and the hu-
man understanding of subtle issues. We propose HyEnA
(Hybrid Extraction of Arguments), a hybrid (human + AI)
method for extracting a diverse set of arguments from a tex-
tual corpus of opinions. HyEnA breaks down the argument
extraction task into argument annotation and consolidation
phases. In each phase, HyEnA employs human (crowd) an-
notators, but supports them via intelligent algorithms based
on natural language processing (NLP). The HyEnA method



is is integrated in a web platform to support the humans in
following the method end to end.

By employing humans, we take advantage of their seman-
tic knowledge to interpret and condense user opinions into
arguments. Further, since HyEnA requires the annotators to
base their analysis on public feedback, the resulting argu-
ments are grounded in data. Through intelligent sampling
and merging techniques, and by resorting to overlapping an-
notations, we combine the judgements from individual an-
notators and incorporate a plurality of perspectives. Auto-
mated techniques augment the manual work to reduce the
overall effort required for extracting arguments.

We evaluate our method on three corpora, each contain-
ing more than 10K public opinions on relaxing a COVID-19
restriction (Mouter, Hernandez, and Itten 2021). We com-
pare HyEnA with an automated approach (Bar-Haim et al.
2020b), which generates key points from the corpus using
a pretrained neural argument matching model. In addition,
we compare the key arguments generated by HyEnA with
insights identified by Mouter, Hernandez, and Itten (2021).

Contributions (1) We present a hybrid method for argu-
ment extraction, that, given a collection of opinionated user
comments, generates a diverse set of key arguments that
summarize the context under discussion. (2) We evaluate
our method on real corpora of public feedback on policy op-
tions. Compared to an automated baseline, HyEnA increases
both precision and coverage of the key arguments produced.
Compared to the manual baseline, HyEnA identifies a large
portion of arguments identified by experts as well as new
arguments that experts did not identify.

2 Related work
We describe closely related works on Argument Mining,
their application to opinion analysis, and methods that aim
to extract key arguments from an opinion corpus.

2.1 Argument Mining
Argument Mining (AM) methods (Lawrence and Reed
2020; Cabrio and Villata 2018) focus on computational anal-
ysis of arguments. They seek to discover arguments brought
forward by speakers and identify connections between them.
AM is a costly and complex process, and it often requires
significant effort by human annotators for reaching moder-
ate inter-rater agreement (Teruel et al. 2018).

The ability to recognize and extract arguments from text is
dependent on the argumentativeness of the underlying data.
Given argumentative texts, popular NLP models are reason-
ably good at recognizing argumentative discourse (Niculae,
Park, and Cardie 2017; Eger, Daxenberger, and Gurevych
2017; Reimers et al. 2019b). Typically, the first step of AM
is to identify the elemental components of arguments (e.g.,
claims ans premises) in text (Toulmin 2003). The combina-
tion of such components forms a structured argument. How-
ever, there is currently no consensus on the exact nature
of such elemental components (Daxenberger et al. 2017).
Nonetheless, a few characteristics have been recognised as
important for recognizing arguments, namely that arguments
(1) contain logical reasoning (Stab and Gurevych 2014),

(2) address a why question (Biran and Rambow 2011), and
(3) have a non-neutral stance towards the issue being dis-
cussed (Stab and Gurevych 2014).

HyEnA is a novel AM method that employs human an-
notators alongside automated NLP models. By splitting up
the argument extraction task into distinct phases, we hope
to take advantage of the diverse perspectives from humans,
while addressing scalability problems through automation.
Because annotators are only given the opinion text, we aim
to achieve better grounding by preserving links between ar-
gument and the original text, all while providing condensed
key arguments useful in analysis.

2.2 Summarization of Arguments in Discussions
Automated methods have been proposed to create a core set
of key points from a large list of individual arguments (Bar-
Haim et al. 2020b). In this paradigm, comments are filtered
by a manually tuned selection heuristic, resulting in a list of
key point candidates (Gretz et al. 2020). The candidates are
matched against all comments, based on a classifier trained
for the argument–key point matching task (Bar-Haim et al.
2020a). Such an automated key point extraction method has
been shown to perform well on the same domain, and be
applicable in cross-domain settings.

We employ a state-of-the-art key point extraction method
(Bar-Haim et al. 2020a) as an automated baseline to com-
pare HyEnA against. We evaluate the performance of these
approaches on a novel domain on COVID-19 measures.

Finally, there exists a body of work on semantic textual
similarity (STS) and Natural Language Inference (NLI). In
these works, models are trained to indicate semantic simi-
larity or logical entailment between two sentences (Reimers
et al. 2019a; Conneau et al. 2017). They have made signifi-
cant impact for general purpose applications (Xu, He, and Li
2018; Zhong et al. 2020). However, for downstream appli-
cation, they often need additional fine-tuning (Howard and
Ruder 2018) in order to perform a task well. They also cap-
ture generic aspects of semantic similarity and entailment,
which may not be applicable to arguments (Reimers et al.
2019a), or conversely overfit to spurious patterns in the data
(McCoy, Pavlick, and Linzen 2019).

3 Method
HyEnA is a hybrid method since it combines automated
techniques and human judgement (Akata et al. 2020).
HyEnA guides human annotators toward the creation of a
list of key arguments (i.e., a list of semantically distinct ar-
guments that describe relevant aspects of the topic under
discussion) from an opinion corpus composed of individual
opinions (i.e., textual comments) on the topic of discussion.

HyEnA consists of two phases as depicted in Figure 1.
In the first phase (Key Argument Annotation), an intelli-
gent sampling algorithm guides human annotators through
an opinion corpus to extract high-level information from
the opinions. In the second phase (Key Argument Consoli-
dation), a new group of annotators merges the results from
the first phase, supported by an intelligent merging strategy,
involving manual and automatic labeling. Through this sec-
ond phase, HyEnA aims to reduce the effect of subjectivity
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Figure 1: Setup of the HyEnA method.

of annotation. The final result of HyEnA is a list of key ar-
guments grounded on the opinions in the corpus.

3.1 Opinion Corpora
Our opinion corpus is composed of citizens’ feedback on
COVID-19 relaxation measures, a contemporary topic. The
feedback was gathered during April and May 2020 using the
Participatory Value Evaluation (PVE) method (Mouter, Her-
nandez, and Itten 2021). In the PVE, participants are offered
a set of policy options and asked to select their preferred
portfolio of choices. Then, the participants are asked to mo-
tivate why they picked certain options (pro stance) and not
pick the other options (con stance) via textual comments.
Pro- and con-opinions together form the opinion corpus.

The PVE collected feedback from 26,293 Dutch citizens
on eight policy options about COVID-19 relaxation mea-
sures. We analyze the feedback on three of these options,
treating feedback on each option as an opinion corpus. Ta-
ble 1 shows the policy options, an example opinion for each
option, and the number of opinions per option. For each pol-
icy option, we use the keyword in uppercase as the policy
(or corpus) identifier in the remainder of the paper.

Table 1: Examples of opinions in the COVID-19 corpora.

Policy option (Corpus) Example opinion # Opinions

YOUNG people may come
together in small groups

Then they can go
back to school (Pro)

13,400

All restrictions are lifted for
persons who are IMMUNE

Encourages inequal-
ity (Con)

10,567

REOPEN hospitality and en-
tertainment industry

The economic dam-
age is too high (Pro)

12,814

The opinions in these corpora are similar to noisy user-
generated web comments, as in Habernal and Gurevych
(2017). Some opinions span multiple sentences and contain
more than one argument. In our experiments, the HyEnA
method is applied to one corpus at a time.

The original opinions were provided in Dutch. To ac-
commodate a diverse set of annotators in our experiments,
we translated all comments to English using the Microsoft
Azure Translation1 service. All experiments are performed
with the translated opinions. Mixing (pretrained) embed-

1https://azure.microsoft.com/en-us/services/cognitive-
services/translator/

dings and machine-translated comments has a minimal im-
pact on downstream task performance (Sennrich, Haddow,
and Birch 2016; Eger et al. 2018; Daza and Frank 2020). Al-
though all experiments are conducted in English, the link to
the original Dutch text is preserved for future applications.

3.2 Key Argument Annotation

In the first phase of HyEnA, human annotators extract indi-
vidual key argument lists by analysing the opinion corpus.
Since a realistic corpus may consist of thousands of opin-
ions, it is unfeasible for an annotator to read all opinions.
Thus, HyEnA proposes a fixed number of opinions to each
annotator. To maximize the coverage and diversity of the
opinions, HyEnA employs NLP and a sampling technique
to select the opinions presented to each annotator.

Opinion Selection Each annotator is presented, one at a
time, a fixed number of opinions. To select the next opin-
ion to present to an annotator, first, we embed all opinion
and arguments annotated thus far using the S-BERT model
(MSBERT ) (Reimers et al. 2019a). Then, we select a pool of
candidate opinions using the Farthest-First Traversal (FFT)
algorithm (Basu, Banerjee, and Mooney 2004).

FFT selects the candidate pool as the f farthest opinions
in the embedding space from the previously read opinions
and annotated arguments (in our experiments, we empiri-
cally selected f = 5). Next, we use an argument quality
classifier trained on Gretz et al. (2020) to select the opin-
ion most clear and connected to the proposal among the five
farthest. In this way, we aim at increasing the diversity and
quality of the opinions presented to each annotator.

Annotation Upon reading an opinion, the annotator is
asked, first, to identify whether the opinion contains an argu-
ment or not. If so, the annotator is asked to check whether the
argument is already included in their current list of key argu-
ments. If not, the annotator should extract the argument into
a standalone expression (i.e., into a key argument), and add
it to the list of key arguments. When adding a new argument,
the annotator is asked to indicate the stance of the opinion
(i.e., whether it is in support or against the related policy
option). To facilitate this task, HyEnA highlights the most
probable stance for the user as a label suggestion (Schulz
et al. 2019; Beck et al. 2021).

Topic Assignment We assign each key argument created
by an annotator to the topics generated with a BERTopic
model, T , trained on all the available opinions (Grootendorst
2020). We create a short-list of topics, selected as the most
frequent topics found by T , with duplicates and unintelligi-
ble topics manually removed by two experts. Per argument,
we ask human annotators to select the associated topics from
the generated short-list. The topics assignments are used in
the second phase to compute argument similarity.

The output of the first phase are multiple key argument
lists (one per annotator), each containing key arguments and
their stances. Further, each argument is manually assigned a
topic mixture over a pre-selected set of topics.



3.3 Key Argument Consolidation
In the first phase, (1) the annotators are exposed to a small
subset of the opinions in the corpus, and (2) the interpreta-
tion of arguments is subjective. In the second phase, HyEnA
seeks to consolidate the key argument lists generated in the
first phase. Our goal is to increase the diversity of the result-
ing arguments and compensate for individual biases.

First, we create the union of all lists of key arguments
generated in the first phase of HyEnA. Then, we ask the an-
notators to evaluate the similarity of the key argument pairs
in the union list. Based on the similarity labels, we employ
a clustering algorithm to group similar key arguments, pro-
ducing a consolidated list of key arguments.

Pairwise Annotation To simplify the consolidation task,
we present one pair of key arguments, at the time, to the
annotators and ask them whether the concepts described by
the two key arguments in the pair are semantically similar.
To reduce annotation effort, we ask the annotators to anno-
tate only the most informative key argument pairs, and au-
tomatically annotate the remaining pairs. To select the most
informative pairs, we adapt the Partial-Ordering approach,
POWER (Chai et al. 2016), as described below.

Let pij be a pair of key arguments 〈ai, aj〉. The similarity
between the two key arguments in the pair is described by
a set of similarity scores, shij , which indicate how similar
the key arguments are. By using multiple scores, we seek
to make the similarity computation robust. For each pij , we
compute two similarity scores described in Table 2. We use
cosine similarity for s1ij since the angular distance describes
the semantic similarity between two arguments. In contrast,
we use Euclidean distance for s2ij since the absolute values
of the topic assignment are relevant.

Table 2: The two similarity scores between key argument
pairs used to create the pairwise dependency graph.

Measure Description

s1ij = i·j
‖i‖‖j‖

Cosine similarity between embeddings
i =MSBERT (ai) and j =MSBERT (aj)

s2ij = 1
d(T (ai),T (aj))

Inverse of the Euclidean distance d between
manual topic assignments T of ai and aj

Given the similarity scores, we construct a dependency
graph G (as in the top-left part of Figure 2), where each key
argument pair is a node in G and the edges indicate a Pareto
dependency (�) between two pairs as follows:

pij � pi′j′ if ∀h shij ≥ shi′j′ (1)

pij � pi′j′ if pij � pi′j′ and ∃h shij > shi′j′ (2)

Next, we follow POWER to extract disjoint paths from G.
The highlighted path in the bottom-left part of Figure 2 is an
example disjoint path. For every path, we perform a pairwise
annotation as in the right part of Figure 2. We select the ver-
tex at the middle of the unlabeled portion of the path, and ask
multiple humans to indicate whether the concepts described
by the two arguments in the pair are similar, and select the
annotation with majority agreement. Given the annotation,
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Figure 2: Pairwise annotation from dependency graph.

we can automatically label (1) all following pairs in the path
as similar in case the vertex is labeled as similar, or (2) all
preceding pairs in the path as non-similar in case the vertex
is labeled as non-similar. In essence, using the Pareto de-
pendency, we search for threshold similarity scores for each
path, above which all pairs are considered similar, and be-
low which all pairs are non-similar. Because this is a local
threshold, we prevent over-generalization.

Ultimately, through the combination of manual and au-
tomatic labeling, we obtain a similarity label for all possi-
ble key argument pairs. To annotate the complete graph effi-
ciently, we employ the parallel Multi-Path annotation algo-
rithm described in the Appendix.

Clustering Given a similarity label for each key argument
pair, our goal is to identify a consolidated list of unique key
arguments. However, the similarity among key arguments
may not be transitive. That is, given 〈a1, a2〉 as similar and
〈a2, a3〉 as similar, 〈a1, a3〉 may be labeled as dissimilar.
This can be happen because (1) the interpretation of sim-
ilarity can be subjective (for the manually labeled pairs),
and (2) the automatic approach is not always accurate (for
the automatically labeled pairs). Thus, we employ a cluster-
ing algorithm for identifying a consolidated list. First, we
construct a similarity graph, where each key argument is a
node and there is an edge between two arguments, if they
are labeled as similar. Then, we employ a graph clustering
algorithm for recognizing argument clusters. We experiment
with Louvain and spectral clustering (Section 4.2).

4 Experimental Setup
We execute and evaluate HyEnA, involving 327 Prolific
(www.prolific.co) crowd workers as annotators. We required
the workers to be fluent in English, have an approval rate
above 95%, and completed at least 100 submissions. Our
experiment was approved by an Ethics Committee and we
received an informed consent from each subject.

Table 3 shows an overview of the tasks involved in the ex-
periment. First, we ask the annotators to perform the HyEnA
method to generate lists of key arguments for three corpora
(Section 3.1). Then, we evaluate the quality of the obtained
lists of key arguments in comparison with lists generated for
the same corpora via two baselines. All tasks except topic



generation were performed by the crowd workers. The de-
tailed instructions provided to the annotators in each task
are included as supplemental material.

Table 3: Experiment overview. Items to be annotated can be
opinions (O), arguments (A), topics (T), or combinations.

Task Policy Option # Items # Annotators

Key argument
annotation

YOUNG 255 (O) 5
IMMUNE 255 (O) 5
REOPEN 255 (O) 5

Topic generation all 45 (T) 2

Topic assignment
YOUNG 90 (A) 10

IMMUNE 64 (A) 5
REOPEN 69 (A) 5

Key argument
consolidation

YOUNG 1538 (A+A) 99
IMMUNE 824 (A+A) 57
REOPEN 940 (A+A) 87

Key argument
evaluation

YOUNG 169 (O+A) 21
IMMUNE 112 (O+A) 14
REOPEN 145 (O+A) 14

4.1 Phase 1: Key Argument Annotation
In the first phase of HyEnA, each annotator extracts a key
arguments list from an opinion corpus. In each corpus, five
annotators annotated 51 opinions each, for a total of 255
opinions. Of the 51 opinions, the first is selected randomly,
and the following 50 are selected by FFT. This number of
opinions was empirically selected to make the annotation
feasible within a maximum of one hour.
Topics We train a BERTopic model on each of opinion cor-
pus. The model generated 59, 56, and 72 topics for the
YOUNG, IMMUNE, and REOPEN corpus, respectively. Since
the number of topics was very high for manual assignment
of arguments to topics, we curate a short-list of topics per
corpus. To do so, we select 15 most frequent topics in a cor-
pus and ask two experts to remove duplicates (i.e., topics
covering the same semantic aspect) and rate the clarity (i.e.,
how well the topic describes a relevant aspect of the discus-
sion in the corpus) of each topic. The topics with an average
clarity scores above 2.5 composed the short-list of topics.
Then, we asked the annotators to assign topics to each key
argument generated in the first phase of HyEnA.

4.2 Phase 2: Key Argument Consolidation
In the second phase of HyEnA, we obtain similarity labels
y(ai, aj) (1 if similar, 0 if not) for all key argument pairs
〈ai, aj〉—some pairs are labeled by the annotators and oth-
ers are automatically labeled. Given the similarity labels, we
construct an argument similarity graph, and cluster the graph
to identify a consolidated list of key arguments.
Key Argument Clustering We experiment with two well-
known graph clustering algorithms:
• Louvain clustering (Blondel et al. 2008) uses network

modularity to identify groups of vertices to cluster. It in-
cludes a resolution parameter, r.

• Self-tuning spectral clustering (Zelnik-Manor and Perona
2004) uses dimensionality reduction in combination with
k-means to obtain clusters. It includes the desired number
of clusters, k, as parameter.
We choose the parameters of these algorithms to mini-

mize the error metric E shown in Equation 3. The metric is
calculated over all obtained clustersK, and it penalizes clus-
ters having dissimilar argument pairs. That is, for a cluster k,
∀ai, aj ∈ k, if y(ai, aj) = 1, then the error for that cluster
is 0. If a cluster contains only a single element, we manually
set the error for that cluster to 1, to discourage creating too
many single-member clusters.

E =
1

|K|
∑
k∈K

∑
ai,aj∈k

1y(ai,aj)=0(|k|
2

) (3)

4.3 Baseline Comparison
We compare HyEnA to automated and manual baselines.

Automated Baseline We use the ArgKP argument match-
ing model (Bar-Haim et al. 2020b) to automatically ex-
tract key points from the corpus. ArgKP selects candidate
key points from opinions using a manually-tuned heuristic,
which filters opinions on their lengths and form. Follow-
ing Bar-Haim et al. (2020b), we adjusted ArgKP parameters
such that 20% of the opinions are selected as candidates by
the heuristic. Opinions are provided a match score using a
pretrained matching network based on RoBERTa (Liu et al.
2019). Opinions only match the highest scoring candidate
key points if their match score exceeds a threshold θ (cor-
responding to the BM+TH approach). After deduplication,
this results in a single list of key arguments per corpus.

To compare HyEnA and the automated baseline, we adopt
the following approach similar to Bar-Haim et al. (2020b).

1. Run HyEnA and extract the set of key arguments A1

from the opinions Oobs
1 observed by annotators. Each ar-

gument ai ∈ A1 is extracted from an opinion oi ∈ O1,
where O1 ⊆ Oobs

1 is the set of opinions annotated with a
key argument during the first phase of HyEnA.

2. Run the ArgKP model on the corpus and extract a set of
key argumentsA2 based on the entire set of opinionsO2.

3. Sample pairs of corresponding opinions and arguments,
(oi, ai), where oi ∈ O1 ∩O2 and ai ∈ A1 ∪A2.

4. Ask annotators to label z(oi, ai) = 1 for all matching
pairs and z(oi, ai) = 0 for all non-matching pairs, and
keep the majority consensus from multiple annotators.

We compute two metrics to evaluate the quality of the ex-
tracted key arguments. The coverage (C) indicates the ca-
pability of a method to extract a diverse set of arguments.
Since Oobs

1 consists of a variety of opinions, the ability to
synthesize key arguments from these opinions is important.

C =
|A1|
|Oobs

1 |
(4)

The precision (P ) is the extent to which the extracted key
arguments can be matched to the opinions in a corpus.



P =

∑
oi,ai

1z(oi,ai)=1

|A1|
(5)

Manual Baseline Mouter, Hernandez, and Itten (2021) in-
volve six experts to manually analyze the feedback from a
sample of participants (2,237 out of 26,293) over all eight
policy options and identify key arguments. However, they
do not report the exact number of opinions analyzed. Since
there are 36,781 opinions for the three options we analyze
(Table 1), we estimate the number of opinions the six experts
would have analyzed to be 3,129 across the three options.
In contrast, HyEnA annotators analyze 765 intelligently se-
lected opinions across the three options.

HyEnA reduces the number of opinions analyzed. Then,
an important question is the extent to which the key argu-
ment lists generated by HyEnA and the manual baseline
have comparable insights. To answer this question, we com-
pute the number of HyEnA key arguments that are overlap-
ping, missing, and new compared to the expert-identified
key arguments. We could not compute precision and cov-
erage for the manual baseline because it does not include a
mapping between key arguments and opinions.

5 Results and Discussion
First, we show the influence of the intelligent sampling and
merging techniques HyEnA employs in Phases 1 and 2.
Next, we compare HyEnA with the automated and man-
ual baselines to evaluate the benefits of HyEnA’s hybrid ap-
proach. Finally, we analyze the inter-rater reliability.

5.1 Phase 1: Key Argument Annotation
Table 4 show the number of different Phase 1 operations an-
notators perform. On average, the annotators identified 15
unique key arguments per option. Roughly half of the opin-
ions were skipped. The main reason for skipping was an
opinion not having a clear argument for supporting or op-
posing an option. This is a positive result since the noise (ir-
relevant or non-argumentative opinions) in public feedback
can be much higher. We conjecture that the argument quality
classifier we incorporate for opinion selection is effective in
filtering the noise. Further, the annotators marked only about
15% of the encountered opinions as already annotated key
arguments, which shows that the FFT approach is effective
in sampling a diverse set of opinions for annotation.

Table 4: Summary of Phase 1 results, showing the average
numbers (and standard deviation) of annotation operations.

Option # Args # Skip # Already Annotated

YOUNG 18.0 (5.5) 23.4 (5.4) 11.4 (9.0)
IMMUNE 12.8 (2.6) 31.4 (4.5) 8.6 (4.4)
REOPEN 13.8 (7.6) 29.2 (11.5) 10.2 (7.6)

5.2 Phase 2: Key Argument Consolidation
Table 5 shows the benefit POWER, HyEnA’s approach for
merging key argument lists. On average, POWER reduces the

number of pairs requiring human annotation by 60%.

Table 5: Summary of Phase 2 annotations. # Reduced is the
reduced number of pairs (from # Pairs) requiring a manual
label. HyEnA consolidated A1 arguments into K clusters.

Option # Pairs # Reduced Pairs τ |A1| |K|
YOUNG 4005 1538 0.34 90 20

IMMUNE 2016 824 0.42 64 14
REOPEN 2346 943 0.41 69 18

The transitivity score τ (Newman, Watts, and Strogatz
2002) indicates the extent to which transitivity holds among
the similarity labels of argument pairs. The low transitivity
scores justify the clustering we perform. As Figure 3 shows,
with the best parameter setting, Louvain clustering yields
smallest error for YOUNG and IMMUNE corpora, and spec-
tral clustering yields the smallest error for REOPEN corpus.
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Figure 3: Parameter tuning for key argument clustering.

5.3 Comparison with Automated Baseline
Figure 4 compares the coverage and precision of HyEnA
and ArgKP. The coverage (portion of opinions that are an-
notated with a key argument) is low for both methods. This
is because several opinions are annotated as not containing
argumentative content. Yet, the coverage of HyEnA (0.34 on
average) is higher than the coverage of ArgKP (0.11 on av-
erage). ArgKP often failed to recognize the key arguments
in the diverse set of opinions included by HyEnA.

ArgKP yields a larger number of key arguments (between
30 and 40 for each option) than HyEnA. However, these ar-
guments lead to an average precision of 0.37. In contrast,
HyEnA extracted less argument clusters, but with a higher
precision (0.80). Further, we notice that human annotators
actively rephrase the content of the key arguments—a sig-
nificant part of the argument text (more than half) is directly
copied from the opinion text only in 22% of the annotations.

5.4 Comparison with Manual Baseline
Table 6 shows a confusion matrix, comparing overlapping
(yes, yes), missing (no, yes), and new (yes, no) key argu-
ments between HyEnA and the manual baseline. Recall that
HyEnA required an analysis of 765 opinions, whereas the
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Figure 4: Coverage and Precision for HyEnA and ArgKP.

manual baseline required 3,129 opinions, to produce their
respective key arguments lists. Despite incurring less human
effort, HyEnA list has a large overlap with the expert list.

Table 6: Confusion matrix, comparing the key argument lists
of HyEnA and manual baseline.

Manual baseline
YOUNG IMMUNE REOPEN

yes no yes no yes no

HyEnA yes 8 7 7 2 10 1
no 1 – 0 – 4 –

HyEnA missed some key arguments that experts identi-
fied. For instance, a key argument about building up herd
immunity was not in the HyEnA list for the REOPEN option.
Interestingly, ArgKP also failed to find such arguments. We
conjecture that increasing the number of opinions annotated
in HyEnA would subsequently yield the missing insights.

Finally, HyEnA also led to new insights that were missed
by experts. For instance, the argument about the physical
well-being of young people, which seems important, was not
in the expert list for the YOUNG option. This is potentially
because the random sample analyzed by the experts did not
include opinions supporting this argument. In contrast, the
diverse set of opinions intelligently sampled by HyEnA in-
cluded opinions supporting this argument.

5.5 Annotator Reliability
Table 7 shows the inter-rater reliability (IRR) for four steps
with overlapping human annotations. In the topic generation
phase (Section 4.1), we use the intraclass correlation coef-
ficient ICC(3, k) (Shrout and Fleiss 1979) since it involves
ordinal ratings. In the other three tasks, multiple binary la-
bels are obtained for the same subjects. In these tasks, we use
prevalence- and bias-adjusted κ (PABAK) (Sim and Wright
2005), which adjusts Fleiss’ κ for prevalence and bias re-
sulting from small or skewed distribution of ratings.

The IRR for topic generation and assignment tasks are
substantial. The IRR for key argument consolidation and
baseline comparison are fair and moderate, respectively.

Table 7: Average (and standard deviation) IRR scores.

Task ICC3k PABAK

Topic generation 0.66 (0.14) –
Topic assignment – 0.81 (0.10)
Key argument consolidation – 0.34 (0.03)
Key argument evaluation – 0.43 (0.08)

The relatively low IRR scores of consolidation and base-
line comparison tasks are not shortcomings of the HyEnA
method in itself. Instead, they demonstrate the inherent diffi-
culty and subjectivity involved in interpreting the arguments,
and matching the arguments and opinions. This also justifies
the need for a robust argument consolidation phase that in-
tegrates judgements from a range of interpretations.

6 Conclusion and Directions
We develop and evaluate HyEnA, a hybrid method that com-
bines human judgements with automated methods to gener-
ate a diverse set of key arguments. We show that HyEnA
extracts key arguments from a large corpus of noisy opin-
ions with higher precision and coverage than a state-of-the-
art automated method for key point analysis. Additionally,
HyEnA provides important insights that were not included
in an expert-driven analysis over the same corpus despite re-
quiring an analysis of a less number of opinions.

The pairwise comparison task of the consolidation phase
is the most human resource intensive task in HyEnA. Also,
comparing arguments is cognitively demanding for annota-
tors. If we increase the number of opinions analyzed in the
first phase to increase the coverage of HyEnA, the consol-
idation effort in the second phase will increase further. We
employed an automated technique, which reduced the num-
ber of comparisons required in the consolidation phase by
60%. Additional research is necessary to further reduce the
consolidation effort. For example, first clustering the key ar-
guments and then consolidating the arguments within these
clusters (reverse order as HyEnA) can influence the perfor-
mance and the effort, but requires further investigation.

Annotators only reach a fair and moderate agreements in
the consolidation and argument matching tasks. This shows
the complexity of language understanding, and the subtleties
involved in interpreting and reasoning about arguments and
opinions. We pose that hybrid approaches which use human
insight are a key component for public feedback analysis.
Uncovering these subtleties and making them explicit is a
crucial task for enabling effective perspective taking (Chen
et al. 2019). Finding arguments from a large discourse is
only one of the aspects that constitute the perspectives in
a discussion. Future work can incorporate analysis over the
same discourse for values (Liscio et al. 2021) or other per-
spective factors, such as sentiment, emotion, and attribution
(van Son et al. 2016). By combining these rich aspects with
arguments, we can merge the logical basis of the discussion
with other semantic and syntactic information, possibly al-
lowing a close scrutiny of the perspectives at play.
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