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Abstract

Learning diverse skills without hand-crafted reward functions could accelerate1

reinforcement learning in downstream tasks. However, existing skill discovery2

methods focus solely on maximizing the diversity of skills without considering3

human preferences, which leads to undesirable behaviors and possibly dangerous4

skills. For instance, a cheetah robot trained using previous methods learns to5

roll in all directions to maximize skill diversity, whereas we would prefer it to6

run without flipping or entering hazardous areas. In this work, we propose a7

Foundation model Guided (FoG) skill discovery method, which incorporates8

human intentions into skill discovery through foundation models. Specifically,9

FoG extracts a score function from foundation models to evaluate states based10

on human intentions, assigning higher values to desirable states and lower to11

undesirable ones. These scores are then used to re-weight the rewards of skill12

discovery algorithms. By optimizing the re-weighted skill discovery rewards,13

FoG successfully learns to eliminate undesirable behaviors, such as flipping or14

rolling, and to avoid hazardous areas in both state-based and pixel-based tasks.15

Interestingly, we show that FoG can discover skills involving behaviors that are16

difficult to define. Interactive visualisations are available from https://sites.17

google.com/view/submission-fog.18
19

1 Introduction20

Reinforcement learning (RL) has shown promising results in robotics [40, 46] and games [44,21

48]. Typically, RL requires carefully designed reward functions, which demand significant expert22

efforts [36, 39]. In contrast, Unsupervised RL [16, 33] aims to eliminate task-specific reward23

functions and train agents in a self-supervised manner. One key direction in unsupervised RL is24

pre-training agents to acquire diverse skills that can potentially be useful in downstream tasks [5, 30],25

termed unsupervised skill discovery. Most prior methods in unsupervised skill discovery focus on26

maximizing skill diversity, encouraging agents to achieve diversity in both low-level behaviors and27

high-level policies. For instance, a cheetah robot trained using previous methods [27, 30] learns to flip28

or roll (low-level behavior) in all directions (high-level policy). However, wide motions like flipping29

or rolling could damage the robot, and entering restricted areas might pose safety risks. Ideally, we30

want agents to learn skills that are not only diverse, but also aligned with specific intentions, such as31

eliminating undesirable behaviors or avoiding certain areas.32

To integrate human intentions into skill discovery, we introduce a Foundation model Guided (FoG)33

method. More specifically, FoG (see Figure 1) utilizes foundation models [32, 24, 3] to assign higher34

scores for desirable behaviors and lower for undesirable ones. These scores are then used to re-weight35

the rewards of unsupervised skill discovery algorithms. By optimizing these re-weighted rewards,36

FoG learns diverse skills while aligning with given human intentions. FoG stands out from previous37

methods by being more autonomous, as it does not rely on costly expert demonstrations like [11],38

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

https://sites.google.com/view/submission-fog
https://sites.google.com/view/submission-fog
https://sites.google.com/view/submission-fog


def score_fn(state):
  y_coord = state[1]
  ...

⭐concept 

text2

text1
Foundation 

Models

Task description

Query ��
text embedding image embedding score functiondesirable intention undesirable intention

st
at

e-
b

as
ed

p
ix

el
-b

as
ed

CLIP

!

Figure 1: FoG leverages foundation models (such as ChatGPT, Claude and CLIP) to score states
in relation to given commands during training. These scores are used to re-weight the rewards of
the underlying skill discovery algorithm. Left: In state-based tasks (top row), task descriptions are
provided to foundation models, which are queried to generate a score function f(s) based on our
requirements. In pixel-based tasks (bottom row), the current visual state, textual descriptions of
desirable and undesirable intentions are input to foundation models to obtain embeddings. These
embeddings are then used to form the score function f(s), see Equation (8). Right: During training,
rewards of the underlying skill discovery method (rskill) are re-weighted using the score function.
Re-weighting rskill (we use METRA [30]) by the score function is equivalent with using the score
function as the distance metric in the DSD objective.

and more versatile, as it works with both visual inputs and compact state information, unlike [34],39

which requires precise ground-truth states.40

Our main contributions are threefold: 1) We introduce a novel foundation model guided unsupervised41

skill discovery method (FoG), which learns diverse and desirable skills. 2) We evaluate FoG alongside42

six state-of-the-art baselines on both state-based (i.e. structured, low-dimensional representations) and43

pixel-based tasks. FoG outperforms baselines in both scenarios, showcasing superior input-agnostic44

generalization capabilities. 3) We show FoG can learn behaviors that are challenging to define, such45

as being ‘twisted’ and ‘stretched’ on a humanoid robot, suggesting its potential for more complex46

applications. The FoG codebase can be found in the supplemental materials.47

2 Preliminaries and Problem Setting48

We consider a reward-free Markov Decision Process defined as M = (A,S, p). S denotes49

the state space, A denotes the action space and p is the transition dynamics function. A la-50

tent vector z ∈ Z (also called ‘skill’) is sampled during training and its conditioned policy51

π(·|s, z) is executed to get a skill trajectory τ = (s0, s1, ..., sT ) following the process: p(τ |z) =52

p(s0)
∏T−1

t=0 π(at|st, z)p(st+1|st, at). π(·|s, z) can be learned by optimizing unsupervised explo-53

ration objectives we discuss below (distance-maximization) or in Section 5 (mutual information).54

FoG utilizes the Distance-maximizing Skill Discovery (DSD) [29] objective. Unlike mutual informa-55

tion based methods [5], DSD aims to maximize the Wasserstein dependency measure (WDM) [25]56

defined as:57

IW(S;Z) = W(p(s, z), p(s)p(z)), (1)

where W is the 1-Wasserstein distance on the metric space (S ×Z, d) for distance metric d. By maxi-58

mizing the objective in Equation (1), the agent will not only maximize the diversity of skills, but also59

maximize the distance metric d [30]. Under some simplifying assumptions [25, 45], maximization of60

Equation (1) can then be rewritten as:61

sup
π,ϕ

Ep(τ,z)

[
T−1∑
t=0

(ϕ(s′)− ϕ(s))
⊤
z

]
s.t. ∥ϕ(x)− ϕ(y)∥2 ≤ d(x, y), ∀(x, y) ∈ S, (2)

where ϕ is a function that maps states to a D-dimensional space, which is the same as the skill space62

Z. Intuitively, Equation (2) aims to align the direction of z and ϕ(s′)− ϕ(s) (to learn distinguishable63

and diverse skills), while maximizing the length of ||ϕ(s′)− ϕ(s)||, which leads to an increase in the64

distance between states based on the given distance metric d due to the Lipschitz constraint [29]. In65

principle, d(x, y) in Equation (2) can be replaced by any of the distance metrics in Table 1, resulting66
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in different unsupervised skill discovery methods. Equation (2) can be optimized with dual gradient67

descent, incorporating a Lagrange multiplier λ and a small slack variable ϵ > 0:68

Update ϕ to maximize: E[(ϕ(s′)− ϕ(s))⊤z] + λ ·min(ϵ, d(s, s′)− ∥ϕ(s)− ϕ(s′)∥) (3)

Update λ to minimize: λ · E[min(ϵ, d(s, s′)− ∥ϕ(s)− ϕ(s′)∥)] (4)

Update π with reward: (ϕ(s′)− ϕ(s))⊤z (5)

For derivation of these equations we refer to [27, 29, 30].69

3 Foundation Model Guided Skill Discovery70

FoG extracts a score function from foundation models based on human intentions to re-weight skill71

discovery rewards, illustrated in Figure 1. For state-based tasks, the foundation model is queried to72

output a score function aligned with our intentions. In pixel-based tasks, the score function is formed73

using state and intentional text embeddings from the foundation models. The skill-conditioned policy74

is then trained to maximize these re-weighted rewards during unsupervised skill discovery.75

3.1 Score Function76

We extract a score function from foundation models that can assign higher values for desirable states77

and lower values for undesirable states with respect to the given intentions. This score function is78

then used to re-weight rewards of the underlying skill discovery method. We define the score function79

f : S → [0, 1] which takes a state as input and outputs a value between 0 and 1, indicating the80

desirability of the given state. This score function is then used to reweight the skill discovery rewards.81

The skill discovery reward rskill of Equation (5) therefore becomes:82

r = f(s′)× rskill = f(s′)(ϕ(s′)− ϕ(s))⊤z, (6)

where we care about the states s′ the agent reaches instead of the state s the agent comes from. Thus,83

the score function f takes s′ as the input. Since we use METRA [30] as the underlying skill discovery84

algorithm, and use the score function to re-weight the METRA rewards, this is equivalent to using it85

as the distance metric in the DSD objective:86

sup
π,ϕ

Ep(τ,z)

[
T−1∑
t=0

(ϕ(st+1)− ϕ(st))
⊤
z

]
s.t. ∥ϕ(s)− ϕ(s′)∥2 ≤ f(s′), ∀(s, s′) ∈ Sadj , (7)

where Sadj represents the set of adjacent state pairs. The derivation of Equation (7) can be found87

in Appendix A. By using the score function as the distance metric in the DSD objective, FoG not88

only maximizes the diversity of skills, but also maximizes the output of the score function, leading to89

skills that are more aligned with our intentions.90

In practice, we find that a binary score function works well, i.e. outputting 1 if the state is desirable91

and α if it is not, where 0 ≤ α < 1. We examine different values of α and a non-binary score function92

in Section 4.2.4.93

3.2 Implementation Details94

Our work builds on top of METRA [30], which is the state-of-the-art unsupervised skill discovery95

method that works for both state-based and pixel-based input. FoG re-weights the skill discovery96

reward of METRA by the score function that is extracted from foundation models. For state-based97

tasks, we ask foundation models to generate the score function directly. For pixel-based tasks, we use98

foundation models to output embeddings to form the score function. All code is available through the99

supplemental materials.100

State-based: We ask ChatGPT or Claude to generate a score function f(s) that equals 1 if the state101

satisfies our intentions, and α otherwise. Unlike Eureka [21], which queries foundation models to102

generate a reward function for training agents from scratch, FoG instead asks for a score function to103
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modulate skill discovery. Prompt details for state-based tasks and examples of resulting output score104

functions are provided in Appendix F.7.1.105

Pixel-based: We use CLIP [32], a vision-language model that is trained to align images and text,106

to first generate embeddings for images (pixel-based states) and texts (textual descriptions of our107

intentions). Then, the score function is formed by computing the Cos similarity between the image108

and text embedding. If the current state is more similar to the description of the desirable intention,109

the output is 1. Conversely, if it is more similar to the undesirable one, the output is α. The score110

function can be expressed as Equation (8).111

f(s) =

{
1, if Cos(Es, Et1) > Cos(Es, Et2).

α, otherwise.
(8)

where Es is the embedding of the current pixel-based state, Et1 and Et2 are the embeddings of the112

textual descriptions of desirable and undesirable intentions, respectively. Setting α = 0 attempts113

to not learn undesirable behaviors at all (since α× rskill = 0) while setting α = 1 reduces FoG to114

the underlying skill discovery algorithm METRA. We examine different values of α in Section 4.2.115

Details of textual descriptions of desirable and undesirable intentions can be found in Appendix F.7.2.116

4 Experiments117

⭐envs

HalfCheetah Ant Cheetah Quadruped Humanoid

Figure 2: Environments used in our work. HalfCheetah and Ant are state-based while the other three
are pixel-based.

Our experiments aim to address the following questions:118

• How does FoG perform in state-based tasks where more context and informative features119

are provided? (Section 4.1)120

• In pixel-based tasks, where only visual information is provided, can FoG guide agents to121

learn diverse and desirable behaviors and skills? (Section 4.2)122

We use common environments in unsupervised skill discovery literature, see Figure 2, including123

two state-based tasks and three pixel-based tasks: HalfCheetah and Ant are state-based tasks from124

OpenAI gym [4], Cheetah, Quadruped and Humanoid are pixel-based tasks from DMC [42].125

We have six baselines for FoG to compare against:126

• METRA [30], the state-of-the-art unsupervised skill discovery method.127

• METRA+, which integrates human intentions through hand-coded reward functions, and128

was also used as a baseline in DoDont [11].129

• LSD [27], an unsupervised skill discovery method that maximizes DSD objective with130

Euclidean distance as the distance metric.131

• DoDont [11], a demonstration-guided unsupervised skill discovery method, learns diverse132

and desirable behaviors shown in the demonstrations. In some cases, it needs additional133

state-based inputs alongside with pixel-based input to work properly, more details can be134

found in Appendix D.135

• DoDont+, a variant of DoDont that replaces expert demonstrations with demonstrations136

annotated using foundation models.137

• FR-SAC, a SAC [9] agent rewarded using scores from foundation models (Foundation138

Rewards) using Equation (13).139
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All agents in the same task are trained with the same number of environment steps and all experiments140

are performed three times with different independent seeds, and average results with error bars are141

reported. For simplicity, we set α = 0 for all experiments. Details about environments and baseline142

implementations can be found in Appendix F. See website1 for videos of the learned behaviors and143

skills.144

4.1 State-based Tasks145

To test whether FoG can work in state-based tasks, we train FoG in HalfCheetah and Ant. Following146

the details in Section 3.2, we input the description of the tasks, information about state space and147

action space to foundation models as context, then ask foundation models to generate a score function148

that returns 1 when the requirement in the query is satisfied otherwise α. In HalfCheetah, we train149

FoG to eliminate dangerous behaviors (flipping over). In Ant, we train FoG to avoid a specific area,150

in this case to not go south.151

Results of these experiments are visualized in Figure 3, with generated score functions for both tasks152

at the right. We first of all see that foundation models can recognize feature dimensions of the state153

that are important for meeting our requirements. For example, in HalfCheetah the second dimension154

of the state is the angle of Cheetah’s front tip, which is important for determining if the agent flips155

over or not. In Ant, the first dimension of the state is the y-coordinate of Ant, which can be used to156

locate the agent in a south-north position. We see foundation models clearly set the right threshold157

and implement the logic to fulfil the intention we asked for, i.e., if the angle of the Cheetah’s front tip158

is larger than 1.57 in radians (90 degrees) it flips over, and if the y-coordinate of Ant is larger than 0159

it is in the north part of the plane. By re-weighting the skill discovery rewards using the generated160

score function from foundation models, FoG learns to not roll in HalfCheetah while METRA flips a161

lot (left sub-figure of Figure 3). In Ant, FoG learns to always move to north and METRA learns to go162

in every direction (mid-left part in Figure 3).163

(9k) METRA FoG

% Flips 0.56, 0.56, 0.83 0, 0, 0

⭐State-based 

def score_fn(state):
  y_coord = state[1]
  if y_coord > 0:
    return 1
  else:
    return 0

% Rolls (HalfCheetah) FoGMETRA Generated score fn for Ant

def score_fn(state):
  front_tip_angle = state[2]
  threshold = 1.57
  if front_tip_angle > threshold:
    return 1
  else:
    return 0

Generated score fn for HalfCheetah

Figure 3: Comparison between METRA and FoG on state-based HalfCheetah and Ant. In both
tasks, foundation models successfully capture the relevant state dimension and set threshold for it.
Left: FoG learns not to roll in HalfCheetah, while METRA rolls over 50% of the time, violating
our intention. Right: FoG learns to not move to south in Ant, and METRA learns to move in all
directions.

4.2 Pixel-based Tasks164

We now conduct experiments in pixel-based tasks, where only visual information is available. Unlike165

in state-based tasks, where we ask foundation models to directly generate a score function, in pixel-166

based tasks we leverage foundation models to output embeddings of 1) the visual state and 2) textual167

descriptions of our desirable and undesirable intentions. The score function is then computed from168

Equation (8). We examine FoG in four aspects:169

• Can FoG learn diverse skills while eliminating undesirable behaviors? (Section 4.2.1)170

• Can FoG learn diverse skills without entering certain areas? (Section 4.2.2)171

• Can FoG learn complex behaviors that are difficult to clearly define? (Section 4.2.3)172

• What are the most critical design choices of FoG? (Section 4.2.4)173

4.2.1 Learn to eliminate undesirable behaviors174

We first focus on guiding the agent to learn desirable low-level behaviors (e.g., standing normal)175

while eliminating undesirable ones (e.g., flipping over) that could potentially damage the robot. In176

1https://sites.google.com/view/submission-fog
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% Flips State Coverage

Figure 4: Left: Executions of example skills from different agents in pixel-based environment,
Cheetah. From top to bottom: METRA, METRA+, LSD, DoDont, DoDont+, FR-SAC, FoG. Right:
Percentage of flips (which should be prevented based on the guidance) and state coverage for different
agents. METRA, METRA+, DoDont, and DoDont+ discover diverse states but often flip. LSD and
FR-SAC fail to learn diverse skills. FoG excels with high state coverage and minimal flipping.

pixel-based Cheetah, we use ‘agent flips over’ and ‘agent stands normally’ as textual177

descriptions to express our intentions.178

As shown in the left part of Figure 4, FoG (bottom) consistently learns to run without flipping,179

demonstrating the lowest percentage of flips during evaluation. In contrast, other methods struggle to180

prevent flipping effectively. METRA flips in over 70% of episodes, DoDont in more than 35%, and181

DoDont+ in 50% of the episodes. LSD, FR-SAC and METRA+ struggle to learn to move in different182

directions, discovering static behaviors and rarely flipping. Although METRA, DoDont, DoDont+183

and FoG achieve similar state coverage, FoG effectively prevents flipping.184

The poor performance of METRA+ suggests that defining a proper score function manually is185

not trivial (we follow the definition in [11] and use rrun − rflip as the score function). The186

poor performance of DoDont stems from the inaccurate classifier, which exploits the color of the187

ground to distinguish different states (normal and flipping postures), outputting high scores for188

unseen undesirable behaviors. A more in-depth analysis on the failure of DoDont can be found189

in Appendix D. FR-SAC fails to learn meaningful behaviors, suggesting only using foundation model190

scores to train RL agents is insufficient (see more analysis in Section 4.2.4). To evaluate how these191

learned skills perform in downstream tasks, we train a controller to select from the learned set of192

skills. This controller trained using FoG skills shows quick adaptations in the downstream tasks, as193

shown in Appendix C.194

4.2.2 Learn to avoid hazardous areas195

⭐Learn to avoid hazardous areas

LSDMETRA DoDont Safe State CoverageFoG
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METRA+ DoDont+ FR-SAC

Figure 5: Top: Results on the pixel-based environment Cheetah, with learned skills shown in x-
coordinates. METRA+ learns to perfectly avoid the undesirable area and FoG has a strong preference
to go to the desirable area, as also clearly visible from the Safe State Coverage on the right. Other
agents fail. Bottom: Results on the pixel-based environment Quadruped, with learned skills shown
as xy-coordinates. Similar conclusions can be drawn regarding most of agents. Unlike in Cheetah,
DoDont successfully learns to avoid the bottom-left areas.

Previous methods focus solely on maximizing skill diversity, often leading agents to explore in196

all possible directions. In practice, however, we want agents to avoid certain areas when they are197
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hazardous. For instance, a robot operating in a factory should be able to avoid prohibited areas.198

To test whether FoG can learn to avoid certain areas (high-level policies, as opposed to low-level199

behaviors in Section 4.2.1), we train FoG in the pixel-based versions of Cheetah and Quadruped.200

We designate the right area in Cheetah and the bottom-left area in Quadruped as hazardous and201

train agents to avoid them. Since there are no explicit indicators of directions in these two tasks, we202

express our intentions through colors. For example, in Cheetah, we use descriptions like ‘ground203

is blue’ and ‘ground is orange’ to signal whether the agent is on the left or right part and204

then form the score function following Equation (8). Figure 5 illustrates the learned skills and ‘Safe205

State Coverage’ (the coverage of safe areas minus that of hazardous areas) of different agents. FoG206

clearly biases movement toward the safe areas. In Cheetah it prefers to go to the left part and in207

Quadruped it avoids the bottom-left area, resulting in higher safe state coverage than the baselines. In208

contrast, METRA explores all directions indiscriminately, LSD and FR-SAC fail to move, leading209

to the lowest safe state coverage. DoDont performs well in Quadruped but not in Cheetah (the210

classifier are unsure about initial states thus harm the exploration). The slightly worse performance of211

DoDont+ (compared to DoDont) in Quadruped stems from its inaccurate demonstrations annotated212

by foundation models. METRA+ performs the best, likely because that defining a score function213

in these tasks is straightforward (assigning 1 to states in safe regions and 0 for ones in hazardous214

regions [11]). The results suggest that with expert-level demonstrations and ‘perfect’ hand-crafted215

score function, DoDont and METRA+ could potentially outperform FoG. However, the strength216

of FoG shines in scenarios where obtaining expert-level demonstrations or crafting a perfect score217

function is challenging, which is generally the case.218

Non-expert demonstrations (like ones annotated by foundation models, which are used in DoDont+)219

introduce inaccuracies to the classifier, with annotation accuracy around 70%. This leads to an inaccu-220

rate classifier that consistently generates unreliable signals, ultimately resulting in poor performance.221

In contrast, FoG leverages CLIP on-the-fly. Although CLIP does not achieve perfect accuracy, it222

still allows the agent to learn effectively. As shown in Section 4.2.4, the more accurate the scoring223

function, the better the performance of FoG.224

4.2.3 Learning in Humanoid225

⭐ Humanoid exps

Human SelectionRandom Snapshots

Fo
G

M
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R
A

Random SnapshotsLearned Skills Learned SkillsHuman Selection

Figure 6: Learning results of METRA and FoG on Humanoid (Left) and Puppet (Right). Humans
participants pick FoG to be more desirable 90% and 70% of the time in two tasks. Learned skills
(shown in xy-coordinates) of different agents.

Humanoid is a challenging high-dimensional control task with a 21-D action space. Defining226

postures of this humanoid robot could be both hard and subjective, e.g. when it is “twisted" or227

“stretched", “running" or “walking", etc. This also makes it hard to design a reward function that228

can guide the agent to learn such behaviors. Since FoG uses foundation models, it overcomes this229

problem by directly evaluating whether a given frame or state is desirable—assigning higher scores230

to configurations like “twisted,” which we want to encourage. This allows FoG to recognize and231

reward subtle behaviors that are otherwise hard to specify explicitly. We could not compare FoG232

with DoDont [11] as the original paper does not include results on Humanoid, probably because233

demonstrations of a humanoid robot are challenging to obtain (an issue we also encountered).234

First, we train FoG in the Humanoid task using intention descriptions ‘agent is stretched’235

and ‘agent is twisted’. To quantitatively assess whether the agent has successfully learned to236

twist, we create a questionnaire and ask ten human participants to evaluate videos of different agents,237

selecting the ones they perceive as more “twisted". Videos and the questionnaire can be found on the238

project website and details of the experimental setup can be found in Appendix F.5.239
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In the left part of Figure 6, it is clear that FoG learns to exhibits more “twisted" postures while240

METRA tends to appear more “stretched". The ‘Human Selection’ shows how participants perceive241

the trained skills, with 90% of the time participants selecting FoG as more “twisted", further validating242

the observed outcomes. Both FoG and METRA successfully learn to move in different directions,243

highlighting the diversity of the learned skills. FoG’s ability to move in different directions with244

“twisted" postures suggests its potential to guide agents in discovering skills involving behaviors with245

subjective definitions.246

To further analyze FoG, we modify the ‘Humanoid’ task to a ‘Puppet’ variant, where the humanoid247

is pulled by a string above the head, i.e. the humanoid always keeps upright. The details of Puppet248

environment can be found in Appendix F.1. Besides learning diverse skills, we also ask the puppet249

to show running postures. See results in the right part of Figure 6. METRA learns to wriggle to all250

different directions with squat postures, whereas FoG learns to show more natural postures while251

moving in all directions. Similar to the Humanoid experiment, 70% of participants judged FoG to252

exhibit a more ’running’ posture. See the website for videos.253

4.2.4 Ablation Study254

⭐ Ablation: on DMC cheetah

alpha No. skip

Figure 7: Percentages of flips that dif-
ferent FoG shows on the Cheetah envi-
ronment. Smaller α and N return better
performance.

FoG introduces two hyperparameters. The first, α in the255

binary score function of Equation (8), controls the re-256

weighting of skill discovery rewards for undesirable states.257

Higher values make rewards for undesirable and desirable258

states less distinguishable, increasing the likelihood of259

agents learning undesirable behaviors. We evaluate three260

values, α = 0, 0.5, 0.8. As shown in the left part of Fig-261

ure 7, higher α leads to more undesirable behaviors (e.g.,262

increased flipping in the Cheetah task). Directly using263

similarity of visual states and textual intentions (sim, cal-264

culated with Equation (13)) to re-weight rewards yields265

poor performance. While α = 0 works well across experi-266

ments, it may overly constrain exploration in some cases (see Appendix E.1).267

In pixel-based tasks, obtaining embeddings for every pixel state is computationally expensive. Instead,268

embeddings are computed every N th state, with the score applied to the following (N − 1) states.269

Smaller N values improve accuracy but increase costs. As shown in the right part of Figure 7, smaller270

N leads to fewer flips (better performance), but there is no significant difference between N = 10271

and N = 20, suggesting behaviors in Cheetah are quite smooth thus skipping 10 or 20 states leads to272

similar results.273

⭐ Using scores as direct reward signals 

Quadruped
State coverage
relative to FoG

Learned behaviorsCheetah

Figure 8: Scores outputted by founda-
tion models on pre-collected episodes
that are (not) aligned with human inten-
tions.

Using scores as step-wise reward signals: FoG uses foun-274

dation model scores to re-weight the unsupervised skill275

discovery rewards, learning diverse and desirable behav-276

iors. However, directly optimizing these scores is not ideal.277

In Figure 8, scores for pre-collected episodes aligned with278

human intentions (‘Yes’) and misaligned ones (‘No’) re-279

veal significant noise despite correct overall trends (we use280

the same textual intentions from previous experiments, i.e.281

Cheetah in Section 4.2.1 and Quadruped in Section 4.2.2).282

For example, in Cheetah, after flipping upside down at283

step 50, the agent consistently receives low scores. In284

Quadruped, scores either remain high or gradually de-285

crease as the agent moves diagonally. This noise makes286

direct score optimization unreliable. As can be seen in Section 4.2.1 and Section 4.2.2, the agent287

trained solely with such noisy reward signals (FR-SAC) learns only static postures, resulting in low288

(safe) state coverages, suggesting that directly optimizing these scores is insufficient.289

Sensitivity to score function noise: Although FoG’s CLIP-based score function is not perfectly290

accurate, it still enables the agent to learn effective behaviors. To assess how performance depends291

on the score accuracy, we inject noise by flipping the score output (0 ↔ 1) with probability b292

during training. As the score function becomes noisier, the percentage of flips in Cheetah increases293

(see Figure 9) while the state coverage remains mostly constant (all 29, except 26.7 ± 0.67 for294
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b = 0.5). These findings indicate that while FoG is robust to some noise, improved scoring enhances295

performance.296

5 Related Work297

Figure 9: Flips of
FoG with different
level of inaccuracy
injected.

Mutual information (MI) based unsupervised skill discovery aims to maximize298

MI between latent skill variables and visited states to learn diverse and distin-299

guishable skills [5, 37, 15]. However, these methods do not always encourage300

the agent to discover distant states, as the MI objective can be satisfied by301

learning simple and static skills [30, 27]. To address this limitation, [29] in-302

troduces a Distance-maximizing Skill Discovery (DSD) framework that learns303

diverse skills while maximizing the traveled distance under the given distance304

metric d. LSD [27] uses Euclidean distance between states as the distance305

metric to encourage agents to visit states that are as far apart as possible.306

CSD [29] employs a density function over visited states as the distance metric,307

to encourage agents to visit less frequently visited states. However, LSD and308

CSD only work with state-based inputs and fail in pixel-based tasks. METRA [30] instead uses a309

temporal distance function that is applicable in visual tasks as well, as the distance metric to push310

the agent to discover states that are temporally far apart. LGSD [34] utilizes foundation models311

to first convert state-based inputs to text descriptions, then uses embedding distance between text312

descriptions as the distance metric to encourage agents to learn semantic diverse skills. DoDont [11]313

employs demonstrations to guide agents in learning desirable behaviors. Specifically, it trains a314

classifier over the demonstrations of what the agent should and should not do, and uses it as a distance315

metric in DSD, encouraging agents to learn to maximize intentions of the given demonstrations.316

Some distance metrics used by different methods are summarized in Table 1. Note that FoG can be317

interpreted as using a score function extracted from foundation models as the distance metric in DSD.318

We refer to Section 3 for further details.319

FoG is most closely related to DoDont and LGSD, as both these methods aim to incorporate human320

preferences into skill discovery. However, DoDont relies on expert demonstrations, which can be321

costly [7, 31] or infeasible for tasks where human performance is limited (e.g., defining “stretched"322

or “twisted" posture for a humanoid robot). Additionally, DoDont’s classifiers require ground-truth323

state-based inputs to avoid being misled by unrelated information when learning behavioral intentions324

(see Appendix D). LGSD leverages language models [1] but is limited to state-based tasks, as325

language models cannot process visual inputs. Furthermore, querying them in a step-wise, chat-style326

manner is computationally expensive. In contrast, FoG utilizes vision-language models and extracts a327

score function, applied either once (state-based tasks) or via batch processing (pixel-based tasks),328

to re-weight the underlying skill discovery rewards. It therefore has a fast response time and works329

well in both state-based and pixel-based tasks. See Appendix B for an extended discussion of related330

work.331

6 Conclusion and Future Work332

We propose a novel unsupervised skill discovery method, FoG, guided by foundation models to333

incorporate human intentions. FoG first extracts a score function from foundation models based on334

input intentions, assigning higher preference to desirable states and lower preference to undesirable335

ones. This score function is then used to re-weight the underlying skill discovery rewards. By336

optimizing re-weighted rewards, FoG discovers not only diverse but also desirable skills. In addition,337

we also show FoG can learn skills involving behaviors that are complex and subjectively defined.338

Although FoG performs well, it is not without limitations. First, there is no guarantee that score339

functions generated by foundation models are always appropriate. Additionally, since the score340

function is defined based on individual states, FoG may struggle to capture process-based alignment.341

This limitation could be addressed by defining the score function over a sequence of states [38].342

Furthermore, we believe FoG could benefit from more advanced and task-specific foundation mod-343

els [18, 47, 26, 43]. One could also explore the performance of FoG with more complex intentions344

and more challenging tasks. Some preliminary results can be found in Appendices E.2 and E.3. We345

hope FoG inspires future efforts in incorporating human intentions in unsupervised skill discovery.346
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A Derivation of Equation (7)489

The original DSD objective is shown in Equation (2). It is crucial to define a appropriate distance490

metric to encourage agents to not only learn diverse skills but also maximize the given distance491

metric. [30] uses the temporal distance as the distance metric for the DSD objective in METRA,492

shown in Equation (9).493

sup
π,ϕ

Ep(τ,z)

[
T−1∑
t=0

(ϕ(st+1)− ϕ(st))
⊤
z

]
s.t. ∥ϕ(s)− ϕ(s′)∥2 ≤ 1, ∀(s, s′) ∈ Sadj . (9)

Now, we use the score function f(s′) to re-weight the METRA rewards to get the objective of FoG.494

The new objective (FoG) now becomes Equation (10):495

sup
π,ϕ

Ep(τ,z)

[
T−1∑
t=0

f(s′) (ϕ(st+1)− ϕ(st))
⊤
z

]
s.t. ∥ϕ(s)− ϕ(s′)∥2 ≤ 1, ∀(s, s′) ∈ Sadj . (10)

Following [12], let scaled state function ϕ̃(s) = ϕ(s)f(s). By replacing ϕ(s) with ϕ̃(s)/f(s) and496

transforming the constraint in Equation (10) (since f(s) ≥ 0), we derive Equation (11) (Equation (7)),497

which is using the score function as the distance metric in the DSD objective.498

sup
π,ϕ

Ep(τ,z)

[
T−1∑
t=0

(
ϕ̃(st+1)− ϕ̃(st)

)⊤
z

]
s.t. ∥ϕ̃(s)− ϕ̃(s′)∥2 ≤ f(s′), ∀(s, s′) ∈ Sadj . (11)

Hereby, we show that using the score function to re-weight the METRA rewards is equivalent as499

using it as the distance metric in the DSD objective.500
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B Extended Related Work501

Mutual Information Based Unsupervised Skill Discovery: FoG builds on top of unsupervised502

skill discovery methods, allowing agents to learn diverse skills without the use of hand-crafted503

reward functions. One line of research in unsupervised skill discovery focuses on maximizing504

mutual information (MI) I(·; ·) between skills Z and states S, i.e., I(S;Z) = H(S)−H(S|Z) =505

H(Z)−H(Z|S), where H(·) denotes entropy. By associating states s ∈ S with different latent skill506

vectors z ∈ Z, these methods learns diverse skills that are mutually distinct [5, 37, 15]. SASD [13]507

and EDL [10] integrate preference into MI methods by a pre-defined function and human feedback,508

and they operate only with state-based input. In contrast, FoG eliminates the need for human509

involvement and supports both state and pixel-based input.510

Table 1: Distance metrics used by different methods in the distance-maximizing skill discovery
objective. qθ is a density function parameterized by θ. Temporal distance is defined as the minimum
number of environmental steps needed for the agent to go from one state to another state. slang is the
textual description of the state s. pφ is a classifier parameterized by φ.

LSD CSD METRA LSGD DoDont Ours
||s′ − s|| − log qθ(s

′|s) temporal dis dis(s′lang, slang) pφ(s
′, s) score fn

Foundation Models in Reinforcement Learning: FoG leverages foundation models to guide511

unsupervised skill discovery in learning desirable behaviors. Thanks to success of foundation512

models [41, 19] they can now be used to provide information for RL agents. Motif [14] and513

IGE [20] employs large language models to generate exploration bonuses. Eureka [21] uses large514

language models to generate reward functions for state-based robotic tasks, outperforming human515

designed reward functions across multiple tasks. Lift [23] uses LLM and VLM to guide learning516

in MineDoji [6]. LAMP [2] and [35] utilize the similarity between pixel embedding and text-517

commands embedding, as output by a vision-language model, as the step-wise reward in visual518

robotic tasks. Results show that such step-wise signals alone barely work (matching the results we519

had in Section 4.2.4), and require either fine-tuning or special task modifications to perform well.520

Task-specific foundation models generally can achieve better performance on specific tasks, such521

as Minedojo [6] in Minecraft and EmbodiedGPT [22] in robotics. Despite this, FoG demonstrates522

that pre-trained foundation models, even without fine-tuning or any modifications of tasks, can be523

used to guide RL agents to discover diverse and desirable skills. In state-based tasks, FoG uses524

foundation models to generate a score function aligned with human intentions. Unlike Eureka [21],525

FoG: 1) avoids iterative feedback loops with the environment, as Eureka requires multiple rounds of526

feedback to refine the reward function, and 2) uses the score function to re-weight skill discovery527

rewards, whereas Eureka directly trains agents with the generated reward function.528

C Downstream Tasks529

Figure 10: Downstream
task performance.

After obtaining skills, we can train a controller to select these (frozen)530

learned skills to achieve given downstream goals. We follow the imple-531

mentation of [30], and set g ∼ [−10, 10] as the goal. During training, the532

agent receives a reward of 10 if the goal is reached. We train a controller533

to select a skill z every K = 50 steps, and the learned policy π(·|s, z)534

is executed for K steps. We use SAC [9] for training the controller and535

all hyperparameters are kept the same as the METRA codebase. Results536

are shown in Figure 10. The controller that is trained using frozen skills537

learned by FoG shows better performance at the beginning and converges538

faster than the baselines, indicating that FoG effectively learns meaningful539

skills that can be quickly adapted to downstream tasks. LSD does not540

learn useful skills thus the trained controller performs poorly. METRA541

slightly lags behind of DoDont.542
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D Analysis of DoDont543

The performance of DoDont in our paper is quite different to the one from the original paper due to544

different experimental setup. Here, we provide a more in-depth analysis of why DoDont fails in our545

experiments.546

Figure 11: Tasks with non-colored
ground that DoDont uses.

Failure in Section 4.2.1: To keep a fair comparison, we use547

pixel inputs for both the classifier and the RL part in DoDont548

(since FoG does not require ground-truth state information549

and works with only pixel inputs), which differs from the550

original experiments in the DoDont paper. In the Appendix551

D.1 of DoDont paper, authors mentioned that DoDont uses552

state information as input for the RL agent (both the policy553

and the critic). The classifier might exploit the background554

color as a shortcut to distinguish between different states rather555

than observing the agent’s embodiment, thus DoDont instead556

uses a non-colored ground (see in Figure 11). However, the557

backbone of DoDont, METRA, cannot learn diverse skills without the colored ground (since there558

will be no indication of directions). Thus, DoDont uses state-information for the RL part. During the559

training, image states are first input to the classifier to get rewards, then the corresponding compact560

ground-truth states are used to train the RL agents along with the rewards obtained from the classifier.561

Our experiments show that indeed, if pixel inputs are used for both the RL part and the classifier,562

DoDont fails (see results in Figure 4). The classifier indeed exploits the background color as a shortcut563

to distinguish between different states rather than observing the agent’s embodiment, classifies unseen564

‘Dont’ states as ‘Do’. See videos on https://sites.google.com/view/submission-fog.565

Failure in Section 4.2.2: In Figure 5, DoDont successes in Quadruped while fails in Cheetah.566

The performance of the classifier shows that it is able to accurately classifying “going left" and567

“going right", but unsure about states at the beginning. Our intuition is that such uncertainty hurts568

the exploration at the beginning, resulting in poor performance later on. See videos on https:569

//sites.google.com/view/submission-fog.570

E Additional Experiments571

E.1 Quadruped Learns to Not Flip572

⭐ Quadruped exps

State Coverage% Flips

alpha=0 could harm exploration.

(2.5k) alpha=0 alpha=0.1

% Flips 0, 7, 0 0,0, 0

State coverage 12,11,22 57,53,92

Figure 12: Results on the Quadruped
task. Setting α = 0 explores less
(lower state coverage) thus results in
worse performance (more flips).

Although we found that setting α = 0 works well in ex-573

periments presented in Section 4, sometimes it might hurt574

the exploration. Similar with experiments performed in Sec-575

tion 4.2.1, here, we train FoG to not flip in Quadruped. We576

see in Figure 12, FoG learns to not flip most of time (less than577

20%) when setting α = 0, but it almost always stays near578

the starting point and does not explore, resulting in low state579

coverage. After loosing α a bit and set it to 0.1, FoG learns to580

eliminate all flips and has a significant higher state coverage.581

E.2 Results on Franka Kitchen582

To examine FoG in more complicated tasks, we train FoG in Franka Kitchen (introduced by [8]) with583

different textual descriptions of intentions, such as ‘robotic arm is stretched’, ‘robotic584

arm is twisted’ and ‘robotic arm is on the right of the scene’. Results can be seen585

in Figure 13. By using different intentions, we see robotic arms clearly bias the movements to different586

areas. However, we did not find a way to use these skills to better solve the downstream tasks yet.587

We hope this could inspire future efforts in investigating FoG in more complex tasks.588
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Figure 13: In Franka Kitchen, different skills FoG learned with different textual descriptions of
intentions. Skills are displayed with x-y coordinates of the robotic arm.

E.3 Results on Multiple Intentions589

In Section 4, only one intention is used in FoG. In principle, multiple intentions could be used590

simultaneously to form the score function. Then, Equation (8) becomes:591

f(s) =



1, if Cosine(Es, E
1
t1) > Cosine(Es, E

1
t2) and

Cosine(Es, E
2
t1) > Cosine(Es, E

2
t2) and

...

Cosine(Es, E
n
t1) > Cosine(Es, E

n
t2)

α, otherwise.

(12)

where En
t1 and En

t2 are the nth textual descriptions of our intentions.592

Figure 14: Skills
learned by FoG with
two intentions.

Now, the score function f(s) only assigns higher values to desirable593

states when all provided intentions are satisfied. For example, we could594

ask FoG to not only learns to not flip, but also to avoid the right595

area. The textual descriptions we should use are: 1) ‘agent flips596

over’, ‘agent stands normally’; 2) ‘ground is Yellow-Orange’,597

‘ground is Green-Blue’. See the result in Figure 14, the agent does not598

learn to avoid the right part at all but it does learn to eliminate flips (not shown599

in the figure). We found that using multiple intentions restricts the exploration600

too much so that the agent might just learn to fulfill one intention and ignore601

others or ignore all of them and learns to not move at all. Using multiple602

intentions in FoG still needs more investigations and we hope the preliminary603

results and ideas presented in this section could inspire future efforts.604

F Experiment Details605

F.1 Environment Details606

State-based: HalfCheetah and Ant are from OpenAI Gym [4]. The state space of HalfCheetah is607

18-dimensional and the one of Ant is 29-dimensional. HalfCheetah has a 6-dimensional action space608

while Ant has a 8-dimensional action space.609

Figure 15: The Pup-
pet environment.

Pixel-based: Cheetah, Quadruped and Humanoid are from DeepMind Control610

Suite [42]. Following previous work [17, 28, 30], pixel-based DMC tasks are611

all with gradient-colored floors to indicate different directions. The size of612

visual observations is 64× 64× 3. The dimension of action space for Cheetah,613

Quadruped and Humanoid are 6, 12 and 21, respectively. The episode length614

is 200 for Ant, HalfCheetah and Cheetah, 400 for Quadruped and Humanoid.615

Modified Humanoid: Since none of existing unsupervised skill discovery616

methods can train the visual Humanoid agent to stand up, limiting FoG to617

showcase more interesting behaviors, such as running, etc. We created a618

‘Puppet’ task based on the DMC Humanoid environment, see Figure 15. The humanoid robot is619

pulled by a puppet anchor on the top of its head. Thus, the humanoid robot keeps standing by default620

and never falls down. The anchor also moves with the humanoid.621
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F.2 Baseline Details622

METRA: We take the official codebase2 from [30] and use default hyperparameters for all experi-623

ments performed in this paper.624

METRA+: We follow the implementation of METRA+ in the DoDont paper. For experiments in625

Section 4.2.1, we use rrun − rflip as the reward. For experiments in Section 4.2.2, we assign +1 for626

the safe region and 0 for the hazardous region.627

LSD: We take the codebase of METRA, by setting correct arguments (turning off the dual regulariza-628

tion and turning on the spectral normalization), to run LSD. Detailed instructions can be found in the629

METRA codebase.630

DoDont: We take the official codebase from [11] and implement the training of the instruction631

net ourselves. We use eight demonstrations for each task, so four for “dos" and four for “donts".632

Demonstrations are obtained from trained FoG agents and can be found on our project website:633

https://sites.google.com/view/submission-fog. We stop the training of the classifier after634

it has more than 97% of accuracy.635

DoDont+: A variant of DoDont, instead of using expert-level demonstrations, it uses demonstrations636

annotated by foundation models. In our case, we use CLIP to score frames (follow Equation (8))637

in demonstrations that are used to train DoDont, and assign frames with score of 0 in the “dos"638

demonstration to “donts" demonstrations, and vice versa. Since CLIP cannot perfectly score frames,639

some states from “dos" demonstration are moved to “donts" demonstrations, and some states from640

“donts" demonstration are moved to “dos" demonstration. After training, the classifier of DoDont+641

has about 70% of accuracy.642

FR-SAC: A soft actor-critic RL agent with using the score function as the reward function. We reuse643

the FoG codebase and set the number of skills to 1. Then, we train the skill-conditioned policy with644

the scores obtained from the foundation model (i.e. using the score function as the reward function),645

reducing to a normal RL agent.646

F.2.1 Hyperparameters Details647

We use α = 0 and N = 2 for all our experiments, unless otherwise mentioned. We train all agents in648

the same task with the same number of epochs and the performance at the end of training is reported.649

Details can be seen in Table 2. The same number of episodes is executed in each epoch, and within650

each episode the same number of environment steps is taken. We train continuous skills and the651

number of dimensions we used to train all agents in each task can be found in Table 2. We refer652

readers to read [30] for details of all used hyperparameters.

Table 2: Number of epochs and dimensions of skills we used for training agents in different environ-
ments.

HalfCheetah Ant Cheetah Quadruped Humanoid
9000 9000 2000 3000 4000
4D 2D 4D 4D 2D

653

F.3 Non-binary Score Function654

Instead of using a binary score function in Equation (8), we can also form a non-binary score function.655

f(s) =
eCosine(Es,Etext1)

eCosine(Es,Etext1) + eCosine(Es,Etext2)
, (13)

where Es is the embedding of the current pixel-based state, Etext1 is the embedding of textual656

descriptions of the desirable intention and Etext2 is the embedding of textual descriptions of the657

undesirable intention.658

2https://github.com/seohongpark/METRA
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F.4 Computation Usage659

We run our experiments on an internal cluster consisting of A100 and H100 GPUs. Each run takes no660

more than 24 hours.661

F.5 Experimental Setup for Human Judge662

In Section 4.2, we train FoG to be twisted in DMC Humanoid task. However, it is difficult for human663

to design a reward function to measure if learned skills contains more twisted postures or not. Thus,664

we ask human to be the judge to tell if FoG learns more twisted skills than the ones learned by the665

baselines.666

We pick ten skills of each method randomly, in this case, FoG and METRA, and then pair them667

randomly. Participates are asked to select the video that shows the most ‘twisted’ behaviors without668

given any other information. Please see the full questionnaire we used in https://sites.google.669

com/view/iclr-fog/questionnaire-of-humanoid.670

F.6 Foundation Models671

For state-based tasks, we query ChatGPT3 or Cluade4 to generate score functions that meet our672

requirements. For pixel-based tasks, we use pre-trained CLIP (clip-vit-large-patch14) from hugging-673

face5.674

3https://chatgpt.com
4https://claude.ai/new
5https://huggingface.co/openai/clip-vit-large-patch14

18

https://sites.google.com/view/iclr-fog/questionnaire-of-humanoid
https://sites.google.com/view/iclr-fog/questionnaire-of-humanoid
https://sites.google.com/view/iclr-fog/questionnaire-of-humanoid
https://chatgpt.com
https://claude.ai/new
https://huggingface.co/openai/clip-vit-large-patch14


F.7 Prompts Used675

F.7.1 State-based Tasks676

Input to foundation models for HalfCheetah: [Descriptions of the task, state677

space and action space] According to the given info, could you please write678

a python function to check if the cheetah is flipped over or not. If yes,679

output 1 otherwise 0.680

Output:

681
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Input to foundation models for Ant: [Descriptions of the task, state space and682

action space] The agent always starts at [0, 0]. According to the given683

info, could you please write a python function to check if the agent is in684

the north part or not. If yes, output 1 otherwise 0.685

Output:686
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F.7.2 Pixel-based Tasks687

Textual descriptions of intentions we used for Cheetah:688

• Section 4.2.1: ‘The simulated two-leg robot flips over’, ‘The simulated689

two-leg robot stands normally’690

• FR-SAC agent in Section 4.2.1: ‘The simulated two-leg robot flips over’,691

‘The simulated two-leg robot is running normally’692

• Section 4.2.2: ‘The underneath plane is Yellow-Orange’, ‘The underneath693

plane is Green-Blue’694

Textual descriptions of intentions we used for Quadruped in Section 4.2.2: ‘The underneath695

plane is Pink-Purple’, ‘The underneath plane is Green-Blue’.696

Textual descriptions of intentions we used for Humanoid in Section 4.2.3: ‘The simulated697

humanoid robot is stretched’, ‘The simulated humanoid robot is twisted’.698

G Impact Statement699

As we integrate foundation models into RL agents, the possibility of them acting in unexpected ways700

to maximize scores outputted by foundation models increases. As such, we expect research into701

safety to be paramount.702
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Answer: [Yes]707

Justification: The statements made in the abstract and introduction are mainly supported by708

experiments in Section 4.709

Guidelines:710

• The answer NA means that the abstract and introduction do not include the claims711

made in the paper.712

• The abstract and/or introduction should clearly state the claims made, including the713
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NA answer to this question will not be perceived well by the reviewers.715
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• It is fine to include aspirational goals as motivation as long as it is clear that these goals718
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2. Limitations720

Question: Does the paper discuss the limitations of the work performed by the authors?721

Answer: [Yes]722
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the paper has limitations, but those are not discussed in the paper.726
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violations of these assumptions (e.g., independence assumptions, noiseless settings,729
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implications would be.732
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and how they scale with dataset size.742
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• While the authors might fear that complete honesty about limitations might be used by745

reviewers as grounds for rejection, a worse outcome might be that reviewers discover746

limitations that aren’t acknowledged in the paper. The authors should use their best747

judgment and recognize that individual actions in favor of transparency play an impor-748

tant role in developing norms that preserve the integrity of the community. Reviewers749

will be specifically instructed to not penalize honesty concerning limitations.750

3. Theory assumptions and proofs751

Question: For each theoretical result, does the paper provide the full set of assumptions and752

a complete (and correct) proof?753

Answer: [Yes]754
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Guidelines:756
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• All assumptions should be clearly stated or referenced in the statement of any theorems.760

• The proofs can either appear in the main paper or the supplemental material, but if761
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proof sketch to provide intuition.763

• Inversely, any informal proof provided in the core of the paper should be complemented764

by formal proofs provided in appendix or supplemental material.765
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4. Experimental result reproducibility767

Question: Does the paper fully disclose all the information needed to reproduce the main ex-768

perimental results of the paper to the extent that it affects the main claims and/or conclusions769

of the paper (regardless of whether the code and data are provided or not)?770

Answer: [Yes]771

Justification: The code is provided in the supplementary materials.772
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to make their results reproducible or verifiable.779
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of a large language model), releasing of a model checkpoint, or other means that are787

appropriate to the research performed.788

• While NeurIPS does not require releasing code, the conference does require all submis-789

sions to provide some reasonable avenue for reproducibility, which may depend on the790

nature of the contribution. For example791

(a) If the contribution is primarily a new algorithm, the paper should make it clear how792

to reproduce that algorithm.793

(b) If the contribution is primarily a new model architecture, the paper should describe794

the architecture clearly and fully.795

(c) If the contribution is a new model (e.g., a large language model), then there should796

either be a way to access this model for reproducing the results or a way to reproduce797

the model (e.g., with an open-source dataset or instructions for how to construct798

the dataset).799

(d) We recognize that reproducibility may be tricky in some cases, in which case800

authors are welcome to describe the particular way they provide for reproducibility.801

In the case of closed-source models, it may be that access to the model is limited in802

some way (e.g., to registered users), but it should be possible for other researchers803

to have some path to reproducing or verifying the results.804

5. Open access to data and code805

Question: Does the paper provide open access to the data and code, with sufficient instruc-806

tions to faithfully reproduce the main experimental results, as described in supplemental807

material?808
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• The conference expects that many papers will be foundational research and not tied909
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generate deepfakes for disinformation. On the other hand, it is not needed to point out913

that a generic algorithm for optimizing neural networks could enable people to train914

models that generate Deepfakes faster.915

• The authors should consider possible harms that could arise when the technology is916

being used as intended and functioning correctly, harms that could arise when the917

technology is being used as intended but gives incorrect results, and harms following918

from (intentional or unintentional) misuse of the technology.919

• If there are negative societal impacts, the authors could also discuss possible mitigation920

strategies (e.g., gated release of models, providing defenses in addition to attacks,921

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from922

feedback over time, improving the efficiency and accessibility of ML).923

11. Safeguards924

Question: Does the paper describe safeguards that have been put in place for responsible925

release of data or models that have a high risk for misuse (e.g., pretrained language models,926

image generators, or scraped datasets)?927

Answer: [NA]928

Justification: [NA]929

Guidelines:930

• The answer NA means that the paper poses no such risks.931

• Released models that have a high risk for misuse or dual-use should be released with932

necessary safeguards to allow for controlled use of the model, for example by requiring933

that users adhere to usage guidelines or restrictions to access the model or implementing934

safety filters.935

• Datasets that have been scraped from the Internet could pose safety risks. The authors936

should describe how they avoided releasing unsafe images.937

• We recognize that providing effective safeguards is challenging, and many papers do938

not require this, but we encourage authors to take this into account and make a best939

faith effort.940

12. Licenses for existing assets941

Question: Are the creators or original owners of assets (e.g., code, data, models), used in942

the paper, properly credited and are the license and terms of use explicitly mentioned and943

properly respected?944

Answer: [Yes]945

Justification: We properly cited all codebases we used in this work and with url provided in946

Appendix.947

Guidelines:948

• The answer NA means that the paper does not use existing assets.949

• The authors should cite the original paper that produced the code package or dataset.950

• The authors should state which version of the asset is used and, if possible, include a951

URL.952

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.953

• For scraped data from a particular source (e.g., website), the copyright and terms of954

service of that source should be provided.955

• If assets are released, the license, copyright information, and terms of use in the956

package should be provided. For popular datasets, paperswithcode.com/datasets957

has curated licenses for some datasets. Their licensing guide can help determine the958

license of a dataset.959

• For existing datasets that are re-packaged, both the original license and the license of960

the derived asset (if it has changed) should be provided.961

26

paperswithcode.com/datasets


• If this information is not available online, the authors are encouraged to reach out to962
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16. Declaration of LLM usage1013

Question: Does the paper describe the usage of LLMs if it is an important, original, or1014

non-standard component of the core methods in this research? Note that if the LLM is used1015

only for writing, editing, or formatting purposes and does not impact the core methodology,1016

scientific rigorousness, or originality of the research, declaration is not required.1017

Answer: [NA]1018

Justification: [NA]1019

Guidelines:1020

• The answer NA means that the core method development in this research does not1021

involve LLMs as any important, original, or non-standard components.1022

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1023

for what should or should not be described.1024
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