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Large language models (LLMs) with billions of parameters exhibit in-context learning abilities, enabling few-
shot learning on tasks that the model was not specifically trained for. Traditional models achieve breakthrough
performance on language tasks, but do not perform well on basic reasoning benchmarks. However, a new
in-context learning approach, Chain-of-thought, has demonstrated strong multi-step reasoning abilities on
these benchmarks.

The research on LLM reasoning abilities started with the question whether LLMs can solve grade school
math word problems, and has expanded to other tasks in the past few years. This article reviews the field of
multi-step reasoning with LLMs. We propose a taxonomy that identifies different ways to generate, evaluate,
and control multi-step reasoning. We provide an in-depth coverage of core approaches and open problems,
and we propose a research agenda for the near future.

We find that multi-step reasoning approaches have progressed beyond math word problems, and can now
successfully solve challenges in logic, combinatorial games, and robotics, sometimes by first generating code
that is then executed by external tools. Many studies in multi-step methods use reinforcement learning for
finetuning, external optimization loops, in-context reinforcement learning, and self-reflection.
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1 Introduction

Transformer-based Large Language Models (LLMs) that are trained on large datasets have
achieved breakthrough performance at text generation tasks that directly build on next token
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prediction [121, 160, 172]; they are good at natural language understanding (GLUE, SQUAD,
Xsum) [104, 125, 163, 164], translation [74, 111, 136], question answering (QA) [150], and other
language generation tasks. The success of models such as ChatGPT [107] is impressive.

Transformer-based generative language models whose size is beyond hundreds of billions param-
eters are not only good at language generation, they also enable a new type of machine learning,
called in-context learning [16]. In-context learning, also known as prompt-based learning, is an
emergent ability that occurs in LLMs beyond a certain size (hundreds of billions of parameters—less,
with judicious prompting) that have been finetuned for conversational responses [172]. In-context
learning is inference-time, prompt-based, few-shot learning with instructions. As opposed to
finetuning, model parameters are not adapted by in-context learning.

Language generation tasks are solved well by LLMs with prompt-based learning. On the other
hand, tasks that require reasoning, such as grade school math word problems, are more difficult
for LLMs [31]. Spurred-on by the impressive performance on language tasks, much research has
focused on understanding the reason for the poor performance of LLMs on reasoning tasks, and how
it can be improved. Among this research, the Chain-of-thought (CoT) paper by Wei et al. [173]
stands out. This work, and later work by Kojima et al. [75], showed that adding a simple instruction
to the prompt, Let’s think step by step, can provoke an LLM to perform the required intermediate
reasoning steps to answer difficult problems in a multi-step approach. Subsequently, performance
on math word benchmarks has increased markedly. Much of the performance increase of models
such as OpenAl o1, 03 [62] and DeepSeek R1 [50, 137] is attributed to multi-step reasoning methods
as reviewed here, with reinforcement learning (RL) playing an increasingly important role, both
for in-context learning and finetuning [26, 38, 177, 182].

The line of research into multi-step LLM-reasoning was started with grade school math word
problems, with the GSM8K benchmark [31]. Soon, other reasoning domains were included, such as
reasoning about advanced math problems, computer code, robotic movement, and games. Many
works have been published that build on CoT [27]. In this article, we survey the literature using a
straightforward taxonomy. We discuss papers based on several reasoning benchmarks, as well as
directly-related follow up work.

Having started with basic math word problems, multi-step LLM reasoning approaches now
perform logic reasoning, planning, combinatorial games, and robotic actions, amongst others. Some
approaches do so by prompting the LLM to generate code that is then interpreted by external
tools. Many studies in multi-step methods are using RL, for finetuning, in context reinforcement
learning (ICRL), external optimization loops, and self-reflection. The main contributions of this
article are: (1) we provide a survey of relevant approaches in multi-step reasoning with LLMs, (2)
we propose a taxonomy based on the reasoning literature (step generation, step evaluation, and
control of reasoning steps), and (3) we formulate a research agenda for reasoning with LLMs.

This survey is organized as follows. Section 2.1 provides background information on the most
relevant developments in LLMs, including in-context learning and finetuning. Of great importance
are the benchmarks that are used in this field (Section 2.4). Next, in Section 3 we provide a taxonomy
of the field, where we discuss the main approaches in detail. Then, in Section 4 we discuss our
findings in a broader perspective. We also discuss the relation between multi-step reasoning and
work on self-reflection and metacognition. This section concludes with an agenda for future research.
Finally, Section 5 concludes the survey.

2  Background, Scope, and Selection of Papers

Reasoning has a long and active history in Al in logical inference, and in other fields, such as
commonsense and analogical reasoning [83, 100]. Indeed, some of the early criticism on LLMs was
that they could not reason, that they made obvious and basic reasoning errors, showing a lack of
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understanding. Berglund et al. [10] provide the example of a model that is trained to report that
“Valentina Tereshkova was the first woman to travel to space,” but is not able to answer the question,
“Who was the first woman to travel to space?” pointing to a lack of semantic understanding. Other
work suggests that results are less generalizable and transferable than often assumed, showing how
base-10 arithmetic skills do not transfer to base-9 arithmetic problems [178]. More recently, LLMs
are also shown to struggle with analogies and analogical reasoning [83, 100] (see Sections 3.3.3 and
4.3.3). Different kinds of reasoning play an important role in LLM research.

2.1 Scope

The question whether LLMs can reason prompted the development of the GSM8k benchmark [31]
in 2021. GSM8k is a benchmark of 8500 easy reasoning problems (of the type: “Question: Natalia
sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many
clips did Natalia sell altogether in April and May? Answer: 727). This benchmark was specifically
designed to test if LLMs can answer basic mathematical multi-step reasoning questions, or if they
can not reason at all. Initially, performance was poor, but a year later Wei et al. [173] showed that
by providing multi-step examples in the prompt—a CoT—much better performance was possible.
Many works followed, and reasoning in language models has become an active area of study. In
this survey, we focus on prompt-based multi-step reasoning algorithms. After starting with math
word problems, work has more recently been extended to combinatorial games, puzzles, robotics,
logic, and other fields of reasoning. At the end of this survey, we discuss connections to other fields,
such as self-reflection and ICRL.

Before we discuss the works on reasoning, this section reviews background terminology on LLMs.
Our overview is brief and we focus on the multi-step reasoning approaches that were inspired
by CoT. Excellent related surveys exist. For a longer overview of general LLM topics, see, for
example, the surveys Minaee et al. [99] and Zhao et al. [194]. For surveys that focus on the nature
of reasoning and its definition, see [28, 58, 189]. For surveys on evaluating logical reasoning in
LLMs, see [91, 102, 109]. For a survey on RL in reasoning, see [182], for reasoning in language
see [189], and for a survey on CoT itself, see [27].

The papers for this survey were selected as follows. We started by selecting papers on the ability
to solve math word benchmarks (as a proxy for reasoning ability), that contained the search terms
reasoning and LLM in their title or abstract, with a focus on papers that reference the CoT paper.
Although multi-step reasoning with LLMs initially was aimed at solving math world problems, it is
now wider, including benchmarks and approaches for computer code, game play, puzzles, robot
movement, and webpage navigation (see Table 2). We selected recent papers (two years prior to the
writing of the survey) that show experimental results on selected benchmark datasets.

We focus on prompt-based, in-context learning, methods based on CoT, that are used in reasoning
LLMs such as OpenAl o1 and 03 [62, 177, 182]. We include a few papers that work with external
algorithms, finetuning, or supervised learning, that have contributed significantly to the in-context
approaches.

We discuss the generic training pipeline for LLMs, we discuss how in-context learning works, and
we discuss commonly used benchmarks. We start with the generic language model training pipeline.

2.2 Language Model Training Pipeline

LLMs are typically constructed in a sequence of stages, from data preparation, through training, to
inference. The training pipeline for most LLMs is quite elaborate. We will now list a brief pipeline
of the most commonly used stages, based on the survey by Minaee et al. [99].

In training an LLM, the first stage is to acquire a large, general, unlabeled, high-quality text
corpus. Some considerations on the selection of the texts are discussed in Brown et al. [16]. The next
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stage is pretraining the transformer model [160] on this large corpus. This stage yields a generative
language model. Pretraining is done using self-supervised autoregressive training on the unlabeled
dataset (text corpus). Then the general model is finetuned to a specific (narrow) task, for example,
QA. This can be done using supervised learning with a new labeled dataset consisting of prompts
and answers (supervised finetuning, SFT), for example with low-rank optimization [57, 99, 172], or
RL [26, 147]. A specific form of finetuning is instruction tuning, to improve instruction following
for a certain task. Instruction tuning is supervised by a labeled dataset of instruction prompts and
corresponding outputs. Depending on the purpose of the model the next step is alignment of the
finetuned model with user expectations (preference alignment). Alignment is usually performed to
ensure that the model produces more ethically and socially acceptable answers, preventing, for
example, hate speech. A machine learning method that is commonly used in this stage is RL with
Human Feedback [107], Direct Preference Optimization [123], or RL with Verifiable Rewards [79].
Optionally, model training can be optimized to improve cost-effectiveness, for example, mixed
precision training [98], quantization [65], or knowledge distillation [49, 184].

Once the model has been trained in the steps described above, it can be used further in the
inference stage. Here, the model is used to provide an answer to the prompt. The inference-time
stage is post-training, no model parameters are changed anymore [16, 37]; in-context learning, or
prompt-learning, takes place in this stage.

In-context learning has a low barrier of entry. Since there is no need for expensive pretraining or
finetuning, this form of advanced prompt engineering has become a popular training method. This
is the stage on which most of the surveyed papers focus, using prompts for the LLM to perform a
complex multi-step reasoning task. The following section provides a brief introduction to in-context
learning.

2.3 In-Context Learning

In large models, beyond hundreds of billions of parameters, a new kind of machine learning has
emerged, that has been called in-context learning or prompt-learning [16]. It occurs not when the
model’s parameters are trained, but when the model is used, at inference time. Since no parameters
are changed at this stage, it is not a model training stage; in-context-learning “learns” inside the
context, or prompt, using information that is already encoded in the trained model parameters and
the prompt, not by training the model anymore. In-context learning is often able to give good results
with few examples, so-called few-shot learning, learning from the few examples in the prompt in
combination with the knowledge of the model. The large size of the model, containing rich and
general knowledge, is enabling the few-shot learning (see Dong et al. [37] for a survey).

In in-context learning, a prompt, consisting of a piece of demonstration context, is concatenated
with a query question, and is given to the language decoder model, for text generation [92]. For
example, when the task is emotion recognition in a social media post, “I missed the bus today,” can
be followed by “Ifelt so [___]”, and the model could answer with “bad”. Alternatively, for translation,
we could follow “I missed the bus today,” by “French: [___]” to request a translation [92]. The prompt
contains background information that is recognized by the model, selecting the desired model
context. In-context learning works when language models contain enough knowledge, allowing
them to generalize on the (few) examples provided in the prompt.

Contexts that contain a few examples are said to perform few-shot learning. Contexts that contain
only an instruction, with zero examples, are said to perform zero-shot learning. In-context learning
takes place at inference time, after the computationally intensive training stages where parameters
have been pretrained and finetuned, when the model is queried by the user to provide answers. No
parameters are changed anymore with in-context learning. This is quite different from the common
approach in supervised deep learning—or self-supervised deep learning—where large datasets are
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Table 1. Accuracy of GPT-3 and CoT on Popular Math Word
Problems Benchmarks [173]

Benchmark GPT-3 175B  Chain-of-thought [173]

GSM8K 15.6 46.9
ASDiv 70.3 71.3
MAWPS 72.7 87.1
SVAMP 65.7 68.9
AQuA 24.8 35.8

used during training to update model parameters with backward propagation in lengthy and costly
training epochs [48]. Indeed, in-context learning takes place fully at inference time, no parameters
are trained, instead, learning now refers to adjusting the answers to the examples in the prompt and
the internal knowledge acquired during training. Common approaches to few-shot learning, such
as metalearning, do include training and finetuning of parameters to achieve generalization, and
are computationally expensive (see, for example, [42] or [56, 63] for a survey). In-context learning,
in comparison, is computationally cheap, and has become a popular research approach.

Prompts provide a user-friendly interface to LLMs. The success of in-context learning tends
to be quite sensitive to the way in which a prompt is formulated; a new field called prompt
engineering has emerged to help human users to learn how to make LLMs do what they want them
to do [47, 121, 131, 172]. The current survey thus discusses advanced prompt engineering methods.

2.4 Multi-Step Reasoning Benchmarks

Progress in artificial intelligence is measured by benchmarks. Benchmarks define the goal that
researchers aim to achieve in their experiments. In natural language processing, a wide array
of benchmarks exist to measure progress, such as on QA (for example, CommonsenseQA [149]),
word prediction (for example, LAMBADA [110]), translation (for example, WMT 22 [74]), language
understanding (for example, GLUE [163, 164]), and text summarization (for example, Xsum [104]).

The field of LLMs is quite active. We will mention relevant benchmarks for testing the multi-step
reasoning abilities of LLMs. The research on reasoning with LLMs started with math word problem
benchmarks. The benchmark that is most frequently associated with multi-step reasoning with
LLMs is the dataset of grade school math word problems GSM8K [31]. GSM8K was created with
the aim of providing high quality, high diversity, moderate difficulty, problems and solutions in
natural language. It consists of 8500 human-written math problems. Language models struggled
to achieve good performance on this dataset before CoT was introduced. An example of a math
word task follows. Problem: Beth bakes 4 trays with two dozen batches of cookies in a week. If
these cookies are shared amongst 16 people equally, how many cookies does each person consume?
Answer:4x 2x12/16 = 6.

Other benchmarks of similar math word problems are the SVAMP varying structures bench-
marks [112], the ASDiv dataset of diverse math problems [97], the AQuA dataset of algebraic word
problems [88], and the MAWPS benchmark [76]. Table 1 summarizes the accuracy of CoT on these
basic math word problems, against the baseline of GPT-3 175B as LLM [173], as percentage of
benchmark questions answered correctly. We see that CoT performs well against the baseline of
GPT-3 on some benchmarks, but there is certainly room for further improvement on others.

In addition to the initial set of math word benchmarks, further reasoning approaches have been
introduced that test performance in other fields of reasoning. Benchmarks have been developed
on Advanced mathematical questions [32], Computer code comprehension (Human evaluation,
Spider [190], Transcoder [128]), Robotic movement (Alfworld [143], Kitchen [2]), Puzzle solving
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(Game?24 [187]), Creative writing [187]), Gaming (Checkmate problems[185], MineCraft [40]), and
Webpage navigation (WebShop [186]). These benchmarks are used by other approaches in our
survey, as we will see in more detail in Section 3.

The scope of this survey is limited to multi-step reasoning approaches. Other studies have
published more challenging benchmarks, to study the performance of CoT and self-reflection in
LLMs in puzzles and (logic) games [108, 129, 175].

In this survey we will mention benchmark results as reported by the surveyed papers, for the
sake of concreteness. However, it can be difficult to directly compare different benchmarking results,
since there may be differences in the way the experiments were conducted. Kamoi et al. [70] provide
a critical analysis of benchmarking problems in LLM reasoning. Despite these challenges, general
conclusions can be drawn. Section 4.1 provides guidance on how to choose reasoning approaches
for different problem types.

3 Step Generation, Evaluation, and Control

This survey examines how LLMs based on the transformer architecture can be prompted to solve
multi-step reasoning tasks. The CoT paper shows how a simple command can prompt an LLM to
perform reasoning steps, yielding much better performance in math word problems. Much research
has further explored this approach, trying to build stronger general problem solvers for other types
of reasoning problems.

A typical approach to solve a complex problem is to subdivide it into smaller steps and to solve
those. This approach is related to classical divide and conquer [6]. It consists of three stages. New
steps are (1) generated, (2) evaluated, and the search of the generated steps is (3) controlled in some
way. The in-context reasoning approaches that we survey follow a general three-stage pipeline [95]:

(1) Generate: prompt the model to generate reasoning steps,

(2) Evaluate: prompt the model to evaluate the generated steps,

(3) Control: prompt the model to control the number of steps that are generated and how deep
ahead the reasoning process will look.

This three-stage pipeline is the basis of our taxonomy. We will now discuss the three stages more
deeply; for ease of reference they are numbered according to the Subsection in which they are
described in more detail (3.1, 3.2, 3.3). Please also refer to Figure 1, and to Table 2, for a diagram of
the categories and subcategories of different approaches for the generation, evaluation, and control
of reasoning steps.’

(3.1) Generation. The first stage is to create a prompt that instructs the LLM to generate reasoning
steps. The problem must be split into substeps. This can be achieved with a problem-specific prompt
that contains elements of the problem, such as: “First calculate how many marbles Mary had
originally, then how many her friend has, and finally how many they have together” In general, it
is possible to prompt an LLM to fill in the blanks in a step-by-step fashion. In the papers that we
discuss, there are three main approaches for generating the step-by-step prompt, numbered with
the Subsection in which the approaches are described. First, the prompt may be handcrafted for
the problem by the researchers: (3.1.1) hand-written prompt. Second, the prompt or prompts may
come from a source that is external to the model, such as another model or dataset: (3.1.2) external
knowledge-based prompt. Third, the model itself can be prompted to generate a (series of) prompt(s)
to analyze the problem (3.1.3) model-generated prompt. As we will see, all three approaches have
their advantages and disadvantages.

We show the approaches in the Figure in their main category only. Some approaches show innovations in two categories,
and are shown twice. (Since all approaches have a generation, an evaluation, and a control aspect, all could in principle
occur three times, and all three columns can be found in Table 2).
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Scratchpad; Nye et al. [106] [supervised]
Chain-of-Thought; Wei et al. [173]
ZS-CoT; Kojima et al. [75]

Hand-written
prompt

Auto-CoT; Zhang et al. [193]]
Complexity; Fu et al. [44]
Buffer-of-Thoughts; Yang et al. [185]

Model-generated

1. Generation
prompt

Prompt using

Self-Ask; P t al. [119
external knowledge elf-Ask; Press et al. [119]

Self-Verification; Weng et al. [176]
Self-Assessment Self-Consistency; Wang et al. [170]
Codex; Chen et al. [18]
Self-Debugging; Chen et al. [21]
Fun-Search; Romera-Paredes et al. [126]
2. Evaluation T00|_ba?ed LLaMea; van Stein and Back [158]
Evaluation MathPrompter; Imani et al. [64]
Program-of-Thoughts; Chen et al. [19]
Program-Aided-Language; Gao et al. [45]

Finetuning:
Refiner; Paul et al. [113]
Self-Corrector; Welleck et al. [174]
Self-Improvement; Huang et al. [59]
External Model Robot:
Validation SayCan; Ahn et al. [2]
Inner Monologue; Huang et al. [61]
Data Augmentation:
Self-Taught Reasoner; Zelikman et al.
[191]

Complexity; Fu et al. [44]

Greedy Selection Least-to-Most; Zhou et al. [198]

Self-Consistency; Wang et al. [170]
Self-Verification; Weng et al. [176]
MathPrompter; Imani et al. [64]
Program-Aided-Language; Gao et al. [45]

3. Control Ensemble Strategy

Progressive-Hint; Zheng et al. [195]
Self-Refine; Madaan et al. [95]
Tree-of-Thoughts; Yao et al. [187]
Buffer-of-Thoughts; Yang et al. [185]
Algorithm-of-thoughts; Sel et al. [135]
Beam-Search; Xie et al. [181]

ReAct; Yao et al. [188]

Reflexion; Shinn et al. [141]

Voyager; Wang et al. [166]

Reinforce-
ment Learning

Fig. 1. Taxonomy of LLM-Reasoning approaches: prompt generation, evaluation, and control.

Generating the subproblem-steps is the first stage that is necessary for in-context learning
to perform reasoning. Each paper in our survey performs at least this stage of the reasoning
pipeline. In some of the early papers (around 2022) it is the only stage of the pipeline that is
performed.
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Table 2. Taxonomy of Approaches: Generation, Evaluation, and Control

Approach Domain  (3.1) Step generation (3.2) Step evaluation (3.3) Step control Result

Scratchpad [106] math word hand-wr/superv - greedy/1prompt  PolyEval +19% Python +21%

Chain-of-thought [173] math word hand-written - greedy/1prompt  GSMSK +39%, SVAMP +10%, ASDiv +2%, AQuA +11%,
%, CSQA +1.8%, StrategyQA +0.2%

ZS-CoT [75] math word hand-written - greedy/1prompt  MultiArith =89%, GSMSK =70%

Auto-CoT [193] math word  model-generated - clustering MultiArith +0.37%, GSMBK +1%, AddSub +3.5%

AQUA +0.7%, SingleEq +0.4%, SVAMP +0.6%,
CSQA +1%, StrategyQA +0%, Letter +0.7%, Coin +2.7%

Complexity [44] math word hand-written self-consistency greedy/1prompt  GSMSK +7%, MultiArith +3%, Penguins +3%

Self-ask [119] math word ext knowledge LLM multi-hop q. Bamboogle =60%, 2Wiki =40%, Musique =15%

Self-verification [176] math word hand-written back-verify ensemble GSMSBK +4%, SingleEq +2%, AddSub +4%,
MultiArith +3%, AQuA +3%, SVAMP +1%

Self-consistency [170] math word hand-written majority ensemble GSMBK +187%, SVAMP +11%, AQuA +12%,
StrategyQA +6%, ARC-c +4%

Codex [18] code - tool-based - HumanEval =70%

Self-debugging [21] code hand-written tool-based greedy Spider +9%, MBPP +12%, TransCoder +12%

Fun-search [126] code hand-written tool-based evolutionary alg  cap set 8 =512

LLaMEa [158] code hand-written tool-based evolutionary alg ~ BBOB +11%

MathPrompter [64] math hand-written tool-based ensemble MultiArith =92%

Program-of-thoughts [19] math word hand-wr, Codex Python+Consist.  split reason/cmput  GSMsK =71%, SVAMP =85%, ASDIV =85%,
AddSub =92%, MultiArith = 99%

Program-aided-lang [45] math word hand-wr, Codex NLP/Python ensemble GSMSK =72%, SVAMP =79%, ASDIV =79%,
SingleEQ =96%, SingleOP =947, AddSub = 927,
MultiArith = 99%, Penguins = 93%

Refiner [113] math word finetune critic model gen/crit feedback  SvAMP =727, GsMsK =78%

Self-correction [174] math word finetune corrector model gen/corr feedback  MathProgSynth =24%, LexConstrGen =987,
ToxicityControl =0.0%

Self-improvement [59] math word finetune self-assessment CoT/consistency = GSMsK =827%, DROP =83%, ARC-c =90%,
OpenBookQA =94%, ANLI-A3 =68%

Say-can [2] robot model-generated external model greedy Kitchen =317

Inner-monologue [61] robot hand-written various greedy TableTop =90%, Kitchen =60%

Self-taught-reasoner [191] math word finetune augmentation greedy/feedback  CommonsenseQa =727

Least-to-most [198] math word hand-written self-assessment curriculum SCAN =99%

Progressive-hint [195] math word model-generated self-assessment stable prompt  AddSub +2% MultiArith +0%, SingleEQ +2%,
SVAMP +3%, GSM8K +5%, AQUA +1%

Self-refine [95] math word model-generated self-assessment greedy/feedback  Sentiment +32%, Dialog +49%, CodeOptim +8%,

CodeRead +28%, MathReason +0%,

AcronymGen +25%, ConstrainedGen +30%

Tree-of-thoughts [187] puzzles model-generated self-assessment BFS/DFS Game24 =74%, CreativeWriting , Crossword
Buffer-of-thoughts [185] math word thought template self-assessment buffer manager  Game24 +11%, GeoShapes +20%, Checkmate +51%
Algorithm-of-thoughts [135] puzzles model-generated self-assessment in-context RL  GSM8K =89%, StrategyQA =84%, Crossword
Beam-search [181] math word model-generated self-assessment Beam Search GSMSK +6%, AQUA +9%, StrategyQA +5%
ReAct [188] action external knowledge self-assessment reinf learning  ALFWorld =34%, WebShop =10%

Reflexion [141] decision model-generated ext model reinf learning  HumanEval =91%

Voyager [166] Minecraft model-generated Minecraft reinf learning 15 x faster

Reported benchmark results: =’ is absolute score, *+’ is improvement to a baseline.

(3.2) Evaluation. After the prompt has been generated and the model has answered it, the next
stage is to evaluate the quality of this answer. Such evaluation is often necessary to improve the
answer and perform well on the benchmark. Again, we see three main approaches for substep
evaluation. First, the steps may be evaluated by the model itself: (3.2.1) self-assessment. Second, an
external program can be used to evaluate the steps. For example, when the steps are expressed
as computer code, an external interpreter or compiler can be used to check the validity of the
outcome: (3.2.2) tool-based evaluation. Finally, an external model can be used, LLM or otherwise.
For example, in robotics, an external physics model can determine if certain actions are physically
possible: (3.2.3) external model validation.

(3.3) Control. The third stage is control. A reasoning process that consists of multiple steps is a
sequential decision process [89]. When a single chain of reasoning steps is generated, the control
flow of the reasoning process is simple: greedily evaluate the first step and then the next one, if
present. The control flow of the reasoning process may also be more intricate. Some reasoning
problems can be divided into multiple subproblems. To execute, evaluate, and combine the results
of all substeps, a separate controller may be needed. This controller can be a prompt or an external
algorithm.
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Again, we distinguish three approaches. Most papers use a (3.3.1) greedy selection approach:
a single prompt with a single chain of steps is generated, and these steps are directly executed
and followed. The second approach is to generate an (3.3.2) ensemble strategy of reasoning steps,
evaluate them, combine the individual results, and present them as the result of the ensemble.
Finally, a full tree-search or a (3.3.3) RL algorithm can be used as scaffolding [116]. In this case,
when a step is followed and evaluated, the LLM can roll back and try a different reasoning step.
Going further, a full RL approach can be used [117, 147] to find an optimal policy for the sequential
decision process. In general a Markov Decision Process of state, action, transition, and reward
function can be specified, and step control can become a process where prompts are generated
dynamically under the control of an external RL algorithm, or as ICRL [82, 101].

Taxonomy Table. Table 2 lists the main papers of this survey. We show the domain they work
on, the type of prompt generation, the evaluation of the result, and the control method. These
three categories of approaches—indicated by their Sections (3.1) generation, (3.2) evaluation, (3.3)
control—are shown in the table as groups divided by horizontal lines. The first group in the Table,
from Scratchpad to Self-ask, focuses on creating a prompt that generates the reasoning steps. The
entries in the cells of this column are shown in bold, highlighting the focus of the approaches. The
approaches in this group are the start of the field of LLM-reasoning. The CoT approach is especially
an inspiration for many works. The prompts are often written manually by the researchers for
each problem; the steps are encoded in one prompt, and step control is greedy. There is no specific
evaluation of the steps, other than comparing results to the benchmark. The Scratchpad approach
is special in that it uses supervised learning, not prompt-learning; the work showed that LLMs can
generate internal reasoning steps by supervised learning, paving the way for in-context works.

The second group, from Self-verification to Self-taught-reasoner, focuses on evaluation of the
reasoning steps in the prompt. This column is shown in bold in the table. The approaches in this
group aim to improve the CoT results by reducing error accumulation that occurs when multiple
steps are taken in a reasoning chain. A variety of step control methods is used by these approaches,
which is discussed in more detail later. Note that not all approaches use natural language problems.
For example, the subgroup of Codex to Program-aided-language focuses on formal languages.
They generate code or math equations, typically in Python, to formalize the steps of the reasoning
problem, or as result of the task. LLMs that are trained on computer code achieve good performance
at code generation, Chen et al. [18] report up to 77% accuracy on the HumanEval dataset. Gao
et al. [45] leverage this ability by translating problems into code, achieving between 61% and 99%
accuracy on various mathematics tasks. The use of code also allows the approaches to call external
programs such as interpreters and debuggers to evaluate the correctness of the reasoning steps
that are generated.

There is also a special subgroup, Refiner to Self-improvement, that uses finetuning in addition to
prompt learning. Here, new data is generated based on reasoning exemplars, which is then used to
further train the model. The extra data is often generated as a separate dataset, sometimes called
critic or corrector.

There are two approaches, Say-can and Inner-monologue, whose application domain is control
of robot movement. Robotic movement is constrained by the laws of physics (both in the body of
the robot as in aspects of its environment). The laws of physics are learned and used to ground the
reasoning steps in reality (to reduce hallucination).

The third group, Least-to-most to Voyager, addresses step control (shown in bold in this column).
Whereas in the previous approaches the reasoning steps are written in a single, static, prompt, these
approaches generate the steps in multiple, dynamic, prompts. This allows control of the space of
reasoning steps. Various search control approaches are used, all in the form of an external algorithm
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Fig. 2. Example of input and target for supervised learning on a long addition problem of adding two numbers.
The carry is recorded in the C: digit. Comments (after #) are not part of the learning target (adapted from [106]).

that performs calls to the LLM with different prompts. The control methods range from simple
greedy and depth-first search to elaborate beam search and RL schemes.

The last column of the Table summarizes reported benchmark results. The "=’ symbol indicates
absolute scores on the benchmarks, while "+’ indicates relative improvement in percentage points
over a baseline LLM, typically GPT-3.5. Results vary strongly, both between approaches and within
a single approach between benchmarks. Also, different LLMs were used, from early stage to more
mature models, open and commercial, and the baselines differ. For some benchmarks, such as the
Creative Writing benchmark in Tree-of-thoughts, results are best reported qualitatively. The source
papers provide more measurement details, Section 4.1 discusses when to which approach to use for
different applications.

In conclusion, we see a diverse array of methods that often achieve high performance in reasoning
on their respective domains. To better understand the approaches, we discuss them in more detail,
starting with the generation of steps.

3.1 Generation of Steps

Originally, LLMs performed poorly on math word problems such as GSM8K [31]. Different ap-
proaches were tried unsuccessfully, for example scaling up the size of the LLM [122]. The LLM
architecture, based on transformers, is designed to produce a single token. When we prompt such
an architecture to produce an answer, it does so. What we should do instead, is to prompt it to
follow intermediate steps, answer those, and thus work toward the final answer, just as a student is
taught to break down a complex problem into smaller steps. We should guide the model to explicitly
produce intermediate steps, and combine the intermediate results. This idea was used by Nye et al.
[106] in Scratchpads, a transformer model that performs multi-step computations by asking it to
emit intermediate computation steps into a scratchpad. They train the model by supervised learning
(not prompt-based in-context learning). Figure 2 shows an example. On experiments with addition,
polynomial evaluation, and Python code execution, versions that produced the intermediate steps
on a scratchpad performed considerably better than versions that did not, going from 35% to 95%,
from 32% to 51%, and from 30% to 42% accuracy, respectively.

If supervised learning can produce intermediate steps, would prompt learning be able to do so,
too?

3.1.1 Hand-Written Prompt. This question was studied by Wei et al. [173], amongst others. A
basic way to instruct an LLM to generate steps by prompt-learning is to manually write a prompt
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Few-Shot Prompting Few-Shot CoT Zero-Shot CoT Program-aided Language Models
Q: Roger has 5 tennis balls. He Q: Roger has 5 tennis balls. He Q: Lisa has 23 apples. Q: Roger has 5 tennis balls. He buys two cans of 3
buys two cans of 3 balls. buys two cans of 3 balls. If she ate 20 and bought 6 more, balls. How many tennis balls does he have now?
How many tennis balls does he How many tennis balls does he How many apples does she have?
have now? have now? A: Rogers started with 5 balls.
tennis_balls = 5

A:The answeris 11. A: Rogers started with 5 balls. Let's think step by step. 2 cans of 3 balls each is

2 cans of 3 balls each is 6 balls. bought_balls = 2 * 3
Q: Lisa has 23 apples. 5+6=11.Theansweris 11. tennis balls. The answer
If she ate 20 and bought 6 more, answer = tennis_balls + bought_balls
How many apples does she have? Q: Lisa has 23 apples.

If she ate 20 and bought 6 more, Q: Lisa has 23 apples. If she ate 20 and bought 6 more,

§ ) L How many apples does she have? ) L ) L How many apples does she have? )
A:The answer is 27. x A: Lisa started with 23 apples. A: Lisa started with 23 apples. A: Lisa started with 23 apples.
) She ate 20, so she has 23-20 She ate 20, so she has 23-20 apples = 23
=3 apples left. She bought 6, =3 apples left. She bought 6, She ate 20 and the bought 6

503+ 6=9.The answer is 9. s03+6=09. eaten = 20; bought = 6
anwer = apples - eaten + bought

~
A\

Fig. 3. Different CoT prompting techniques. At the top the prompts, at the bottom the answers. When shown
the longer example prompt, the LLM follows the longer example when answering the question (Few-Shot
CoT [173]). Without example answer and using Let’s think step by step results in similar answers (Zero-Shot
CoT [75]). With Program-aided-language models [45] similar reasoning can be achieved.

for the LLM to follow the reasoning steps. When the LLM is prompted to rephrase information
from the question as intermediate reasoning steps in its answer, the LLM performed much better
than when it was prompted to answer a math problem directly, without reproducing information
from the question in its answer in multiple steps. The example from the CoT paper is shown in
Figure 3. Table 1 shows that the largest accuracy increase is on GSM8K, from 16% to 47%.

The idea that an LLM can be made to follow step-by-step instructions, and the performance
improvement by CoT have caused much excitement and have opened up further research on
reasoning with LLMs. In the original paper the prompts were handwritten by the researchers for the
individual types of problems, and evaluations are conducted with benchmarks (not by an LLM).? In
a later work the prompts were generated automatically by the LLM [193], and evaluated.

Kojima et al. [75] go a step further. They show that the addition of a single text to the prompt
(Let’s think step by step) significantly improves performance. Since this text does not contain
problem-related elements, it is as a form of zero-shot learning. Figure 3 (third column) compares the
approaches. Experiments further show that with this addition to the prompt significant performance
gains are also achieved on other reasoning benchmarks, including arithmetic, symbolic, and logical
reasoning (achieving 70% accuracy on GSM8K/PaLM when Self-consistency is also included).

The CoT idea itself is inspired by earlier work where natural language steps are generated for
arithmetic reasoning [31, 88], and the use of formal languages for reasoning [3, 20, 23, 127].

3.1.2  Prompt Using External Knowledge. CoT prompts are written manually, by the researchers,
an approach that does not scale. We can use external information about the problem to improve
the prompt. Press et al. [119] study how subproblems are related to the main problem, which they
call compositional reasoning. They study how often a model is able to answer the subproblems,
but not the overall problem. This difference is called the compositionality gap. They find that in
GPT-3, as model size increases, the single-hop QA performance improves faster than the multi-hop

The CoT idea is about prompt generation, not about the evaluation or the search control of the reasoning steps. Hence, in
Table 2 CoT is labeled as greedy without an evaluation.
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performance: while more powerful models memorize and recall more factual knowledge, no
improvement in their compositional reasoning occurs. The ability to reason does not depend on the
size of the model.

Subsequently, a method called Self-ask is proposed, that asks elicitive follow-up questions (like
CoT, but with the follow up: prompt), that the model then answers. Self-ask can also use an external
search engine to answer intermediate prompts, instead of the model. The initial subquestion is
fed into the search engine, and the answer is processed by the model, which generates another
subquestion, and so on, until it produces the final answer. Self-ask was tested on three benchmarks
that were specifically designed for multi-hop questions. Although it performs only a few percentage
points better than vanilla CoT, it showed how external knowledge can be used in a reasoning
setting.

3.1.3 Model-Generated Prompt. In addition to manually writing prompts or using external
information, we can also let the LLM itself study the problem to write the best reasoning-prompt.
An example of such self-improvement is Auto-chain-of-thought [193]. This approach builds on the
observation by Kojima et al. [75] that LLMs are zero-shot reasoners. First, Auto-chain generates
specific questions for a given dataset and partitions them into clusters. Then an external algorithm
uses the model to generate examples that are sampled for diversity. The constructed demonstrations
augment the in-context prompt. This approach also performed a few percentage points better than
hand-written CoT prompts, on 10 benchmarks, using GPT-3 (see Table 2).

Fu et al. [44] introduce Complexity-based prompting. Inspired by CoT and Self-consistency,
their work specifically studies the impact of the complexity of the reasoning chain (the number
of steps), and introduces a related reasoning approach (Complexity-based prompting). They find
that prompts with the largest complexity perform best, and also that answers with the highest
complexity are the best. Complexity-based prompting achieves somewhat higher performance on
three math reasoning benchmarks: GSM8K improves 7 points, MathQA 6 points, and the Penguins
benchmark from Big Bench Hard improves 3 percentage points.

We see that the initial approaches showed larger improvements than the later approaches. It is
time to look at another category of approaches, that focus on the evaluation of reasoning steps.

3.2 Evaluation of Steps

After discussing prompts for the generation of reasoning steps, the next stage in the generation/eval-
uation/control pipeline is evaluation of the results of the steps. This stage focuses on reducing error
accumulation of multi-step reasoning chains. We will start with approaches where the same model
performs step-generation and step-evaluation.

3.2.1 Self-Assessment. When LLMs are prompted to perform reasoning steps, they perform a
sequence of steps and predict multiple tokens. Performing a sequence of steps makes them sensitive
to mistakes and vulnerable to error accumulation (logical, factual, ethical, or otherwise) [176, 179].
Several methods have been developed to prevent error accumulation. One approach is to create a
new model to separately evaluate the results. Shen et al. [138] and Li et al. [87] train an external
verifier to check results. In contrast, Weng et al. [176] propose an automated approach using
evaluation by the same LLM, called Self-verification. They note that human reasoning also suffers
from the problem of accumulating errors, and that in human reasoning we frequently revisit our
thought process to verify the accuracy of our reasoning steps. The LLM is prompted to use the
conclusion of the CoT reasoning chain as a condition for solving the original problem and then
compare the answer, going back to the original question. The LLM is given variations of its own
conclusion and is instructed to choose the one with the highest similarity to the original question.
(Note that there can be feedback issues using an LLM to evaluate itself, for a discussion see Zheng
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Few-Shot CoT Self-consistency

e

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how
many cars are in the parking lot?

A:There are 3 cars in the parking lot already. 2 more arrive.
Now there are3 + 2 = 5 cars. The answer is 5.

Q:Janet’s ducks lay 16 eggs per day. She eats three for breakfast every
morning and bakes muffins for her friends every day with four. She sells the
remainder for $2 per egg. How much does she make every day?
A:

. i J

Output

This means she uses3+4=7
eggs every day. She sells the

Reasoning 1 Reasoning 2 Reasoning 3

Shehas16-3-4 This means she She eats 3 so she
=9eggs left. sells the remainder| | has 16-3 =13 left.

remainder for $2 per egg, soin | - | So she makes for$2%*(16-4-3)| | Then she bakes,

total shesells 7 * $2 =$14 $2*9=$18 per = $26 per day. s0 13-4=9eggs.

per day. The answer is $14. day. The answer is $26. 9eggs*$2=%18.
The answer is $18. The answer is $18.

Output

The answer is $18.

Fig. 4. Self-Consistency (Adapted from [170]), showing majority voting over answers that the model produces.

et al. [196].) Experiments are reported on GPT-3 [18] and on Instruct-GPT [107]. The accuracy of
CoT was improved by a few percentage points on arithmetic and general reasoning tasks (GSM8K
65%, AQUA 48%, SVAMP 77%).

A popular related approach is Self-consistency [170]. Self-consistency is a straightforward
ensemble approach (a well-known machine learning technique to make a strong learner out of
multiple weaker learners [13, 130]). Greedy single-path decoding is replaced by sampling diverse
reasoning paths, evaluating them, and selecting the most consistent answer. Self-consistency asks
the LLM to simply perform the same query multiple times, and takes the majority-vote of the
answers, or decoding paths. Self-consistency works since complex reasoning problems typically
allow different reasoning paths that lead to the correct answer. Figure 4 summarizes the approach.
Self-consistency has been evaluated on arithmetic reasoning, commonsense reasoning and symbolic
reasoning, on a variety of LLMs, including GPT-3 [16, 25, 151, 153]. Self-consistency further improves
the performance of CoT by 10-20 percentage points, and has been used as a baseline in many of
the other approaches in this survey.

3.2.2 Tool-Based Validation. Another approach to improve the accuracy of evaluating the rea-
soning steps is to switch from a natural to a formal language. The advantage of a formal language
is that it is less ambiguous than a natural language. Examples are computer languages, such as
Python, or mathematical equations. Using a formal language for reasoning is a popular approach,
and we discuss seven papers.® Many approaches generate the steps in Python, and the code can
then be evaluated by a formal evaluator, such as a compiler, debugger, or interpreter.

%In addition to the languages discussed in this survey, there is a long tradition in Al of using formal reasoning based
on logic. The interest in CoT has also stimulated research into external symbolic logic solvers that are called by the
LLM [51, 109, 132, 145, 148, 183, 197], or where LLMs transform the problem in a logic problem. The use of LLMs for
generating formal languages is further discussed in Section 4.4.

ACM Comput. Surv., Vol. 58, No. 6, Article 160. Publication date: December 2025.



160:14 A. Plaat et al.

LLMs have been quite successful in generating computer code from natural language prompts.
Chen et al. [18] introduced Codex, a GPT model that was trained on publicly available code in
the repository GitHub. A production version of this work was introduced under the name GitHub
Copilot. Codex is often able to generate correct programs from descriptions in natural language,
such as commentary strings.

The work on Codex is used as a basis for further research on reasoning in LLMs. Human
programmers, when writing code, typically follow a cycle of writing some code, executing it to
look for errors, and then using the feedback to improve the code. This step-by-step approach is
followed in Self-debugging [21]. It follows the same steps of code generation, code execution, and
code explanation. Self-debugging is able to identify mistakes in its own code by investigating the
execution results, and can also provide an explanation of the generated code, in natural language.
It achieves strong performance: the text-to-SQL Spider benchmark improves by 9 points, and the
C++ to Python Transcoder benchmark improves by 12 percentage points.

Several works generate working code tuned for solving specific problems automatically, without
human feedback. Romera-Paredes et al. [126] introduced FunSearch, an approach that integrates
formal methods and LLMs to enhance mathematical reasoning and code generation. FunSearch
uses a genetic approach with multiple populations of candidate solutions (programs), which are
evaluated using a function depending on the problem specification. In addition to the evaluation
function, also an initial program is given to the LLM in the first prompt. After evaluating a number
of generated programs from the starting prompt, a new prompt is created, in an iterative fashion,
combining a selection of sampled programs sorted according to their evaluation score, and the
LLM is requested to generate a new program. Another work leverages evolutionary computation
methods to generate and optimize evolutionary algorithms [158]. This approach, LLaMEA (Large
Language Model Evolutionary Algorithm), utilizes LLMs to design and optimize evolutionary
algorithms. The approach uses LLMs to generate initial algorithmic structures, which are then
refined through mutation and selection. This enhances the efficiency of algorithm design, particu-
larly in fields requiring innovative and adaptive solutions, improving accuracy on the Black-Box
Optimization Benchmark suite [52] (BBOB) by 11 percentage points. A key difference between
FunSearch and LLaMEA is that LLaMEA uses a sample-efficient elitism strategy by iteratively
improving the best-so-far solution, requiring significantly fewer prompt evaluations than the
large-population strategy proposed in FunSearch. Evolutionary approaches let the LLM discover
new algorithms, solving existing problems in new ways, or solving entirely new problems. Another
method, Evolution-of-heuristics [90], was proposed for evolving code snippets for guided local
search to solve combinatorial optimization problems, such as the Traveling Salesperson Problem.

To improve prompt-based reasoning, Codex is used in an ensemble approach named Math-
Prompter [64]. This approach generates multiple algebraic expressions or Python functions, which
then solve the same math problem. The results are compared, just like in Self-consistency and
Self-verification, raising the confidence level in the results. MathPrompter achieved state-of-the-art
accuracy on the MultiArith dataset (78.7% — 92.5%), evaluated on GPT-3 175B.

Two other approaches that use a formal language are Program-of-thought [19] and Program-
aided-language [45]. Both approaches use the LLM to generate Python and then use an interpreter
to evaluate the result. The approaches are similar although Program-aided-language uses generic
prompts, and has been tested on more benchmarks. Figure 3 (fourth column) illustrates the Program-
aided-language approach. When the evaluation of the reasoning steps is off-loaded to the Python
interpreter, decomposing the natural language problem into executable code steps remains the
only task for the LLM. (Earlier work in math word problems showed how to decompose a problem
and reach an answer [88].) Gao et al. [45] provide extensive experimental evidence about the
synergy between the neural LLM and the symbolic interpreter. Experiments are performed on 13
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mathematical, symbolic, and algorithmic reasoning tasks, achieving more accurate results than
much larger models (for example, Program-aided-language reported 72% on GSM8K and 93% on
Penguins).

3.2.3 External Model Validation. We have seen many examples of successful prompt-based
in-context reasoning and evaluation (at inference time—where no parameters were changed). We
will now look at reasoning approaches that follow a more traditional parameter training approach.
All approaches evaluate the output of the model and generate corrective data. That data is then
added to the training pipeline, and the model is subsequently finetuned.

Finetuning. The Refiner approach [113] uses a generator model and a critic model that provide
fine-grained feedback on reasoning errors. The generator generates multiple reasoning hypotheses,
and the critic evaluates results by randomly selecting a hypothesis for feedback. The generator
model is then finetuned based on its reasoning errors. A small supervised model is used to overcome
the cold-start problem. The approach achieves 78% accuracy on GSM8K and also works well on
related problems.

Welleck et al. [174] follow a similar approach, which they call Self-correction. Here, the corrector
is a separate model specialized in refining the outputs of the generator. Unlike Refiner, where the
generator is finetuned based on the critic, Self-correction finetunes the corrector to rectify errors
in the hypotheses produced by the generator. Self-corrector is not applied to math word problems,
but to program synthesis, where a small corrector reduces toxicity to 0%.

A third finetuning approach is Self-improvement [59]. Here, too, the base model data is augmented
by LLM-generated rationales, and then finetuned. The authors achieve 82% accuracy on GSM8K
and similarly high scores on QA and adversarial benchmarks. Noteworthy in all three finetuning
approaches is that LLMs are capable of improving themselves by training on their own generated
output, and that stability problems from feedback loops are overcome.

Dataset Augmentation. The final finetuning approach that we discuss uses dataset augmentation.
In Self-taught-reasoner [191], an intermediate reasoning is generated, called a rationale. Rationales
are shown to be valuable across diverse tasks such as mathematical and commonsense reasoning,
code evaluation, social bias inference, and natural language inference (NLI). First an augmenta-
tion dataset is created by attempting to solve the original dataset. Next, the dataset is augmented
using rationalizations and ground-truth answers to problems the model failed to solve. Finally, the
model is finetuned on the combined dataset. Self-taught-reasoner performs comparably (72%) to
finetuning a 30 times larger model on CommonsenseQA.

Reasoning about Robot Behavior. In addition to math word problems, computer code, and common
sense, prompt-based reasoning has also been used to improve robot behavior. Language models
contain a large amount of information about the real world [2]. In theory, this should allow them
to reason realistically about robotic behavior. However, the models do not have knowledge about
specific embodied aspects of a particular robot. If we could compare a Scratchpad-like list of
intermediate reasoning steps with a list of possible movements of the robot in its environment,
then we could prevent the model from suggesting impossible joint movements and actions, and
prevent failures.

Say-can [2] learns a value function [68] of the behavior of a robot and its environment using
temporal difference RL [146]. This value function is combined with prompt-based reasoning by
the language model, to constrain it from suggesting impossible actions. The goal of Say-can is to
ground language in robotic affordances. In contrast to Scratchpad, which used supervised learning,
the affordance model is learned interactively by RL, and then applied using prompt-based learning
on the LLM. The language model has high-level semantic knowledge about the task (Say). The
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learned affordance function (Can) provides an environment-grounding on what is possible. Say-can
achieves a 31% success rate on 101 real-world robotic kitchen tasks.

Where Say-can learns affordances as a separate function, Inner-monologue [61] formulates
robotic planning directly as part of the language prompt, internally. The input consists of
many elements: textual descriptions from InstructGPT [16] for multi-step planning, scripted
modules for object recognition, success detection, task-progress scene description, and language-
conditioned pick-and-place primitives, similar to CLIPort [142]. The language feedback that
is thus generated significantly improves performance on three benchmarks, achieving 90%
accuracy on simulated and real table top rearrangement tasks and 60% on the kitchen environment.
There are many other studies into robotic behavior. An approach related to Inner-monologue
is Chain-of-tools, which proposes a plan-execute-observe pipeline to ground reasoning about
tool behavior [139, 140].

This concludes our discussion of the second stage of the reasoning pipeline, evaluation of the
reasoning steps.

3.3 Control of Steps

The third stage is control. This stage controls how many sub-steps are generated, and how deep
into the future the reasoning chain is generated. There are three main approaches: (3.3.1) greedy
selection, which generates a step and then follows it, (3.3.2) ensemble strategy, which generates a
set of possible next steps, and (3.3.3) a (RL) search which generates multiple options for the steps,
traversing a search tree with backtracking, controlling an exponential search space [182].

3.3.1 Greedy Selection. Most earlier works on prompt-based reasoning follow the greedy ap-
proach: generate a single prompt with a single sequence of steps and follow them. Among the
greedy reasoners are CoT, Auto-CoT, and Zero-shot CoT. Inner Monologue and Say-Can also use
greedy reasoning.

In Least-to-most prompting [198], the key idea is to break down a complex problem into simpler
subproblems and then solve these in sequence, explicitly encoding them in the prompt, related to
Complexity-based prompting. In Least-to-most the answers to previously solved subproblems help
in finding the answer, as a curriculum [8]. On symbolic manipulation, compositional generalization,
and math reasoning, Least-to-most prompting generalizes well, achieving 99% accuracy on a
compositional generalization benchmark.

3.3.2 Ensemble Strategy. The second kind of reasoning control is based on an ensemble of
(sequences of) reasoning steps. For most problems, multiple different options exist for the next
step. When all or some of these are generated and evaluated, then the consensus result can be
reported as the outcome of an ensemble of steps. Self-consistency [170] and Self-verification [176]
(in Section 3.2.1) are popular ensemble approaches to evaluate the results of reasoning steps, in
which greedy single-path decoding used in CoT prompting is replaced by a diverse set of paths.
Taking this further, Chain-of-experts uses a mixture-of-experts ensemble for complex combinatorial
problems [180]. Program-aided-language and MathPrompter also use the ensemble approach. The
ensemble approach is popular in reasoning with LLM.

3.3.3  Reinforcement Learning. In reasoning, often multiple valid steps are possible, but pursuing
all possibilities over multiple trajectories may lead to an infeasible number of possibilities. The
third kind of reasoning control is to use a full-fledged controller that can traverse a tree, or perform
RL to do so [68, 117, 147]. When decomposing the problem, multiple alternative steps are generated
that can be searched multiple steps into the future. Then, backtracking can be performed, allowing
alternative steps to be tried.
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Fig. 5. Reasoning structure of Simple prompting (a), CoT (b), Self-Consistency (c), Tree-of-Thoughts (d) and
Buffer of Thoughts (e); Prompts in (a) consist of an instruction, and, perhaps, few-shot examples of answers,
providing no reasoning guidance; CoT (b) guides the model with few-shot examples of reasoning steps;
Self-Consistency (c) takes the majority vote of existing answers in the model; Tree-of-thoughts (d) uses an
external prompt-optimizing algorithm to guide the model to perform a tree search over reasoning steps,
exploring multiple alternatives; Buffer-of-thoughts (e) uses a problem distiller that stores high-level thoughts
distilled from different problems in a meta-buffer, which is actively managed for capacity.

Where greedy and ensemble processes can be controlled with a prompt by the LLM, this third
category is more complex, and an external algorithm is used to control the reasoning process. The
external algorithms call the LLM as a subroutine prompting it to perform requested tasks. The
external algorithm allows more complex reasoning control, but we are now beyond prompt-based
self-reasoning: control has been given to an algorithm that is external to the LLM and external to
prompt-learning.

We start our discussion of control strategies with depth-first and breadth-first search, then go
to beam search, and then to full RL. A complex reasoning space can be traversed with a search
algorithm. Tree-of-thoughts [187] uses breadth-first or depth-first search to dynamically follow
different reasoning steps. Tree-of-thoughts calls the LLM with two different types of prompt: to
generate the sub-problems, and to evaluate them. Together, the trio of generation (LLM-prompt-1),
evaluation (LLM-prompt-2), and control (search-algorithm) allow systematic exploration of the
space of reasoning steps with look-ahead and backtracking. The authors compare their approach
to CoT and Self-consistency on the Game of 24, Creative writing, and Mini crossword, achieving
an accuracy of 74% on a Game of 24 task. The other tasks are evaluated qualitatively. Figure 5
illustrates the different reasoning structures.*

Another approach, Buffer-of-thoughts [185], goes a step toward metareasoning [46]. It introduces
a meta-buffer that stores high-level thought-templates. These thought-templates are derived from a
variety of tasks by a problem distiller. They are then instantiated for specific tasks. To address size
restrictions of the LLM context window, the meta-buffer is managed for capacity and thoughts can
be combined. Figure 5 compares the Buffer-of-thoughts approach to other approaches such as CoT

4A similarly named approach is Graph-of-thoughts [11]. Graph-of-thoughts allows more general reasoning graphs, providing
a formal framework, where the different elements can then be specified manually.
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and Tree-of-thoughts. Buffer-of-thoughts outperforms other methods in puzzles such as Game of
24 (by 11%) and checkmating (by 51%). Thought templates are related to metacognition (thinking
about thinking), which is further discussed in Section 4.3.3.

A related search method is Beam-search-for-reasoning [181]. When the space of possible reason-
ing paths is large, Beam-search searches a promising part of this space. It uses self-evaluation to
control exploration and to evaluate (decode) reasoning steps. Beam search uses Program-aided-
language models for math word problems [45]. Using a Codex backbone [18], it surpasses the
few-shot baselines by 6.34%, 9.56%, and 5.46% on the GSM8K, AQuA, and StrategyQA benchmarks,
respectively.

RL is another step in the sophistication of optimization algorithms. It learns by interactive
sampling, improving its policy based on rewards from the environment [147]. To use RL, the
reasoning problem is formulated as a Markov Decision Process: the agent-algorithm creates a
prompt for a next step (an action), to sample a step (t) and get an answer (state, reward) from the
environment-model. The answer can then be used to improve the prompt (next action), using the
rewards to improve its policy of best actions for each state. The approaches that use RL also do so
in the form of an external algorithm.

Progressive-hint-prompting (PHP) uses RL to interactively improve prompts [195]. PHP calls
the LLM with dynamic prompts, using previously generated answers as hints, to progressively
prompt the LLM toward the correct answers. It works as follows: (1) given a question (prompt), the
LLM provides a base answer, and (2) by combining the question and answer, the LLM is queried
and obtains a subsequent answer. We (3) repeat operation (2) until the answer becomes stable, as
a regular policy-optimizing RL algorithm. The authors have combined PHP with CoT and with
Self-consistency. Using GPT-4, state-of-the-art performance was achieved on grade school math
questions (95%), simple math word problems (91%) and algebraic QA (79%).

Another approach that is motivated by improving answers from feedback is Self-refine [95].
Like PHP, the LLM generates an initial output and provides feedback for its answer, using
the LLM to refine itself, iteratively. Self-refine prompts the LLM in three ways: (1) for initial
generation, (2) for feedback, and (3) for refinement, following a greedy reasoning chain. Self-refine
has been used with GPT-3.5 and GPT-4 as base LLMs, and has been benchmarked beyond
math word problems on dialogue response generation [4], code optimization, code readability
improvement, math reasoning, sentiment reversal, acronym generation, and constrained generation,
showing substantial improvements over the base models (typically around 30 percentage points,
see Table 2).

Another approach that combines RL and LLMs is ReAct [188]. However, ReAct does so in a
different way. Most works focus on reasoning by the LLM, not on actions by an agent. The goal of
ReAct is to combine progress in reasoning with action plan generation. (Or, to put it differently,
other approaches use RL to improve LLM-reasoning, ReAct uses LLMs to improve RL agent policies.)
ReAct uses CoT prompt-learning as part of an RL framework that also uses external knowledge
sources (Wikipedia) and finetuning; for error reduction, grounding, and for reducing hallucination.
The framework allows hand-written prompts. On two interactive decision making benchmarks
(Alfworld and WebShop), ReAct outperforms imitation and RL methods by an absolute success rate
of 34% and 10% respectively.

The ReAct work has been developed further. Reflexion [141] creates Al agents that learn by
reflecting on failure and enhance their results, much like humans do. Reflexion uses three language
models: actor, evaluator, and reflector. It works as follows: (1) an actor generates text and actions,
(2) an evaluator model scores the outputs produced by the actor, and (3) a self-reflection model
generates verbal reinforcement cues to assist the actor to self-improve (see Figure 6). For the actor,
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Fig. 6. Architecture of Reflexion [141], showing a close resemblance to the agent/environment structure of
RL [147].

CoT and ReAct can be used. Reflexion is evaluated on decision-making, reasoning, and coding tasks.
Improvements of 10-20 percentage points are reported.

The RL approaches that we discussed so far—React, Self-refine, Tree-of-thoughts, Buffer-of-
thoughts, Reflexion—use external algorithms to manage state for the prompt improvement loop. A
more elegant solution would be to perform RL fully in-context, within-prompt. Indeed, Krishna-
murthy et al. [78] explicitly asked the question whether LLMs can explore in-context. This is the
goal of the Algorithm-of-thoughts (AoT) approach [135]. Following work by Demircan et al.
[35], Lee et al. [82], Wang et al. [169] that showed that transformer architectures can be pretrained
and finetuned to perform ICRL, AoT aims to do so in general LLMs such as GPT-4, Claude and
Gemini 1.5. They achieve results comparable to Tree-of thoughts on GSM8K, StrategyQA, and
Crosswords. Achieving these results with in-context RL is a promising result for in-context learning.
Other search-like in-context algorithms are studied by Schultz et al. [133] and Kempinski et al.
[72]. Further works in games find that LLMs struggle with the difference between generating an
algorithm for a problem, and executing that algorithm correctly (the knowing-doing gap [108, 129]),
and struggle with the difference between using and mentioning game concepts [30, 159]. Work on
implicit reasoning is ongoing, Li et al. [84] provide a survey.

To conclude this overview of RL approaches, we discuss an application in the games domain.
Voyager [166] is an agent for the game of Minecraft that uses an iterative prompting mechanism
that generates code for embodied control. The agent includes self-verifcation and a skill library to
maximize exploration. The goal is to discover diverse items in Minecraft, a form of novelty search
[39]. Voyager performs well, reaching high scores by acquiring many tools (see Figure 7) 15 times
faster than the baseline.

The applications of RL in LLM reasoning are many, and the connections run deep [120]. Wang
et al. [168] use the similarity between RL timesteps and LLM reasoning steps to jointly train a value
function together with the LLM policy by optimizing the Bellman equation, achieving 85% accuracy
on GSM8K and 81% on Alfworld. Du et al. [38], Guo et al. [50] replace supervised finetuning by
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Fig. 7. Performance of Voyager in Minecraft [166]; Voyager performs well, reaching high scores by acquiring
many tools.

RL, integrating it with reasoning, achieving large efficiency gains in the training pipeline in the
DeepSeek r1 and Kimi models.

4 Discussion

We have reviewed many reasoning approaches. It is now time to reflect, to discuss limitations,
and to look for promising areas of future work. First we discuss how to choose an approach for
an application. Next, we discuss issues concerning hallucination, faithful reasoning, and scaling.
Then we discuss what LLMs can and cannot do. We highlight connections with sequential decision
processes, metacognition, and programming languages, and we end with a research agenda.

4.1 Matching Methods and Applications

This survey has discussed different approaches, applications, and benchmarks. It is often difficult to
directly compare benchmark results between individual papers, due to differences in measurement
setup. For example, Kamoi et al. [70] critically compare self-reflection studies. Despite the challenges
in comparing benchmark results, we can provide general guidance on what approach to use for
different types of applications.

For simple reasoning situations, that require a single sequence of reasoning steps, CoT is typically
used. When the error rate becomes too high, verification methods such as Self-consistency are
popular. Indeed, this combination is used in many modern reasoning LLMs such as DeepSeek and
GPT-o1 [38, 50, 62, 79].

For combinatorial puzzles and games that would traditionally require backtracking, tree-search
or RL solution methods must keep track of the enumeration state. However, an LLM without an
external algorithm often fails to keep track of this state correctly between calls to the model. An
approach such as Tree-of-thoughts, or ReAct, should be considered. Here, the state is managed
externally, and the LLM is called for application-dependent functional processing. Various ICRL
methods are being developed where state is managed in-context, as in, for example, AoT. When
performance is not sufficient, finetuning or pretraining for the domain at hand can be used.

For complex problems, where a sequence of steps, or external control, fail to perform well,
other reasoning approaches are needed. The LLM can be asked to generate a program for the
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problem. In this approach, the LLM acts as a coding agent for its user. The LLM generates a
program or a sequence of commands, which are then executed by an external tool, such as an
interpreter, a robot, a planner, or a logic solver. In robotics, vision-language-action models have
achieved impressive results [73], but also strong results in logistics [12], finance and medicine are
reported [118].

4.2 Hallucination, Faithfulness, and Scaling

Reasoning by LLMs is not error-free, and many studies aim to provide deeper insight into the
reasoning processes in language models. Saparov and He [132] introduce a synthetic question/an-
swer dataset designed to evaluate the reasoning abilities of LLMs. The work showed that LLMs
are capable of reasoning to a certain degree, but that CoT struggles with proof trees with a wide
branching factor. In another study, Wang et al. [165] aim to increase our understanding of how
CoT works. The authors find that the order of the reasoning steps is important. Prompts should
be relevant to the question, and coherent (steps should be in the correct order). Jin et al. [66] also
study the impact of reasoning step length on LLMs, again finding a strong positive correlation
between the length of the prompt and reasoning abilities. Next, we discuss works on errors in the
CoT approach, studying whether the reasoning of the LLM is faithful, or that it gives the right
answer for the wrong reason.

4.2.1 Faithfulness. CoT approaches prompt a language model to take certain steps to solve the
problem that the prompt specifies. One can ask the question whether those steps are indeed the
steps that the model has followed (faithful reasoning) or whether it took another road to arrive
at the same answer (unfaithful reasoning). A few studies measure the faithfulness of reasoning
with LLMs. Lanham et al. [80] note that just like organic reasoners, a model’s reasoning may be
post-hoc, it may be constructed after a certain conclusion has been found. By deliberately adding
mistakes to the CoT, the authors measure the faithfulness of the model. They find a wide variation
of post-hoc reasoning, with a tendency of larger models to be less faithful. Like regular LLMs, when
not properly grounded, (CoT) reasoning suffers from hallucination [60].

Another study adds deliberate bias to the prompt. For example, in a multiple-choice setting, they
always make answer (A) the correct answer [155]. They find that a bias toward wrong answers
can cause significant drops in accuracy, and that models frequently generate Chain-of-though
explanations rationalizing wrong answers. To address issues of faithfulness, Lyu et al. [94], Xu
et al. [183] propose Faithful-chain-of-thought. This approach involves two stages. First, the natural
language query is translated into a formal symbolic language. Second, the problem-solving stage
processes the formal language, and can explain the reasoning steps it has thus taken. For the symbolic
language, Python, Datalog, or PDDL is suggested. Another approach, mechanistic interpretability,
studies methods to target individual representations inside the LLM, to see if the expected behavior
occurs in practice [9, 22, 124].

Faithfulness studies tell us more about how models reason. Further surveys on this topic
are Chuang et al. [29], Luo et al. [93], Mondorf and Plank [102], Paul et al. [114],

4.2.2  Scaling. The emergent abilities of LLMs have prompted research into the nature of scaling
and reasoning with LLMs, and, specifically, how reasoning capabilities can be transferred to smaller
language models. Scaling laws of LLMs are an active area of study, see for example [54, 55, 71].
Distillation of reasoning to smaller models can work surprisingly well in situations with more
explicit instructions, and given the computational cost of training LLMs, there is much interest in
transferring knowledge to small language models. Comprehensive surveys on knowledge distillation
are Gu et al. [49], Xu et al. [184]. For reasoning specifically, Magister et al. [96] have studied
reasoning in small language models, using a student model that learns from a teacher model,
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by finetuning. Other works focus on prompt distillation for retrieval [34], recommendation [85],
embodied agents [24], and LLM graph reasoning [192].

Another study related to Self-taught-reasoner focuses on explanation in small language models,
also achieving good results of knowledge transfer [86].

4.3 Limitations: What LLMs Can and Cannot Do

The capabilities of LLMs are impressive. LLMs can be seen as large text-based surrogate models
of the world (or the world how we describe it on the internet), and thus allow reasoning about a
large variety of contexts and problems. Reasoning, such as in math word problems, were one of the
capabilities that LLMs could not achieve, until recently. Let us look more closely at what language
models currently can and cannot do.

4.3.1 What Can LLMs Do? With the right prompt, LLMs are able to solve many of the problems
in grade school math word benchmarks and beyond. Prompt-based learning is able to perform rea-
soning tasks such as math word problems, robotic movement gaming, and Python code generation,
at inference time, without expensive parameter training.

A taxonomy of generate-evaluate-control is able to describe the structure of the current LLM
reasoning literature. Furthermore, the accuracy of the reasoning chains can be improved with
ensemble methods, and self-verification. Hallucination can be reduced by grounding the model with
external models, such as for robotic affordances, and information retrieval from search engines and
Wikipedia. Going a step further, using external control algorithms as scaffolding (such as search
or RL), dynamic prompts can use the LLMs to perform complex and dynamic reasoning patterns.
Note that the reasoning control is now outside the core LLM: an external control algorithm, on top
of in-context-learning, dynamically generating prompts for the LLM.

At this point, it is interesting to note the confluence of two schools of thought in artificial
intelligence: symbolic and connectionist.” Search and RL are rooted in the symbolic tradition,
while LLMs and deep learning are rooted in the connectionist tradition. The literature in this
survey combines the two traditions. Higher performance reasoning is created with a (symbolic)
searcher/learner on top of a (connectionist) LLM. In other fields similar combinations can be seen
(for example, AlphaFold [17, 67] and retrosynthesis of molecules [134]). The LLM helps ground
symbolic reasoning methods in language; symbolic methods help create prompts that let the LLM
perform dynamic reasoning.

We note that benchmarks such as GSM8K have been central for the progress of the field, and that
while reasoning started with math word problems, the field has extended to robotics, autonomous
agents, games, and most emphatically computer code. Formal languages play an important role in
the intermediate multi-step reasoning chains.

4.3.2  What Can LLMs Not Do? Now that grade school math word problems are largely solvable,
harder reasoning benchmarks in other domains are appearing [1]. Most of the reasoning capabilities
exhibited by LLMs are due to the representational powers of the transformer architecture and how
in-context learning is able to harness them. Prompt engineering and prompt control play a crucial
role in the reasoning that we have seen in this survey. Models can be instructed to write their own
reasoning prompts; however, such Auto-GPT or Auto-CoT prompts are prone to feedback-loop
problems, and need careful evaluation, verification, and grounding in the real world, to prevent

SReasoning and planning have been studied since the start of artificial intelligence, starting with logic and reasoning [105],
search algorithms in puzzles and board games [77, 115, 116], robot planning [41], classical machine learning such as decision
trees and support vector machines [13, 33, 43], through knowledge representation and the semantic web [157]. Ever since
the success of the connectionist approach [15, 48, 81] (deep learning, including LLMs) researchers have tried to join the two
approaches [144, 152, 167].
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degeneration into a hallucinatory world of their own. Models can also be instructed to interact with
the world, and become the tool of external scaffolding that evaluates, controls, and improves the
prompts [118]. Some of what we experience as reasoning by the LLM is controlled by the prompt
or the scaffolding algorithm. Studies into ICRL aim to answer the question if prompt learning is
able get the LLM to create a prompt to exhibit dynamic reasoning by itself [35, 82, 108, 133].

Some studies on symbolic planning are critical on the abilities of LLMs [156], and show examples
of planning failures, arguing that LLMs are better used to improve heuristic elements of traditional
planners, such as PDDL [69], to strengthen traditional symbolic planning approaches.

Other works study the dangers of the size of LLMs. Bender et al. [7] mention the environmental
risks associated with the large computational training demands, as well as the difficulty of under-
standing the training data, for example in the context of bias. Furthermore, there are ethical, legal,
and copyright concerns regarding the data that LLMs are trained on. Finally, to prevent putting
too much trust in the outcome of LLMs, we should understand their failure modes better, such as
the well-publicized problems of hallucination (inventing facts that look right but are not). Here,
mechanistic interpretability can be used to explore LLM representations and understand where
they go wrong [9, 22, 124].

Some of the names of the approaches surveyed in this article are suggestive of self-awareness and
self-reflective capabilities. True (human) self-reflection, or metacognition, is still largely outside the
capabilities of current LLMs. LLMs can be prompted to reason, to take small steps, to self-evaluate,
and their search process can be controlled by an external algorithm. The self-reflective type of
“intelligence” is written into the prompt by the prompt engineer or the control algorithm. We are
unaware of any LLM that has been made to reflect on, or even control, its reasoning processes,
controlling how many reasoning steps it should take, or limiting its reasoning once the answer had
become good enough. True self-reflection remains future work, although some steps have been
taken, as we will discuss next.

4.3.3 Reasoning toward Metacognition. Human thought exhibits the ability to reason about
self, we are able to think about our own thinking processes. Metacognition studies this phenome-
non [161]. Prompted by the success of CoT and related works, metacognition has also been studied
in the context of LLMs [154].

Many reasoning approaches highlight self-reflective aspects in their names and in how they
work. The prompts that prompt the models to reason are being improved with the outcome of the
reasoning process, and in Buffer-of-thoughts thought-templates are used that are derived from
other reasoning processes. Wang and Zhao [171] study Metacognitive-prompting. Inspired by CoT
and Self-consistency, they create manually designed prompts to increase the understanding of
language models. Another work, again inspired by CoT and Self-consistency, connects psychology
and LLMs. Didolkar et al. [36] study metacognitive capabilities of LLMs in mathematical problem
solving, both on GSM8K and on the harder MATH problems [53]. First, the model is prompted
to find a skill name for each problem instance in the dataset. For 7000 instances of GSM8K, 500
skill names were found by the model. Next, these 500 names are clustered down to 22 skills. They
find that by using the names of these 22 skills in CoT-like prompts, more problems are solved
than with standard CoT/Self-consistency/Program-aided-language prompts. Examples of the 22
skill names are multiplication-and-addition, basic-arithmetic, subtraction, and algebra. Interestingly,
the authors find that the skill exemplar repository that is trained on a strong model (GPT-4) also
down-translates to a weak model (GPT-3). The performance of the weaker model benefits from the
skill-name-enhanced prompts. Begus et al. [5] propose a program for the study of metalinguistic
abilities of LLMs. LLMs struggle with analogies [83, 100] and analogical reasoning. Metacognitive
reasoning with LLMs is still in its early stages.
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4.4 LLMs that Generate Computer Code

A persistent thread in the results in this survey is that LLMs are good at generating formal languages,
such as PDDL, logic, math equations, and Python. The agentic approach in which LLMs are combined
with external tools such as interpreters or debuggers often yields good performance [118]. LLMs
can be used in different modes, which we will now discuss.

When LLMs are used in direct mode, a prompt is provided with an instruction, and an answer.
This is the mode in which most casual users use an LLM.

LLMs can also be used in algorithmic mode, or CoT mode, where an extra element is added to
the prompt that gives an example of which steps to take to arrive at the answer [135]. Muennighoff
et al. [103] show how such test-time scaling can tradeoff model size and training time. Lee et al.
[82], Schultz et al. [133], Wang et al. [169] show that the transformer architecture can be trained
such that search and RL algorithms can be executed in-context.

LLMs do not preserve state between calls, and in order to allow for a natural dialogue to occur,
chatbots such as ChatGPT insert the most recent history of preceding calls into each prompt before
the model is called [16]. For harder strategic reasoning tasks more advanced state management
solutions are necessary, that call the LLM in an explicit external mode [187, 188]. Approaches such
as Tree-of-thoughts use the LLM in a stateless functional way, with the prompt containing the
instructions, not unlike a natural language variant of a functional programming language such as
LISP or Haskell.

Finally, an LLM can be used in code generation mode. The prompt specifies a problem, and the LLM
is asked to generate computer code (such as Python or PDDL), to circumvent the knowing-doing
gap [108]. The code may contain variables that manage the state correctly. The code can be executed
directly, or first be checked and improved by a programmer. We expect that the use LLMs as code
generators, and prompt-engineering as natural-language-programming, will continue to grow.

4.5 Research Agenda

At the end of this discussion, we list promising topics for future work. Reasoning with LLMs
is an active field of research. It brings together elements of symbolic reasoning, connectionism,
natural language, autonomous agents, affective reasoning [14] and metacognition. First we discuss
current topics for the field of LLM-reasoning itself, then we discuss more general machine learning
topics that are important for progress in LLM-reasoning, and finally we discuss more longer term,
fundamental topics.

Specific research topics for reasoning with LLMs are:

— In Context Reinforcement Learning—Search control beyond greedy search is often implemented
as an external RL algorithm. Is it possible to incorporate the control stage of the reasoning
pipeline into one static prompt, for implicit reasoning or ICRL? Studies indicate that models
can be trained for decision making [35, 82], but general LLMs struggle to perform ICRL
well [108, 129, 133, 159].

— Code—Progress in reasoning using formal languages and computer code has been quite
promising. GitHub Copilot is a success. Further integration of LLM-reasoning with software
engineering tools is a promising area of research that can have a large practical impact on
how software is written.

— Grounding—Reasoning in LLMs has been successfully applied in autonomous agents, robotics,
and games. A challenge is the grounding of the reasoning process in the environment. Re-
trieval augmented generative methods (RAG) can help LLMs to actively find new information
when the reasoning outcome is uncertain. RAG, search, and agentic LLMs, are also active
areas of research [34, 118, 162].

ACM Comput. Surv., Vol. 58, No. 6, Article 160. Publication date: December 2025.



Multi-step Reasoning with Large Language Models, A Survey 160:25

Generic topics in machine learning that also influence prompt-based reasoning research are:

— Benchmarks—Progress in LLMs depends on the availability of the right benchmarks. As the
field has progressed beyond math word problems, other benchmarks become prevalent, with
more difficult and diverse tasks.

— Faithfulness—Our theoretical understanding of prompt-based reasoning with LLMs is incom-
plete. The research on faithfulness highlights one example of our lack of understanding. In
general, more insight into implicit reasoning [84] and the working of multi-step in-context
learning in LLMs is dearly needed.

— Smaller language models—Efficiency is an important element for wide adoption of language
models. Smaller models have many advantages over larger models: a smaller environmental
footprint, more accessible to people with fewer computational resources, and the possibility
to finetune them. Models may have fewer parameters, or the parameters may be quantized
with fewer bits. Unfortunately, with a smaller number of parameters, the models also have
less reasoning power. It is important for future work to investigate this tradeoff.

For longer term future work, the following more fundamental questions are important:

— Symbolic and Connectionist Computation—How can we further improve LLM-reasoning: how
can LLMs benefit from reasoning prompts based on the symbolic Al literature, and how can
LLMs help ground symbolic reasoning in language?

— Multimodal World-Models with Embodied Grounding—How can an LLM maintain a unified,
continually updated representation that integrates text, vision, audio, and sensorimotor
feedback, enabling it to reason over events across modalities, and refine its world-model
through closed perception-action loops in real-world environments?

— Norm-Sensitive and Value-Aligned Reasoning—How do we represent, adapt, and audit diverse
cultural norms and ethical values within the reasoning process, ensuring that each step of an
LLM’s CoT respects context-dependent moral constraints while remaining transparent and
verifiable?

— Reasoning in other languages than English—The majority of the research into LLM reasoning
is for English. Although there are efforts in creating benchmarks to test LLM capabilities in
other languages,® these contain mainly NLP tasks such as QA and NLL. In addition, challenges
related to low-resource languages (languages for which very limited training data is available)
have not been addressed yet.

— Reasoning in specialized domains—In an effort to guide development and evaluation of new
methods, research in Al has a strong focus on benchmarking: standardized datasets with a
limited set of problems that are realistic to evaluate. In the real world, however, reasoning
problems also occur in more challenging contexts. A few examples are: legal reasoning for the
interpretation of case law or writing contracts; scientific reasoning for advancing scientific
fields; and medical reasoning for Al-assisted diagnostics.

5 Conclusion

When LLMs of sufficient size are prompted with examples, they can perform few-shot learning
in-context, providing an answer at inference time, without retraining model parameters. Although
they achieve good performance on language tasks, simple prompting methods do not perform
well on reasoning tasks—tasks that humans typically solve in a step by step fashion. CoT is an
in-context prompting method to guide an LLM to “think step by step.” CoT was originally developed
for solving grade school math word problems. GSM8K, the most popular reasoning benchmarks

®https://github.com/NaiveNeuron/awesome-multilingual-llm-benchmarks
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in this survey, contains 8500 grade school math word problems. With older LLMs such as GPT-3,
reasoning approaches show an improvement of 20-50% points over standard prompting methods.
This success has spawned many new reasoning approaches. A potential problem in the CoT method
is that errors may accumulate over multiple reasoning steps. Prompting the LLM to reformulate
problems in Python code (or another formal language) can successfully reduce the error rate.
The success of reasoning methods has attracted more applications, and with them, benchmarks
are diverging. In the field of autonomous agents and robotic action, good performance has been
achieved by grounding reasoning answers in the environment and the physical constraints of
robotic movement.

Many current LLMs have adopted CoT approaches. In this survey we categorize the approaches
on how they generate, evaluate, and control the reasoning steps. Inference-time reasoning methods
are also used for LLM finetuning. Reinforcement learning with verifiable rewards (RLVR) and
group relative policy optimization (GRPO) use inference-time reasoning results to augment
finetuning for reasoning tasks.

For complex tasks the number of reasoning steps that is generated may be large. The size of the
multi-step reasoning space can be controlled dynamically by external search or RL algorithms, often
in the form of a wrapper of Python code that generates LLM-prompts. Many of the names of the
approaches in this survey suggest a link to metacognition (Reflexion, Self-refine, Self-improvement,
Inner-monologue)—the act of thinking about one’s own thought process. The first preliminary
experiments of language models that reason about their reasoning skills have appeared.

The field of reasoning with LLMs is quite new, and theoretical understanding is lacking in
important areas, such as faithful reasoning (models may sometimes find the right answer using an
incorrect reasoning chain). LLMs hallucinate and suffer from bias, and their use poses ethical and
societal dangers. Self-verification methods have been developed to reduce error-accumulation, and
retrieval augmentation methods (RAG) ground LLM output directly in sources such as Wikipedia.
However, ethical and societal dangers remain, especially since also reflection is not error-free.

Although prompt-based learning allows few-shot learning at inference time, the computational
needs of LLM pretraining and finetuning are still high, hence the interest in small language models.
Reasoning skills that work in large models can often be distilled to small models.

LLM-reasoning is an active field of research that shows great progress. Based on current limi-
tations and open questions we provide a research agenda highlighting opportunities for further
progress. Among the items mentioned are RL for finetuning and self-reflection, LLM agents that
generate code for external tools, multimodal world models, value-aligned reasoning, and small
language models.
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