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Summary
Deep Reinforcement Learning can play a key role in addressing sustainable energy chal-

lenges. For instance, many grid systems are heavily congested, highlighting the urgent need
to enhance operational efficiency. However, reinforcement learning approaches have tradi-
tionally been slow due to the high sample complexity and expensive simulation requirements.
While recent works have effectively used GPUs to accelerate data generation by converting
environments to JAX, these works have largely focussed on classical toy problems. This pa-
per introduces Chargax, a JAX-based environment for realistic simulation of electric vehicle
charging stations designed for accelerated training of RL agents. We validate our environ-
ment in a variety of scenarios based on real data, comparing reinforcement learning agents
against baselines. Chargax delivers substantial computational performance improvements of
over 100x-1000x over existing environments. Additionally, Chargax’ modular architecture en-
ables the representation of diverse real-world charging station configurations.

Contribution(s)
(i) This paper presents Chargax, an open-source EV charging environment written in JAX

Context: Chargax could be used as a high-performance test bed for reinforcement
learning benchmarking, or to develop better control algorithms for EV charging.

(ii) Comparisons in performance are made with previously existing EV simulators for RL
that demonstrate Chargax decreases training times by a factor of 100x or more.
Context: Prior work established EV charging simulators for RL that did no leverage the
GPU

(iii) We perform additional experiments validating reinforcement learning training in a vari-
ety of scenarios, data distributions shifts, and reward objectives.
Context: None

(iv) We create an explicit split in the state space which highlights the interchangeable parts
in the Chargax environment. This modularity allows representation of diverse real-world
charging station configurations and scenarios.
Context: Prior work often used this split implicitly, and allow for less customisability
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Abstract

Deep Reinforcement Learning can play a key role in addressing sustainable energy chal-1
lenges. For instance, many grid systems are heavily congested, highlighting the urgent2
need to enhance operational efficiency. However, reinforcement learning approaches3
have traditionally been slow due to the high sample complexity and expensive simula-4
tion requirements. While recent works have effectively used GPUs to accelerate data5
generation by converting environments to JAX, these works have largely focussed on6
classical toy problems. This paper introduces Chargax, a JAX-based environment for7
realistic simulation of electric vehicle charging stations designed for accelerated train-8
ing of RL agents. We validate our environment in a variety of scenarios based on real9
data, comparing reinforcement learning agents against baselines. Chargax delivers sub-10
stantial computational performance improvements of over 100x-1000x over existing11
environments. Additionally, Chargax’ modular architecture enables the representation12
of diverse real-world charging station configurations.113

1 Introduction14

Deep Reinforcement Learning (RL) can approximate optimal policies for difficult decision problems15
that are impossible to solve with traditional mathematical methods. Such problems occur frequently16
in sustainable energy challenges such as operation of windfarms (Fernandez-Gauna et al., 2022),17
electric vehicle charging (Rehman et al., 2024), and nuclear fusion reactors (Seo et al., 2024). While18
RL has achieved successful solutions to these challenges, further development of RL algorithms19
hinges on the availability of realistic simulation environments and benchmarks (Ponse et al., 2024).20

Unfortunately, reinforcement learning is noto-
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Figure 1: Comparison between Chargax and
prior EV Gym Environments in time in seconds
to complete 100k training steps using a PPO
agent. See Table 2 for a more complete overview.

21
riously sample-inefficient (Yarats et al., 2020;22
Kaiser et al., 2024). It often requires many en-23
vironments samples which are slow and possi-24
bly expensive to generate. These simulations25
have often been running on the CPU – disal-26
lowing RL researchers from truly harvesting the27
potential scale-up of GPUs that other machine28
learning fields have been enjoying (Scarfe et al.,29
2025). To this end, the development of RL envi-30
ronments using JAX (Bradbury et al., 2018) has31
recently gained increasing attention (Freeman32
et al., 2021; Lange, 2022; Pignatelli et al., 2024;33
Bonnet et al., 2024). However, current imple-34
mentations remain largely confined to simpli-35
fied toy problems, highlighting a significant gap36
in real-world applications utilizing JAX.37

1Available on GitHub at https://github.com/anonymous-submission/anonymous-submission
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Figure 2: An overview of the Chargax environment. The endogenous state describes the state vari-
ables that are influenced directly by the agent. The exogenous state evolves via, agent-independent,
predefined time series data.

Contribution In this work, we aim to bridge this gap by introducing, to the best of our knowledge,38
the first reinforcement learning environment for EV charging implemented in JAX.39

• Our environment, Chargax, achieves a significant speedup of 100x-1000x compared to existing40
environments for EV charging (Yeh et al., 2024; Orfanoudakis et al., 2024; Karatzinis et al., 2022).41
This lowers training times from hours or even days to mere minutes – allowing for orders of42
magnitude more experiments (see Figure 1).43

• Chargax extends the generalisability of existing frameworks. As highlighted in a recent survey44
(Alaee et al., 2023), optimising electric vehicle charging strategies involves a diverse set of po-45
tential objectives. We demonstrate that many of these objectives can be addressed within a single46
simulation framework by ensuring sufficient flexibility.47

• Chargax can function as a high-performance test bed for reinforcement learning benchmarking48
on real-world applications. Empirically, we demonstrate how RL agents are able to outperform49
baselines and allow for flexible goals such as user satisfaction. We open source Chargax1 for the50
wider community to experiment with.51

Chargax is equipped with predefined datasets, reward functions, and charging station architectures52
for various scenarios. Moreover, all components are fully customizable, enabling researchers to53
tailor the environment to specific requirements, thereby facilitating efficient and adaptable RL-based54
solutions for EV charging optimization.55

2 Related Work56

Prior work in EV charging includes the gym environments Sustaingym (Yeh et al., 2024) (based on57
(Lee et al., 2020b)), Chargym (Karatzinis et al., 2022), and the more recently released EV2Gym58
(Orfanoudakis et al., 2024). Compared to (Yeh et al., 2024; Lee et al., 2020b; Karatzinis et al.,59
2022) our framework provides additional flexibility for customer and car profiles. In addition, the60
architecture of the Charging station as well as the selection of scenarios. Compared to (Orfanoudakis61
et al., 2024), which also prioritises flexibility, our approach features a more streamlined state and62
architecture representation. To the best of our knowledge, Chargax is the only Gym-like environment63
that includes local car and price data across multiple regions. Furthermore, Chargax is orders of64
magnitude faster and in turn allows for large scale experiments on the GPU (See Figure 1). Apart65
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from these Gym-like simulators, there exist a history of EV charging simulators (Saxena, 2013;66
Rigas et al., 2018; Balogun et al., 2023; Cañigueral, 2023).67

In recent years, many classical Gym environments have been reimplemented in JAX. We direct the68
reader to the following non-exhaustive list (Freeman et al., 2021; Lange, 2022; Nikulin et al., 2023;69
Rutherford et al., 2023; Koyamada et al., 2023; Pignatelli et al., 2024; Bonnet et al., 2024). These70
implementations have largely been reimplementations of classical toy problems, highlighting a gap71
in environments modelling real-world problems.72

3 Preliminaries73

Markov Decision Process74

Formally, an environment is represented as a Markov Decision Process (MDP; Sutton & Barto 2018)75
defined by a tuple M = (S,A, p0, p, r, γ). Here, S is a state space, A is a action space, p0 ∈ ∆(S)276
is the initial state distribution, p(·|s, a) ∈ ∆(S) is the probabilistic transition function, r(s, a, s′)77
denotes the reward function and γ ∈ [0, 1) is the discount factor. In the next section (4), we provide78
a detailed discussion of the motivation behind the choices for each MDP component and formally79
define these quantities used within the framework.80

JAX81

JAX is a Python library aimed at accelerator-orientated programming with a NumPy interface82
(Bradbury et al., 2018). It offers function transformations to perform, for example, just-in-time-83
compilation, vectorization, and differentiation. Although JAX is a common foundation for deep84
learning frameworks (Heek et al., 2024; Kidger & Garcia, 2021), its just-in-time compilation trans-85
formation allows users to easily run plain Python code on accelerators such as GPUs and TPUs.86
Although JAX imposes some constraints on how these functions should be constructed, it enables87
complete environment transition functions to operate on the GPU. This allows many more operations88
and environments to run in parallel and eliminates data transfers between the CPU and GPU for gra-89
dient descent updates, both of which can potentially decrease the computational time requirements90
of reinforcement learning experiments significantly.91

4 Environment Design92

In many real-world control environments not all state variables are directly affected by the actions93
of the agent. Instead, some of the state variables transition into their next state via an (agent-94
independent) function (often time series). These functions often rely on some external data source95
and therefore these variables describe exactly the entry points for data integration that can be flexibly96
interchanged within Chargax. Although this data distinction is often implicitly present (Ponse et al.,97
2024), we will formalise this separation explicitly in Chargax to make clear which parts of the state98
can flexibly be interchanged.99

Consequently, we split the environment state in an endogenous and an exogenous state space. The100
endogenous state space refers to the typical state variables that are influenced by the agents’ actions101
during the transition function. In contrast, exogenous state variables transition into their next state102
via an (agent-independent) time series. Examples of exogenous state variables are weather variables,103
or national electricity prices. Even though these variables are not affected by the agents’ actions,104
they may influence the agent by providing an additional learning signal and/or alter the reward.105

An overview of Chargax is shown in Figure 2 and in the following we provide a high-level overview106
of the Chargax environment. Full implementation details, including all equations for transition107
dynamics and reward functions, are provided in Appendix A.108

2∆(X ) denotes the set of probability distributions over a set X
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Figure 3: Trees representing different architectures: a) simplest scenario, one type of charger; b)
multiple types of chargers, one splitter per charging type; c) multiple types of chargers with multiple
splitters per type, imposing additional constraints on the currents. Each node represents a combina-
tion of splitters, transformers, cables, and other electrical components.

EV Station Layout109

When initialising a Chargax environment, a fixed architectural design for the station is generated110
or provided. This design is fixed and, therefore, not influenced by the transition function. We111
represent this electronic infrastructure of the charging station in the form of a tree (Lee et al., 2021),112
with leaves representing the charging ports (Electric Vehicle Supply Equipment; EVSE; Lee et al.113
(2020b)) (see Figure 3). The root node represents the grid connection access, and all other nodes114
represent a combination of splitters, cables, and transformers, and are equipped with a maximum115
power capacity and efficiency coefficient, imposing constraints on the system. In Chargax, we116
additionally assume a fixed voltage V for each of the EVSEs in the architecture.117

Chargax supplies methods for generating some charging station architectures. However, custom118
architectures can be built by constructing a tree of simple nodes to mirror existing real-world infras-119
tructure.120

Endogenous State Space121

The endogenous state consists of the state of the various charging ports and their connected cars, and122
the station battery. As each charging port (and the battery) has a fixed voltage level, we allow the123
actual power drawn to be regulated by controlling the current (Orfanoudakis et al., 2024). Losses124
are incorporated through efficiency coefficients at each node (including the charging ports).125

In addition to the set current at each charging port (Idrawn(t) ∈ [0, Imax]), and whether the port is126
currently occupied (1occup), the endogenous state contains information for the connected cars. This127
includes their state-of-charge (SoC) and the remaining required power ∆Eremain. Additional infor-128
mation for each car is supplied exogenously and remains fixed until the car leaves. We will expand129
on this information in the next section. The endogenous state space can optionally be expanded with130
a station battery. This battery is modelled similarly to an EVSE – with a fixed voltage and controlled131
via the set current. The battery allows the agent to store energy to facilitate effective discharging132
strategies. In brief summary, the endogenous state is represented by:133

• For each EVSE: Idrawn(t) ∈ R≥0, 1occup(t) ∈ {0, 1}, ∆Eremain, SoC(t)134

• Battery: Ibattery(t),SoCbattery(t)135

Enumerating the existing EVSEs by i = 1, . . . , N , the total endogenous state space can be ex-136
pressed as send = (sbattery, sc,1, . . . , sc,N ). A complete overview of the state space is given in137
Appendix A.1.138
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Exogenous State Space139

As described previously, the exogenous state variables evolve independently of the agent’s actions.140
As such, the remainder of the variables discussed here are typically sampled from distributions that141
are generated via a provided time series or some predefined function. Currently, Chargax works142
with exogenous state variables for arrival data, user profiles, car profiles, and grid price data.143

The arrival data represents the number of cars that arrive at a given timestep. Typically, this depends144
on the time and location of the charging station. Likewise, the location can also stipulate the typical145
user profile of the arriving cars. This profile describes the state of the car that is induced by their146
owner, such as the arrival SoC, desired charging level, and time of departure. Car profile variables147
are derived from the physical properties of the cars themselves. These include the maximum capacity148
of the car battery and the maximum charge speed. Lastly, the grid prices are an important exogenous149
variable for calculating the profit, which is often a large factor in the reward.150

Chargax comes equipped with a variety of standard datasets (see Table 1), most of which are based151
on real data. These datasets can be used to sample exogenous variables that resemble realistic152
scenarios. For example, Europe and the US have a different distribution of electric vehicles on the153
road; in turn, the distribution of charging demands is different in both regions. While datasets are154
provided, Chargax is built such that users can use their own data or functions to populate these155
variables.156

Action Space157

At each timestep, the agent controlling the charging station can adjust the power at each EVSE by
altering the current (Orfanoudakis et al., 2024), i.e. an action is characterized as

a(t) = (∆Ii(t))
N+1
i=1 ∈ RN+1.

Here, for the sake of notational convenience, the battery is treated as the N + 1-th charging pole.158
Notably, the agent cannot accept/decline cars and is assumed to serve arriving cars, as long as there159
are free spots.160

Transition Function161

At a high level, the transition function consists of four sequential steps, which we detail below. Full162
implementation details can be found in Appendix A.2.163

• Apply Actions First, we apply the agent’s to adjust the power drawn by each charging port.164
We limit the maximum power by the capacity of the port, as well as the current maximum165
(dis)charging rate of the car stationed at each charging port.166

• Charge Stationed Cars With the newly set power levels, we (dis)charge each car over the time167
interval of a timestep. Here, we assume a constant charging rate over the full interval ∆t.168

• Departure of Cars Next, cars fully charged (charge-sensitive users) or with no time remaining169
(time-sensitive users) will leave.170

Table 1: Overview of available Profiles in Chargax. Default settings are marked in bold.

Price Profiles Architectures Car Distributions Arrival Frequency User Profiles
NL Simple: Single Europe Low Traffic Highway
FR Charger Type US Medium Traffic Residential
DE Simple: Multiple World High Traffic Work
Custom Charger Types Custom Custom Shopping

Custom Custom
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• Arrival of new Cars Finally, an amount of new cars will be sampled through our exogenous data,171
along with a user profile and car profile. The amount of new cars is clipped by the number of free172
spots available and the remaining cars are automatically rejected. Arriving cars will park in the173
first available spot as provided by the provided station architecture.174

Reward Function175

In RL, the reward functions reflects the notion of optimality, i.e. the desired behaviour. In this176
section, we outline some of the reward functions that are available in Chargax, and how they reflect177
different objectives. We provide additional details in Appendix A.3.178

Profit Maximisation Profit maximisation lies at the core of most Charging Station Operations179
(Alinejad et al., 2021; Chang et al., 2021; Mirzaei & Kazemi, 2021; Ye et al., 2022). The amount of180
net energy transferred into cars in the interval [t, t+∆t] is denoted by ∆Enet(t). The amount of en-181
ergy fed into the grid as a result from discharging cars is denoted by ∆E→grid(t), and the amount of182
energy that has to be drawn from the net to transfer set levels of energy into cars ∆Egrid→(t). Lastly,183
the energy contributed by (dis-)charging the battery ∆Eb,net(t) has to be incorporated, resulting in184
the following net energy that is drawn from (or pushed into) the grid185

∆Egrid,net = ∆Egrid→(t) + ∆E→grid(t) + ∆Eb,net(t). (1)

We further assume that the price at which we sell and buy power from car owners is the same, i.e.186
psell. This results in the following profit187

Π(t) =

{
psell(t) ·∆Enet(t)− pbuy(t) ·∆Egrid,net − c∆t ∆Egrid,net > 0,

psell(t) ·∆Enet(t)− psell,grid(t) ·∆Egrid,net − c∆t ∆Egrid,net ≤ 0.
(2)

Here, c∆t denotes the fixed cost for running the facility per ∆t.188

Profit Maximisation under constraints To further steer agents’ learnt behaviour in a direction,189
constraints can be induced to penalise certain (undesired) behaviour through penalty terms c(t). The190
resulting reward will be the profit minus the linear combination of (possibly) multiple penalty terms191

r(t) = Π(t)−
∑
c

αc c(t). (3)

Different linear combinations of different penalty terms allow Chargax to be flexible in its optimiza-192
tion objective. Chargax comes equipped with various of these penalty terms to better optimize for,193
for example, customer satisfaction, battery degradation, or violating node constraints. We provide a194
more complete list of possible penalty terms along with a formal expression in Appendix A.3. How-195
ever, we emphasise that these are mere suggestions, and that these rewards are not comprehensive in196
reflecting the full landscape of Charging Station Optimisation challenges, and we encourage users197
to customise their reward function within the provided framework.198

5 Experiments199

In this section, we demonstrate the use of Chargax across different included scenarios. Additionally,200
we highlight performance improvements of Chargax compared to previous EV charging simulations.201
Full details of the used model and configuration parameters, along with additional experimental202
results, can be found in Appendix B and D respectively.203

In Figure 4a, we have trained a standard PPO agent based on PureJaxRL (Lu et al., 2022). We204
trained on our included shopping scenario in varying amounts of traffic using a 16 charger station205
(10 DC, 6 AC). We observe how our PPO agent increases its profit over a standard baseline. The206
baseline is set to always charge to its maximum potential within the constraints of the EVSE and the207
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(b) Charge missing at departure
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Figure 4: In a) average episode rewards during training a PPO agent in the shopping scenario with
different levels of traffic. The RL solution manages to increase profit over the baseline that always
charged the maximum possible amount. In b) and c), user satisfaction measured as charge (kWh)
missing at time of departure (b), and time exceeded to fully charge cars (c). Higher α-values weigh
the measured variable greater in the reward (Eq. 3). Increasing user satisfaction tends to decrease
daily profit. Notably however in b), optimizing for user satisfaction has steered the agent to find
policies that reduce the missing charge percentages while retaining a near-identical profit level.

connected car. As expected, the potential for profit increases in scenarios with higher amounts of208
traffic, but this increase diminishes as we kept the charging station size the same.209

Our baseline should yield a high customer satisfaction as customers should be charged within the210
minimum amount of possible time. In contrast, our charging station agent may optimize fully for211
short-term profit without consideration of user satisfaction. This is likely undesirable and may affect212
long-term profits. However, Chargax allows for flexible reward signals that may optimize for this.213
In Figure 4b and 4c, we trained our PPO agent to optimize for profit and user satisfaction at varying214
α levels. Notably in Figure 4b, we can see the agent manages to find preferential policies that sub-215
stantially increase user satisfaction (decrease the amount of kWh that was not charged at departure216
time), while keeping profit levels quite similar.217

Beyond finding appropriate reward signals, real-world deployment typically involves training an218
agent on historical exogenous data. During deployment, the agent likely encounters data that is has219
not yet observed. Possibly, the entire data set has shifted, for example, due to a rise in energy prices220
year-over-year. Therefore, it is important that system that deal with exogenous time-series data can221
deal with – and test for – this distribution shift (Yeh et al., 2024). As Chargax is flexibly designed222
to allow for any exogenous data, it readily allows to test for these distribution shift problems –223
as is displayed in Figure 5, where we have trained and evaluated RL agents on data of different224

Table 2: Performance comparison between Chargax and other EV charging Gym environments,
based on data collected by performing 100k environment steps. We evaluated both taking random
actions (assesing the performance of the transition function), and a training a PPO agent. The
PPO agent was tested both with a single environment, and in a more typical training scenario with
vectorized environments. Here we observe performance improvements of over 100x. The results
are obtained on an NVIDIA RTX 4000 Ada GPU and an AMD EPYC 2.8 GHz CPU. For the
comparison environments, we used Stable-Baselines3 (Raffin et al., 2021) with CUDA enabled for
the PPO implementation.

Chargax Ev2Gym Chargym Sustaingym
Speedup Speedup Speedup

Random 1.36 77.95 57x 36.34 27x 1554.57 1144x
PPO (1) 9.79 170.05 17x 131.18 13x 1718.71 176x
PPO (16) 0.65 86.99 134x 125.06 192x 1836.00 2820x

7



Under review for RLC 2025, to be published in RLJ 2025

2021 2022 2023
Train data year

280

300

320

340

360

380

400

Da
ily

 p
ro

fit

Evaluated on 2021

Same train and evaluation year
Different train and evaluation year

2021 2022 2023
Train data year

Evaluated on 2022

2021 2022 2023
Train data year

Evaluated on 2023

Figure 5: A PPO agent trained trained and tested on three seperate years of Dutch electricity prices.
For each experiment, a particular year’s data was used for training, while testing on a fixed year.
Substantial price increases in the year 2022 results in suboptimal training when using this year’s
data – even when evaluating on this same year.

price electricity years. Interestingly, although rewards would be assumed to peak when training and225
testing in the same year, employing data from 2021 or 2023 actually yielded higher rewards in 2022226
compared to using the 2022 data directly. The EU region experienced significant energy price surges227
in 2022, likely complicating the training process with the data for this year.228

Table 2 and Figure 1, showcases the performance of our environment compared to existing EV229
charging simulations that support reinforcement learning through a Gym API. We can see that in a230
typical training scenario, we can decrease learning times by factors exceeding 100. It is important to231
acknowledge that these environments are not identical and might simulate different behaviours (for232
example, SustainGym does not allow discharging). Therefore, this comparison may be considered233
rough. However, the significant differences in scale clearly demonstrate the advantages of using234
Chargax- and JAX-based environments for RL in general. Training cycles can be reduced entire235
working days to well under 5 minutes, allowing for many more iterations of training and testing.236

6 Discussion & Conclusion237

This work presented Chargax, an EV charging simulator built in JAX. Chargax aims to bridge the238
gap between toy problems and real-world implementations, accelerating simulations while maintain-239
ing practical relevance. However, it remains a simulator, constrained by simplifying assumptions,240
requiring future work to further close the gap between simulation and deployment.241

Our model assumes an isolated power network for the EV charging station, avoiding shared trans-242
formers that could introduce uncontrollable constraints. Expanding the model to include additional243
control variables, such as dynamic pricing strategies or vehicle allocation mechanisms, would in-244
crease its realism. Furthermore, accounting for temperature dependence in the system, or incor-245
porating government-imposed regulatory constraints could make it more reflective of real-world246
charging stations. Furthermore, a natural addition for future work would be to incorporate local247
energy production systems (such as solar panels) and weather data.248

In its current state, Chargax achieves training time reductions of over 100x, compared to existing249
simulators. Usual training durations of (multiple) working days can be completed in Chargax in250
well under 5 minutes, allowing for many more additional training and testing runs. We have built251
Chargax to be flexible, allowing for custom data sources for the exogenous state, and flexible reward252
structures. However, Chargax does provide base datasets and reward penalties to get started. Char-253
gax can also be used as a test bed reinforcement learning benchmarking as it is currently only one254
of few JAX-based environments that models a real-world problem. We open source Chargax for the255
wider community to experiment with.1256
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A Environmental Details257

A.1 State Spaces258

Exogenous state space Apart from price data, examples of exogenous state variables include259
power demand of the grid, weather data, or marginal operating emissions rate (MOER, Yeh et al.,260
2024), all of which could influence the maximisation objective but evolve according to some (agent261
independent) time series. It is important to note, that while the environment requires auxiliary data262
for most built-in reward functions, e.g. it is impossible to maximise profit without having access to263
prices, these exogenous state variables may be treated unobservable for the agent. On the contrary,264
one may add data to the exogenous state space, that is not required for any reward calculation, but265
may serve as additional learning signal, for instance day-ahead power prices.266

Apart from the above examples arrival data, user profiles, and car profiles are part of the exogenous267
state space.268

• Arrival Data At each timestep t, a number of cars M(t) is characterized as a sample from an269
arrival distribution M(t) ∼ Darrival(t).270

• Car Profiles Arriving cars are characterised by their physical properties. This encompasses the271
charging speed r̂ as a function of the SoC. As in (Lee et al., 2020b) we assume a piece-wise linear272
function273

r̂τ,r̄(SoC) =

{
r̄, SoC ≤ τ

(1− SoC) r̄
1−τ , SoC > τ.

Due to lack of data, we assume that the discharging speed can be obtained by vertically flipping274
the charging curve at SoC = 0.5. While we assume, that we have a different maximal charging275
speed for different charger types – by default AC and DC charger – and have hence different276
max charging rates (r̄ = (r̄AC, r̄DC)), we assume that both charging speed curves use the same277
τ . Lastly, each car has a maximum battery capacity C, which is important for calculating State278
of Charges. These car profiles are sampled from a pre-defined car distribution Dcar(t), see also279
Table 1.280

• User Profiles Additionally to the physical properties, the charging demand is a result from the281
habits of the car owner, encompassing a duration of stay ∆tremain, the number of units of power282
to be charged ∆E, the SoC upon arrival SoC0 and the user preference u, indicating whether a user283
is time-sensitive (will leave iff ∆tremain = 0), or charge sensitive (will leave iff ∆Eremain = 0).284
The user profiles are sampled from a distribution Duser(t), see also Table 1.285

Endogenous state space The endogenous state consists of the state of the various charging ports286
and their connected cars, and the station battery. For each charging port, we assume a fixed voltage287
and allow the actual power drawn to be regulated by controlling the current Idrawn(t) ∈ [0, Imax]288
(Orfanoudakis et al., 2024). We assume that the voltage value already encodes the phases, i.e. it289
represents the product V ·

√
ϕ in Orfanoudakis et al. (2024), eliminating the need for the phase as an290

additional variable. To incorporate losses during the (dis)charging process, each EVSE is equipped291
with an efficiency coefficient for charging and discharging. As a charging port may not always be292
occupied, we add a final Boolean to the state 1occup, indicating the presence of a car.293

To properly facilitate discharging, the charging station is equipped with a battery. Similarly to294
EVSEs, the battery will have a fixed voltage Vbattery, with the power flow controlled by the current295
Ibattery(t). To specify the physical properties of the battery, it also has a maximum capacity C, the296
maximal charging rate for a car r̄ and τ ∈ (0, 1). Additionally, we will equip the state with the297
current SoC of the battery298

sbattery = (Ibattery(t),SoCbattery(t), r̂battery(t)).

Car State Additionally, the state of each charging port contains information for the connected cars,299
the so-called car state, representing the car that is charging at this port (all zeros if no car is present).300
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As this car state consists of exogenous and endogenous variables, it is listed separately. This includes301
the car’s state-of-charge (SoC ∈ [0, 1]), the remaining required power ∆Eremain ∈ R≥0, the number302
of timesteps the car remains ∆tremain ∈ N, and the maximal charging power currently allowed by303
the car r̂(t) ∈ R≥0. The latter one is heavily depended on the State of Charge SoC(t) ∈ [0, 1] of304
the car battery (Welzel et al., 2021; Fastned, 2025), which is also part of the car-state. The car-state305
also contains information about the physical properties of the car. These are the maximum battery306
capacity C, the maximum charging rate for a car r̄, and τ ∈ (0, 1) – the transition point from the307
bulk stage to the absorption stage of the charging process (Lee et al., 2020b). Finally, the car-state308
includes a user preference indicator u.309

In brief summary, the state of each charging port is represented by:310

• Current power drawn Idrawn(t) ∈ R≥0, occupancy indicator 1occup(t) ∈ {0, 1};311

• Car-state (∆Eremain(t),∆tremain(t), r̂(t),SoC(t), C, r̄, τ, u).312

A.2 Transition Function313

The transition function consists of four major steps: (i) Apply Actions, i.e. adapt charging levels at314
each EVSE, (ii) charge stationed cars, (iii) departure of cars, and (iv) arrival of new cars.315

Apply Actions As a first step, the actions taken by the agent are applied to adjust the power drawn316
by each charging pole, specifically317

Idrawn,i(t) =

{
min (Idrawn,i(t−∆t) + ai(t), r̂(t), Imax→,i) Idrawn,i(t−∆t) + ai(t) ≥ 0

−min (−Idrawn,i(t−∆t)− ai(t), r̂(t), Imax←,i) else.

Hereby constraints on the maximum power drawn imposed by the architecture are enforced by318
assuring that for each subtree H in the architecture, the constraints319

1

ηH

∑
h∈leaves(H)

Idrawn,h(t) ≤ IH , (4)

are satisfied. If the drawn currents violate these constraints, the currents at each leaf are rescaled to320
satisfy the constraints, modelling the potential behaviour of some safety infrastructure on top of the321
controller.322

Charge Stationed Cars After having adjusted the power levels at each charging pole, the charging323
is processed for the time interval, where a constant charging rate over the full interval ∆t is assumed.324
The car states are adjusted in the following way:325

∆Eremain,i(t+∆t) = ∆Eremain,i(t)−∆t · Vi · Idrawn,i(t)

SoC(t+∆t) = SoC(t) +
∆t · Vi · Idrawn,i(t)

Ci

r̂(t+∆t) = r̂τi,r̄i(SoC(t+∆t)).

Notably, the physical attributes of the car in the car state, i.e. the maximum battery capacity, the326
maximal charging rate and τ do not change. As charging has been proceed, we assume that time327
moves on, i.e. t 7→ t+∆t and ∆tremain,i(t+∆t) = ∆tremain,i(t)−∆t.328

Departure of Cars At the end of the period, cars fully charged or with no time remaining will329
leave. Consequently the car-states for the corresponding charging poles are updated330

sc,i(t) =


(0, . . . , 0) ∆tremain,i(t) = 0 andui = 0

(0, . . . , 0) ∆Eremain,i(t) = 0 andui = 1

sc,i(t) else.
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Arrival of new Cars The amount of arriving cars is sampled M(t) ∼ Darrival(t). We331
model a first-come-first-served policy by clipping M(t) by the number of available free spots332
N −

∑N
i=1 1occup,i(t). For each car j = 1, . . . ,M(t) the car profile, and the user profile are333

sampled from their respective distribution, i.e. (∆tremain,j , ∆Ej , SoC0,j , uj) ∼ Dprofile(t) and334
(r̄j , τj , Cj) ∼ Dcar(t), respectively.335

Each car j is then allocated to a free charging pole k, which alters the state of charging pole k based336
on car j:337

sc,k(t) = (0, 1,∆Ej ,∆tremain,j , r̂τj ,r̄j (SoC0,j), Cj , r̄j , τj , uj).

A.3 Reward functions338

The amount of net energy transferred into cars in the interval [t, t + ∆t] can be calculated as339
∆Enet(t) = ∆t

∑N
i=1 Vi · Idrawn,i(t). Accounting for losses within the electric architecture of the340

charging station, the amount of energy, that is transferred from cars into the grid can be calculated341
as342

∆E→grid(t) = ∆t
∑

i:Idrawn,i<0

ηi · Vi · Idrawn,i(t) < 0. (5)

Similarly, the amount of energy that has to be drawn from the net to transfer set levels of energy into343
cars ∆Egrid→(t), after incorporating imperfect efficiencies, can be calculated via ∆Egrid→(t) =344
∆t
∑

i:Idrawn,i>0 η
−1
i · Vi · Idrawn,i(t) > 0. Lastly, the energy contributed by (dis-)charging the345

battery ∆Eb,net(t) = ∆t Ibattery(t)Vbattery has to be incorporated, resulting in the following net346
energy drawn from (or pushed into) the grid347

∆Egrid,net = ∆Egrid→(t) + ∆E→grid(t) + ∆Eb,net(t).

Further that the price at which we sell and buy power from car owners is the same, i.e. psell. This348
results in the following revenue349

Π(t) =

{
psell(t) ·∆Enet(t)− pbuy(t) ·∆Egrid,net − c∆t ∆Egrid,net > 0,

psell(t) ·∆Enet(t)− psell,grid(t) ·∆Egrid,net − c∆t ∆Egrid,net ≤ 0.

Here, c∆t denotes the fixed cost for running the facility per ∆t. The general reward350
r(s(t), a(t), s(t+∆t)), abbreviated by r(t) in Chargax consists of the profit minus the linear com-351
bination of some penalty terms352

r(t) = Π(t)−
∑
c

αcc(t). (6)

Some examples of included penalty terms are listed below353

• Constraint Violations The hard constraints imposed by the architecture in Eq. 4 could be instead354
included as as soft constraints (Yeh et al., 2024) via the penalty355

cconstraint(t) = max
H

min

0,
1

ηH

∑
i∈leaves(H)

Idrawn,i(t)− IH

 .

• Satisfaction penalty Users can experience dissatisfaction in two ways: Time-sensitive users have356
a desired departure time and are assumed to leave at that time, regardless the SoC of their car. To357
avoid customers leaving the charging station with a suboptimal SoC we propose to incorporate a358
satisfaction penalty359

cSatisfcation,0(t) =
∑

i:∆tremain,i(t)=0,ui=0

max(0,∆Eremain,i(t)).
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The opposite holds for charge sensitive users, as they are expected to leave when there cars are360
charged to the desired level. However, these users can be overly satisfied by charging their car to361
the desired level faster than desired362

cSatisfcation,1(t) =
∑

i:∆Ei(t)=0,ui=1

max(0,−∆tremain,i(t))− βmax(0,∆tremain,i(t)).

Here β controls how much the positive satisfaction from leaving earlier should weight in compar-363
ison to the negative dissatisfaction from having to stay overtime.364

• Sustainability To enforce the agent to charge cars in the most sustainable way possible, a penalty365
term for non-sustainable behaviour may be added. One solution proposed in (Yeh et al., 2024) is366
to employ the MOER m(t), capturing the carbon intensity of a unit of energy produced at time t367

csustain(t) = m(t) ·∆Egrid,net(t).

• Rejected Customers In view of congestion management problems (Zhang et al., 2019; Hussain368
et al., 2022), one might be interested in serving the maximum number of cars, i.e. reduce the369
amount of rejected cars, by adding a penalty term for declined cars370

cdeclined(t) = max

(
M(t)−

(
N −

N∑
i=1

1occup,i(t)

)
, 0

)
.

• Battery Degradation Real world batteries suffer from degradation under use (Lee et al., 2020a).371
This can be incorporated by adding a degradation cost to every discharging of the Charging station372
battery, as well as for the cars. For sake of simplicity, we assume the additional degradation to be373
proportional to the discharged energy374

cdegrad,battery(t) = |∆Eb,net(t)| · 1{∆Eb,net(t)<0} and cdegrad,cars(t) = |∆E→grid(t)|.

• Grid Stability (Only applicable in a V2G scenario) If the agent can discharge cars, this can be375
leveraged to stabilize the grid load (Li et al., 2021; Elma, 2020). This could be reflected in a376
penalty term through an exogenous signal of the grid demand dgrid(t) ∈ R377

cgrid(t) = |∆Enet(t)− dgrid(t)|.
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Supplementary Materials514

The following content was not necessarily subject to peer review.515
516

B Implementation Details517

B.1 Practical Considerations518

Table 3 contains environment settings used throughout our experiments whenever not stated. Addi-519
tionally, we list some practical considerations in Chargax here.520

• The episode length defaults to the length of data provided for arriving cars. In our bundled sce-521
narios, this equals 24 hours. These bundled scenarios provide their data as average numbers per522
timestep. The actual number of cars arriving is then drawn using a Poisson distribution.523

• By default, we train in a Chargax environment utilizing a method akin to exploring starts. At524
environment reset, we sample a random day from the given price data and use this day’s prices525
for the episode. The agent observes the current episode day and whether this is a weekday or a526
workday.527

• Throughout our experiments, we have used a discretised action space, setting the (user-defined)528
discretization level to 10. This allows the agent to select increments as 10%, 20%, 30%, etc., up529
to 100% of the maximum current for each charging port.530

B.2 Agent configuration531

Unless otherwise stated, the experiments conducted in Section 5 and Appendix D trained with a532
PPO agent using the hyperparameters listed in Table 3.533

Hyperparameter Value Environment Parameter Value

Total timesteps 1e7 Minutes per timestep ∆t 5
Learning rate (α) 2.5e-4 (annealed) Discretization factor 10
Discount factor γ 0.99 Episode length 24 hours
GAE λ 0.95 Number of Chargers 16
Max grad norm 100.0 Number of DC Chargers 10
Clipping coefficient ϵ 0.2 Sell price to customers (psell) 0.75
Value func clip coefficient 10.0 All reward coefficients α (Eq. 3) 0.0
Entropy coefficient 0.01
Value function coefficient 0.25
Vectorized environments 12
Rollout length (steps) 300
Number of minibatches 4
Update epochs 4
Minibatch size 900
Batch size 3600

Table 3: PPO hyperparameters (left) alongside environment settings (right) used throughout our
experiments unless otherwise stated.
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C State summary534

Table 4: Summary of the state space in Chargax

symbol domain
exogenous/

endogeneous variable name

reward data

psell R≥0 exogenous Selling price (to Customer) per kWh
pbuy R≥0 exogenous Buying price per kWh

psell,grid R≥0 exogenous Selling price (to grid) per kWh
m R≥0 exogenous Marginal Operations Emission Rate

dgrid R exogenous Grid Demand
M N0 exogenous Number of arriving cars

Car state of
EVSE i

∆tremain,i N0 exogenous Remaining time of customer
Ci R≥0 exogenous Capacity of Car
r̄i R≥0 exogenous Maximum charging rate
r̂i R≥0 exogenous Maximum charging rate at current SoC
τi [0, 1] exogenous
ui {0, 1} exogenous User preference

SoCi [0, 1] endogenous Current SoC
∆Eremain,i R≥0 endogenous Remaining Charging demand

State variables
of EVSE i

1occup,i {0, 1} endogenous Occupancy Indicator
Idrawn,i R≥0 endogenous Current Power drawn at EVSE

Battery state
Ibattery R≥0 endogenous Current power drawn at battery

SoCbattery [0, 1] endogenous SoC of Battery
r̂battery R≥0 endogenous Maximum charging rate at current SoC

D Additional Experiments535
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Figure 6: Results on our 4 bundled scenarios using EU cars and 16 chargers (10 DC, 5 AC)
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Figure 7: Results on our 4 bundled scenarios using US cars and 16 chargers (10 DC, 5 AC)
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Figure 8: Results on our 4 bundled scenarios using World cars and 16 chargers (10 DC, 5 AC)
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Figure 9: Results on our 4 bundled scenarios using EU cars and 16 AC (11.5kW) chargers
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Figure 10: Results on our 4 bundled scenarios using EU cars and 8 AC (11.5kW) and 8 DC (150kW)
chargers
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Figure 11: Results on our 4 bundled scenarios using EU cars and 16 DC (150kW) chargers
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