
CORE: Towards Scalable and Efficient Causal Discovery with
Reinforcement Learning

Andreas Sauter
Vrije Universiteit Amsterdam
Amsterdam, The Netherlands

a.sauter@vu.nl

Nicolò Botteghi
University of Twente

Enschede, The Netherlands
n.botteghi@utwente.nl

Erman Acar
IvI and ILLC, University of Amsterdam

Amsterdam, The Netherlands
e.acar@uva.nl

Aske Plaat
LIACS, Leiden University
Leiden, The Netherlands
a.plaat@liacs.leidenuniv.nl

ABSTRACT
Causal discovery is the challenging task of inferring causal struc-
ture from data. Motivated by Pearl’s Causal Hierarchy (PCH), which
tells us that passive observations alone are not enough to distin-
guish correlation from causation, there has been a recent push to
incorporate interventions into machine learning research. Rein-
forcement learning provides a convenient framework for such an
active approach to learning. This paper presents CORE, a deep
reinforcement learning-based approach for causal discovery and
intervention planning. CORE learns to sequentially reconstruct
causal graphs from data while learning to perform informative
interventions. Our results demonstrate that CORE generalizes to
unseen graphs and efficiently uncovers causal structures. Further-
more, CORE scales to larger graphs with up to 10 variables and
outperforms existing approaches in structure estimation accuracy
and sample efficiency. All relevant code and supplementarymaterial
can be found at https://github.com/sa-and/CORE.

KEYWORDS
Causal Discovery, Reinforcement Learning

ACM Reference Format:
Andreas Sauter, Nicolò Botteghi, Erman Acar, and Aske Plaat. 2024. CORE:
Towards Scalable and Efficient Causal Discovery with Reinforcement Learn-
ing. In Proc. of the 23rd International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2024), Auckland, New Zealand, May 6 – 10, 2024,
IFAAMAS, 11 pages.

1 INTRODUCTION AND RELATEDWORK
Causal discovery (CD) is the challenging task of inferring causal
structure from data [10, 35]. Traditional approaches to causal dis-
covery consider data from purely observational distributions. These
are approaches such as constraint-based ones [14, 31], score-based
ones [6], and more recently continuous optimization-based ones
[38, 39].

Pearl’s Causal Hierarchy (PCH) asserts that distinguishing be-
tween mere correlations and genuine causal relationships requires
the integration of interventions in general [3]. As a response to

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). This work is licenced under the Creative
Commons Attribution 4.0 International (CC-BY 4.0) licence.

this requirement, there has been a recent push to incorporate inter-
ventions into causal discovery research [12, 23] including machine
learning [5, 18, 28], among others.

Reinforcement learning (RL) learns an optimal policy for sequen-
tial decision problems through interactions [32]. Therefore, RL is a
promising framework for using interventions to investigate causal
relationships. In particular, RL plays a dual role in the realm of
causal discovery - it can be used not only to recover the causal
structure of an environment [40], but also to learn causal discovery
algorithms [28], thus representing a versatile tool for CD.

In particular, RL has also been used to search the space of causal
structures more efficiently based on a fixed dataset [36, 40] with the
possibility of incorporating prior knowledge [11]. Similarly, work
on RL-related GFlow Nets [4] has been deployed to generate good
estimates of the true causal structure [7, 17]. Furthermore, many
integrations of RL with causal concepts have been investigated that
restrict their CD process to supervised learning [9, 16, 21, 24, 34]. In
addition to that, RL has also been used to learn policies that choose
the best interventions to do for CD [1, 29, 33].

Although causal discovery has seen substantial progress with
these works over the years, leading to a multitude of methodolo-
gies, challenges persist in areas such as scalability, generalization,
and planning of interventions. In this context, this paper intro-
duces CORE (Causal DiscOvery with REinforcement Learning), a
deep-RL-based algorithm designed for the task of learning a CD
policy. CORE can learn a policy that sequentially reconstructs
causal graphs from both observational and interventional data,
while simultaneously performing informative interventions. This
dual learning paradigm allows CORE not only to uncover causal
structures efficiently, but also to identify interventions that enhance
its causal models. The following lists our main contributions:
● We formalize the task of learning a CD algorithm as a par-
tially observable Markov decision process (POMDP).
● We propose a dual Q-learning setup to learn intervention
design and structure estimation simultaneously.
● We demonstrate that CORE can be successfully applied for
causal discovery to previously unseen graphs of sizes of up
to 10 variables.

In addition to those, we show the importance of jointly learning
which interventions to perform and graph generation, and investi-
gate the limitations of our approach regarding the applicability to
the real world.

https://github.com/sa-and/CORE

The most distinctive feature of CORE is that it does not impose
a specific algorithm for identifying causal models, but rather at-
tempts to learn it. Among others, this can have positive effects
on efficiency and transferability to new problem instances. While
MCD [28] and AVICI [19] solve the same task, they run into pitfalls
that hinder their application to realistic graph sizes or rely on of-
fline data, respectively. We set steps to overcome these pitfalls by
imposing additional structure on our policy, more efficient rewards,
and learning to actively perform relevant interventions.

Our results show robust generalization to unseen graphs and
the capability to scale to scenarios with up to ten variables, a step
forward over the state of the art, and a crucial advancement towards
addressing real-world complexities. The subsequent sections delve
into the intricacies of CORE’s architecture, its training methodolo-
gies, and empirical validations.

2 PRELIMINARIES AND NOTATION
In this section, we establish the necessary notation and provide an
overview of key concepts and techniques used in the field of causal
discovery with interventions and reinforcement learning.

2.1 Causal Models
Causal relations are often formalized through a structural causal
model (SCM) which is a tuple 𝑀 = (𝒳 ,ℱ ,𝒰 ,𝒫) with a set of en-
dogenous (random) variables (i.e., relevant variables for the prob-
lem) 𝒳 = {𝑋1, . . . , 𝑋𝑛}, 𝒰 = {𝑈1, . . . ,𝑈𝑛} a set of exogenous (ran-
dom) variables (often also called unobservable or noise variables),
ℱ = {𝑓1, . . . , 𝑓𝑛} the set of functions (also called structural equa-
tions) whose elements are in the form of𝑋𝑖 ← 𝑓𝑖(𝑃𝑎(𝑋𝑖),𝑈𝑖)where
𝑃𝑎(𝑋𝑖) ⊆ 𝒳 /{𝑋𝑖} stands for endogenous parent variables of 𝑋𝑖 ,
and 𝒫 = {𝑃1, ..., 𝑃𝑛} the set of pairwise independent probability
distributions defined over 𝒰 with𝑈𝑖 ∼ 𝑃𝑖 .

Interpreting variables as nodes and the functional dependency
between variables as directed edges, every SCM 𝑀 induces a di-
rected graph structure 𝐺 , which we will call the corresponding
causal graph. Directed edges represent direct causation from parent
nodes to child nodes, hence absence of edges is as important as
present edges. For the sake of simplicity, we shall follow the com-
mon assumption that no variable is its own cause i.e., there is no
circular functional dependency, hence the induced causal graph is
always a directed acyclic graph (DAG). Furthermore, each SCM𝑀

induces a joint distribution 𝑃𝑀(𝒳) over its endogenous variables,
whose structural properties inherited from the corresponding in-
duced graph 𝐺 satisfy the Markov condition. That is, each 𝑋𝑖 is
independent of its non-descendants, given its parents 𝑃𝑎(𝑋𝑖). Along
with the independence of the noise variables, this condition implies
the following factorization [26]:

𝑃𝑀(𝒳) = ∏
𝑋𝑖∈𝒳

𝑃(𝑋𝑖 ⋃︀𝑃𝑎(𝑋𝑖)) (1)

We shall refer to this distribution as observational distribution.
Note that SCMs are generative models, i.e., we can sample values

for 𝒳 from them. We can sample the exogenous variables from
𝒫 and determine the values of endogenous variables according
to their functions in ℱ . This procedure effectively corresponds to

Figure 1: A simple graphical illustration of a (hard) inter-
vention. Given the causal graph 𝐺 with endogenous vari-
ables 𝒳 = {𝑋,𝑌,𝑍} and the corresponding noise variables
𝒰 = {𝑈𝑋 ,𝑈𝑌 ,𝑈𝑍 }, intervening on variable 𝑋 (i.e., 𝑑𝑜(𝑋 = 𝑥))
results inmodifying𝐺 into𝐺 ′ by pruning the incoming edges
to node 𝑋 and assigning the value 𝑥 .

sampling from the joint distribution over endogenous variables
[26].

2.2 Interventions
Interventions play a crucial role in causal discovery, allowing us to
investigate causal relationships by actively manipulating variables
in a system. In general, imposed by Pearl’s causal hierarchy [3], in-
terventions are necessary to distinguish causation from correlation,
and eventually to reason about causal effects.

Formally, an intervention on a variable 𝑋 changes the variable’s
value to 𝑥 (an arbitrary but fixed value), independently of 𝑋 ’s ac-
tual causes. Then 𝑋 is called the intervention target. Effectively,
at the graph level, intervening on a variable 𝑋 , removes all the
edges incoming to 𝑋 , resulting in 𝑃𝑎(𝑋) = ∅. This operation is
the so-called do-operation (denoted as 𝑑𝑜(𝑋 = 𝑥)), and allows us to
distinguish the causal effect of variable 𝑋 on variable(s) 𝑌 from the
confounding influence of common parents of 𝑋 and 𝑌 (Figure 1).

In an SCM, intervening on a variable 𝑋 implies that the corre-
sponding structural equation 𝑓𝑋 ∈ ℱ is replaced by𝑋 ← 𝑥 , resulting
in a modified SCM𝑀

′. Therefore, an intervention affects the distri-
bution of the intervention target, since:

𝑃𝑀′(𝑋 ⋃︀𝑃𝑎(𝑋)) = 𝑃𝑀′(𝑋 ⋃︀∅) = 𝑃𝑀′(𝑋) = 𝛿𝑥 (2)

where 𝛿𝑥 is the probability density function that has all mass on 𝑥 .
Put differently, an intervention replaces the factor associated with
the intervened variable. We refer to the resulting joint distribution

𝑃𝑀(𝒳 ⋃︀𝑑𝑜(𝑋 = 𝑥)) = ∏
𝑋𝑖∈𝒳∖{𝑋}

𝑃𝑀(𝑋𝑖 ⋃︀𝑃𝑎(𝑋𝑖)) ⋅ 𝑃𝑀′(𝑋 = 𝑥) (3)

as post-interventional distribution. To simplify the notation, we
will sometimes use 𝑃𝑀𝑑𝑜(𝑋=𝑥)

(𝒳) or 𝑃𝑀𝑑𝑜(𝑋)
(𝒳) to refer to the

expression 𝑃𝑀(𝒳 ⋃︀𝑑𝑜(𝑋 = 𝑥))when the target variable or 𝑥 is clear
from the context.

2.3 Reinforcement Learning
Reinforcement learning (RL) is a general approach to learning
through interaction with the world [32], especially in sequential
decision problems. An RL agent aims to find the sequence of actions

that maximize the expected return, i.e., the cumulative (discounted)
reward. How the RL agent selects its actions only relies on (possibly
indirect) measures of how the world changes after each action is
taken.

POMDP. In reinforcement learning problems, the relationship
between an agent and the environment in which the states are
not fully observable is often modeled as a Partially Observable
Markov Decision Process (POMDP). Formally, a POMDP is a tuple
(𝒮,𝒜,𝒯 ,ℛ,Ω,𝒪,𝛾) where 𝒮 is a set of states,𝒜 is a set of actions,
𝒯 ∶ 𝒮 ×𝒜×𝒮 Ð→ (︀0, 1⌋︀ is a set of transition probabilities between
states,ℛ ∶ 𝒮 ×𝒜→ R is the reward function, Ω is a set of observa-
tions, 𝒪 ∶ 𝒮 ×𝒜 × Ω → (︀0, 1⌋︀ is the set of conditional observation
probabilities, and 𝛾 ∈ (︀0, 1) is the discount factor.

RL:. The strategy of actions of an RL agent is called policy. A pol-
icy can be either deterministic or stochastic. A deterministic policy
𝜋 ∶ 𝒮 Ð→ 𝒜 maps states to an action, whereas a stochastic policy
𝜋 ∶ 𝒮 ×𝒜Ð→ (︀0, 1⌋︀ is characterized by a conditional distribution
of actions given states. To maximize the return in the long run, RL
agents often estimate the so-called value function 𝑉 ∶ 𝒮 Ð→ R or
action value function 𝑄 ∶ 𝒮 ×𝒜Ð→ R. These functions determine
the desirability of a state or a state-action pair, respectively. The
optimal Q-function 𝑄

∗ allows us to derive an optimal policy 𝜋
∗

that maximizes the return by greedily choosing the action that max-
imizes the value of each state, that is, 𝜋∗(𝑠) = argmax𝑎𝑄

∗(𝑠, 𝑎)
[32].

Deep Q-Learning: The Q-learning algorithm [37] estimates the
state-action value function𝑄 using the temporal difference (TD). In
particular, TD learning decomposes the problem of estimating the
expected return of a given policy as the sum of the instantaneous
reward and the value accumulated by following the optimal policy
in the next step:

𝑄(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾max𝑎′𝑄(𝑠′, 𝑎′) (4)

where 𝑟(𝑠, 𝑎) is the instantaneous reward of the state-action pair.
To estimate the future reward, we assume that the agent follows
the optimal policy 𝜋

∗(𝑠), i.e., argmax𝑎𝑄
∗(𝑠, 𝑎). Especially in the

first iterations of the algorithm, the estimate of 𝑄 does not cor-
respond to the optimal value function 𝑄

∗. However, tabular Q-
learning can still converge to the optimal solution [37]. The deep
Q-network (DQN) algorithm [22] adapts the Q-learning algorithm
to non-tabular settings, e.g., continuous state spaces, where the
Q-function needs to be approximated via a neural network. DQN
utilizes the TD-learning rule to generate a target for the training of
the neural network that approximates the Q-value by means of the
loss function:

ℒ(𝜃) = E𝑠,𝑎,𝑟,𝑠′(︀(𝑟(𝑠, 𝑎) + 𝛾max𝑎′𝑄(𝑠′, 𝑎′;𝜃−) −𝑄(𝑠, 𝑎;𝜃))2⌋︀ (5)

where 𝑄(𝑠, 𝑎;𝜃) is the Q-function approximated by the neural net-
work of parameters 𝜃 , while 𝑄(𝑠, 𝑎;𝜃−) is the so-called target net-
work, used to generate a fixed target and stabilize the training
dynamics, and 𝛾 is the discount factor.

3 LEARNING A CAUSAL DISCOVERY POLICY
WITH INFORMATIVE INTERVENTIONS

In this section, we present our algorithmic setup for learning causal
discovery policies. We consider the classic agent-environment in-
teraction scheme commonly used in RL. The goal is to learn a policy
that represents a CD algorithm that uses observational and inter-
ventional data to sequentially estimate the true causal structures
by performing informative interventions. Such modules can be
applied to previously unseen causal structures through a few for-
ward passes of a neural network without retraining, making them
a highly efficient tool for causality [19, 28].

Following this line of research, we learn a policy that collects a
stream of data by intervening on the environment to infer a causal
structure estimate. This setup acknowledges the strong influence
that informative interventions have, especially when there is a
limited budget for interventions. We learn to perform these inter-
ventions by rewarding interventions that lead to the generation of
a better structural update and limiting the budget for interventions
by means of possible steps in an episode.

One key aspect of learned CD modules is that they need informa-
tion about the ground truth causal structure only during training.
This promises the possibility of (i) training the CD policy on syn-
thetic data where the ground truth can easily be generated, and
then (ii) applying it to estimate the causal structure of environments
where the ground truth structure is potentially unknown, such as
in the real world.

3.1 POMDP Formulation of Causal Discovery
Through Interventions

To conveniently model the causal discovery process where there is
partial observability, we will use a POMDP. However, since such a
formalization is not entirely obvious, it constitutes our first contri-
bution, which we will present in this section.

State Space: Our environment is determined by SCMs.1 There-
fore, each state will correspond to an SCM. We shall describe each
SCM as the set of functions that determine the endogenous vari-
ables. Therefore, having 𝑛 endogenous variables, a state is a set
𝑠 = {𝑓0, ..., 𝑓𝑛−1} of functions that define the current SCM. Further-
more, each state contains the ground truth observational graph𝐺∗𝑠
induced by the observational SCM𝑀𝑑𝑜(∅).

Action Space: We model our action space as a multi-discrete
space 𝐴 = (︀𝑛 + 1⌋︀ × (︀2𝑛(𝑛 − 1) + 1⌋︀ where the notation (︀𝑛⌋︀ =
{1, 2, . . . , 𝑛}with𝑛 being the number of nodes in the graph. The first
dimension of the action space represents the endogenous variables
of the current SCM and determines the intervention targets. For
each variable 𝑋𝑖 ∈ 𝒳 , there is an action 𝑑𝑜(𝑋𝑖 = 𝑐), where 𝑐 is a
predefined constant. In addition, the agent can do nothing and just
collect observational data. In total, this dimension of the action
space has 𝑛 + 1 elements. The second dimension represents the
structural actions. Each action in this space indexes the removal and
addition of edges on the currently estimated graph. Additionally,
the agent can perform a void structural update which leads to a total

1Our approach can be applied to any data-generating process that allows for sampling
from and intervening on its variables.

𝑀ௗ ∅
 :

 𝑋← 3
 𝑋ଵ← 0.5 ⋅ 𝑋

𝑀ௗ బୀ
 :
 𝑋← 𝑐
 𝑋ଵ← 0.5 ⋅ 𝑋

𝑀ௗ భୀ
 :

 𝑋← 3
𝑋ଵ ← 𝑐

𝑑𝑜(∅) 𝑑𝑜(𝑋 = 𝑐) 𝑑𝑜(∅)𝑑𝑜(𝑋ଵ = 𝑐)

𝑑𝑜(𝑋ଵ = 𝑐)

𝑑𝑜(𝑋 = 𝑐)

𝑀ௗ .

𝑜 ∼ 𝑃ெ .
(𝑋) ℎ

Q୧୬

𝑎 = (𝑑𝑜(.), 𝑋 → 𝑋)

𝑟(𝐺௦
∗, 𝑋 → 𝑋) Qୱ୲

𝑀
𝑀ଵ

𝑀ଶ …

Train set
Randomly
picked each
episode

Env

Agent
History

s

aୱ୲: 𝑋 → 𝑋

a୧୬: 𝑑𝑜(.)

Figure 2: Overview of COREs training setup (right) and a minimal example of the transition dynamics for an SCM with two
endogenous variables (left). At each step, the agent picks the intervention/structural actions according to an 𝜖-greedy policy on
𝑄𝑖𝑛 and 𝑄𝑠𝑡 respectively. The intervention is applied to the SCM𝑀

𝑖 leading to a post-interventional distribution 𝑃𝑀𝑑𝑜(.)
from

which an observation is sampled. The agent receives a reward based on the structure action and the induced graph of𝑀𝑖
𝑑𝑜(∅).

The observation is added to the history of observations and serves as input to the agent. At the beginning of each episode a new
𝑀

𝑗 is drawn from the training set and the observation history is cleared.

size of 2𝑛(𝑛 − 1) + 1 actions in this dimension since we disallow
reflective edges. The action space scales quadratically with the
number of nodes. To address this problem, we mask the possible
actions at every step such that the agent cannot add an already
existing edge or remove a non-existing edge. This effectively halves
the size of this action space dimension.

Transition Dynamics: Each episode starts in the observational
SCM𝑀𝑑𝑜(∅) where no intervention is performed. An intervention
𝑑𝑜(𝑋𝑖) on this SCM deterministically leads to a new SCM𝑀𝑑𝑜(𝑋𝑖)
where 𝑓𝑖 is replaced by some constant 𝑐 . This effectively replaces
𝑓𝑖 in the state. With an intervention 𝑑𝑜(𝑋 𝑗), we transition from
𝑀𝑑𝑜(𝑋𝑖) to 𝑀𝑑𝑜(𝑋 𝑗), that is, 𝑇 (𝑀𝑑𝑜(𝑋𝑖), 𝑑𝑜(𝑋 𝑗),𝑀𝑑𝑜(𝑋 𝑗)) = 1 or,
equivalently, 𝑇 (𝑀𝑑𝑜(𝑋𝑖), 𝑑𝑜(𝑋 𝑗)) = 𝑀𝑑𝑜(𝑋 𝑗). A minimal example
of the transition dynamics of our approach can be seen in Figure 2.

Observations: At each step 𝑡 , the agent collects the value of
the endogenous variables {𝑥0, . . . , 𝑥𝑛−1} from the joint distribution
𝑃𝑀𝑑𝑜(𝑋)

(𝒳) induced by the current SCM𝑀𝑑𝑜(𝑋). Therefore, the
observation is 𝑜𝑡 ∼ 𝑃𝑀𝑑𝑜(𝑋)

(𝒳).

State Representation: The use of a single observation 𝑜𝑡 is not
sufficient to determine the best action in POMDPs. Thus, the agent
has to build its own state representation ℎ𝑡 using the history of
observations and actions [32].We denote the history of observations
and actions by ℎ𝑡 = (︀𝑥0, 𝑎0, ..., 𝑥𝑡 , 𝑎𝑡 ⌋︀.

Reward: The structural Hamming distance (SHD) measures the
distance between two DAGs by counting the number of different
edges. Since our goal is to minimize the distance between the gen-
erated and the ground truth observational graphs at every step,
we consider the SHD as a natural candidate for our reward func-
tion. For a ground truth observational graph 𝐺∗𝑠 , a graph estimate
𝐺𝑡 , and a graph estimate 𝐺𝑡 ′ in the consecutive step 𝑡

′, we de-
fine the potential-based reward [15] as 𝑟(𝑠, 𝑎) = 𝑆𝐻𝐷(𝐺∗𝑠 ,𝐺𝑡) −
𝑆𝐻𝐷(𝐺∗𝑠 ,𝐺𝑡 ′).

To simplify, we rewrite our reward function in the following
way: Let 𝐸(𝑎) be the directed edge that is manipulated in action 𝑎.
Then, when adding an edge 𝐸(𝑎), our reward becomes:

𝑟(𝑠, 𝑎) =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

1 if 𝐸(𝑎) ∈ 𝐺∗𝑠
−1 if 𝐸(𝑎) ⇑∈ 𝐺∗𝑠

(6)

When removing an edge 𝐸(𝑎) our reward becomes −𝑟(𝑠, 𝑎). In all
other cases (𝐸(𝑎) = ∅) the reward is 0.

This formulation has the computational advantage that only
𝐸(𝑎) must be compared to the edges of 𝐺∗𝑠 instead of comparing
the entire graph 𝐺𝑠′ . Furthermore, it makes the reward denser and
depends only on 𝑠 and 𝑎 instead of relying on the entire history
of structural actions that make up the current graph estimate. In
Appendix A we demonstrate that this formulation is equivalent to
𝑆𝐻𝐷(𝐺∗𝑠 ,𝐺𝑠) − 𝑆𝐻𝐷(𝐺∗𝑠 ,𝐺𝑠′).

3.2 Data-Generation
We train our CORE agents using a training set of DAGs. In addition,
we have an evaluation set of DAGs that the agent has not seen
during training. To ensure that the evaluation set does not include
any graphs from the training set, we first create a set of unique
DAGs, shuffle it to ensure equal sparsity throughout the list, and
then divide it into training and evaluation sets. As per common
assumption in machine learning, we assume that having more
graphs in the training set will help us to generalize better to the
evaluation set.

Since the space of DAGs grows superexponentially in the number
of its nodes, it quickly becomes infeasible to generate all possible
graph structures with 𝑛 nodes. For this reason, we generate all
possible graphs only for graphs with 3 nodes (for a total of 25
graphs) and graphs with 4 nodes (for a total of 543 graphs). For
graphs with more than 4 nodes, we generate subsets of the possible
graphs. Similarly to many works in the literature, each graph is
generated as an Erdös-Rényi [8] graph with an edge probability of

0.2. We diversify the training data by generating SCMs based on
these graphs by sampling a function 𝑓𝑖(𝑃𝑎𝐺(𝑋𝑖)) from a class of
possible functions for every node𝑋𝑖 in the graph𝐺 at the beginning
of each episode.

3.3 Learning Approach
The CORE agent is based on the DQN algorithm [22], but it main-
tains two multilayer perceptron Q networks simultaneously. One
network, 𝑄𝑠𝑡 (ℎ, 𝑎𝑠𝑡 ;Θ𝑠𝑡), estimates the Q-values specific to the
structural updates, the other 𝑄𝑖𝑛(ℎ, 𝑎𝑖𝑛 ;Θ𝑖𝑛) maintains the values
for the interventions. Each of the two networks comes with its
own target network, and the loss is computed separately. Note that
Q values are determined on the basis of the history of observa-
tions, as is often done when applying DQN to POMDP problems
[22]. The networks are identical except for the output layers due to
different dimensionalities of the action space. The overall output
of the Q-function is the concatenation of the individual Q-values,
and our greedy policy picks 𝑎𝑖𝑛 and 𝑎𝑠𝑡 in such a way that the
corresponding Q-values are maximized.

At the procedural level, our algorithm generates a new SCM
based on a random sample of the graph data at the beginning of each
episode. Furthermore, we start every episode with an empty graph
estimate. The inference time for a given SCM is fully determined by
the fixed number of steps per episode. This puts a hard upper bound
on the number of samples and makes inference highly efficient.
Figure 2 gives an overview of our agent.

4 GENERALIZATION TO UNSEEN
STRUCTURES

In this section, we empirically validate whether our learned policy
constitutes a good causal discovery algorithm. To this end, we train
our model on a training set of SCMs with known causal structures
and evaluate it on SCMs with causal structures that were not seen
during training.

4.1 Training Data
For this experiment, we generate graphs with 3, 4, 5, 8, and 10
variables as described in Section 3.2. We split the generated graphs
into training and test sets as follows: We first generate the graphs
(25, 543, 16000, 91000, 101000), and then split the final list into
train and test sets with splits 19/6, 401/142, 15000/1000, 90000/1000,
100000/1000 for 3, 4, 5, 8 and 10 variables, respectively. We limit the
number of test graphs to 1000 since the evaluation would otherwise
slow down the training prohibitively.

At the beginning of each episode, a graph is sampled from the
data set. To generate the SCMs in accordance with Section 3.2, we
define a class of linear additive functions. For each node 𝑋𝑖 in the
graph 𝐺 , we sample ⋃︀ 𝑃𝑎𝐺(𝑋𝑖) ⋃︀ weights from 𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚(0.5, 2.0).
The generated function for this node is then𝑋𝑖 ← Σ𝑋 𝑗 ∈𝑃𝑎(𝑋𝑖)𝑤 𝑗 ⋅𝑥 𝑗
for the current values 𝑥 𝑗 of the parents of 𝑋𝑖 . If 𝑋𝑖 is a root node,
we assign a default value of 0. We use an intervention value of 20 to
provide a strong signal about the causal structure w.r.t. to the true
causal effect sizes. This value can be considered as a hyperparameter
and we discuss its impact further in Section 6.

4.2 Experimental Setup
We evaluate the generalization capability of CORE w.r.t. the avail-
able baselines. While AVICI [19] learns a graph generator that
estimates the causal structure of an offline dataset, CORE operates
in a few-shot online data sample regime. Therefore, a meaningful
comparison with AVICI is out of reach. Consequently, MCD [28] is,
to the best of our knowledge, the only SOTA method that learns a
CD algorithm that actively intervenes. Furthermore, we compare
with the random baseline that generates random DAGs, and the
empty baseline which represents the empty graph.

We train both MCD and our approach for the same amount of
steps and align all relevant hyperparameters including the neural
network sizes. MCD runs into difficulties when scaling up to graphs
with more than 4 nodes. Due to such computational infeasibility, we
cannot run experiments for MCD on SCMs with 8 or 10 variables. A
detailed description of the hyperparameters and the architectures
used can be found in Appendix B. We set a maximum compute
budget via a timeout of 25 training hours. The precise hardware
configuration can be found in Appendix C.We paid special attention
to setting comparable episode lengths for both approaches. For the
sake of fair comparison, we set the episode length of our approach
to half the episode length used in MCD, since our approach can
perform interventions and structure updates synchronously, while
MCD can only perform them sequentially.

4.3 Results
The results in Table 1 are from applying the learned models to three
SCMs randomly generated for each graph in the held-out test set.
The model that achieved the best performance during training was
chosen for each evaluation.

We can see the favorable performance of CORE compared to
MCD and the trivial baselines. For all sizes of graphs tested, we
observe that our approach estimates graphs that are closer to the
ground-truth structures than the other approaches in less than
34 milliseconds per graph. We generate an average of 0.5, 0.5, 1.3,
2.0, and 5.2 wrong edges in graphs with 3, 4, 5, 8, and 10 nodes,
respectively. Even in a set of graphs with 10 variables, our approach
adds approximately 2 correct edges out of 90 potential edges while
only observing 15 data points. For smaller graphs, the ratio of
correctly identified edges is even higher.

We attribute the improvement over MCD to a variety of aspects.
First, addressing the structural actions and the intervention ac-
tions with separate networks makes learning the corresponding
Q-functions more efficient. This is because two separate networks
have a greater degree of freedom to represent structural and inter-
vention actions that are inherently different. Second, representing
the reward densely instead of a summary at the end of each episode
often improves performance [25]. Third, instead of learning to in-
tegrate observations from the environment via a long short-term
memory (LSTM) [13], we directly input the history of samples into
our policy. And, lastly, by not generating graphs at runtime, but
rather having a pre-defined training set, we avoid a significant
computational overhead.

Furthermore, we observe the rather unfavorable performance of
MCD compared to the baselines. We partly attribute this to a lack
of extensive hyperparameter tuning, since this would likely have

3 variables 4 variables 5 variables 8 variables 10 variables
random 3.29 ± 0.97 5.92 ± 1.41 8.33 ± 1.22 11.08 ± 2.80 14.85 ± 4.01
empty 1.80 ± 0.90 3.80 ± 1.10 6.20 ± 0.42 5.10 ± 1.60 7.0 ± 2.50
MCD 1.85 ± 1.10 4.97 ± 1.61 6.18 ± 0.44 - -
CORE 0.50 ± 0.50 0.54 ± 0.65 1.26 ± 1.06 2.04 ± 1.64 5.16 ± 2.69

Table 1: Average SHDs on the test set of SCMs with unseen causal structures.

0

0 0

020

0

0 0

10.7

0 0

30.316.3

27.7

0

78.860.6

0

0 0

10.7

0

0

016.7

0

0

016.720

20

20

20

20 20

98.3

27.7 10.9

44.720

16.7

0 0

0

0 0

0020

20

0

32.20

59.0

20 0

32.20

59.0

20

00

30.3

0 20

00

30.3

0 20

00

30.3

0 20

00

30.3

0 20

0

0

016.7

20

0

0

016.7

20

X2

X3 X4

X1X0

Ground Truth

X1X0

X2

X3 X4

Steps: 1 2 3 4 5 6 7 8 9

Figure 3: Two examples of how the learned CORE policy estimates the causal structure of two unseen SCMs described in
Equations (7) and (8). Green elements indicate intervention (do (c = 20)) and structural update (adding an edge) in the current
step, respectively. The red arrow indicates the deletion of an edge.

been needed to achieve the results in [28]. For the 4 and 5 variable
cases, MCD reached the timeout of 25 hours.

Given these results, we conclude that CORE is capable of suc-
cessfully learning a CD algorithm that can be applied to previously
unseen causal structures. Even for these cases, our approach esti-
mates the ground truth graph accurately without having to retrain
on the new structure. Furthermore, we show that with CORE’s nov-
elties, we are able to scale towards graph sizes of more relevance for
real-world applications, while simultaneously increasing training
efficiency.

4.4 Examples
We present qualitative results on how our learned policy performs
on the following two randomly selected example SCMs with unseen
causal structures:

𝑀
0
𝑑𝑜(∅) =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

𝑋0 ← 0.54 ⋅𝑋1 + 0.91 ⋅𝑋3 + 0.83 ⋅𝑋4,

𝑋1 ← 1.52 ⋅𝑋2 + 1.84 ⋅𝑋3,

𝑋2 ← 1.38 ⋅𝑋3,

𝑋3 ← 0, 𝑋4 ← 0

(7)

𝑀
1
𝑑𝑜(∅) =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

𝑋0 ← 0,
𝑋1 ← 1.61 ⋅𝑋3,

𝑋2 ← 0.83 ⋅𝑋1 + 1.60 ⋅𝑋3 + 1.5 ⋅𝑋4,

𝑋3 ← 1.39 ⋅𝑋0,

𝑋4 ← 0.54 ⋅𝑋0,

(8)

In Figure 3, we can see that in both cases the agent identifies the
underlying causal structure almost correctly, with the exception
of the missing edge 𝑋3 → 𝑋0 in the first instance. In the second
instance, it even recognizes an error and corrects it in Step 7.

5 ON THE IMPORTANCE OF JOINTLY
LEARNING AN INTERVENTION POLICY

As described in Section 3, our method is designed to jointly learn a
causal graph generator and an intervention policy. In this section,
we show that learning an intervention policy, aimed at performing
the interventions that are most informative for CD, helps in learning
a CD policy.

It is worth noting that our agent does not receive any specific
reward that represents the quality of the intervention performed
in the environment. Instead, the reward function depends only on
the structural update of the currently estimated causal structure
(see Equation (6)). Since, for the full identification of the causal
structure, interventions are generally needed [3], our agent has to
learn to perform interventions to update the estimate of the causal
structure. Therefore, our agent receives good rewards only if it
performs interventions that are relevant to discover the current
causal structure.

Although it is clear that interventions, in general, are helpful for
CD, we argue that learning an intervention policy by measuring
the usefulness for structure identification helps the overall learning
process. Especially when the budget for performing interventions
is very restrictive, as is the case in many real-world applications, it
is crucial to perform the interventions that are most informative
about the underlying causal structure [30, 33]. Which interventions
are the most informative ones depends on the causal structure that
is currently being discovered. This further motivates learning the
intervention policy jointly with the structure generation policy. In
this section, we empirically show that there is in fact a benefit in
learning an intervention policy jointly with the CD policy.

Figure 4: Plot of the average SHD on the test set (lower is bet-
ter). We present the means over three training runs of CORE
with random interventions (blue) and when jointly learning
an intervention policy (red) over graphs with 4 variables.

5.1 Experimental Setup
To show the hypothesized performance gain, we compare the per-
formance of the agent that learns the intervention policy and the
structure generation policy jointly, to an agent that learns only the
structure generation policy and randomly picks an intervention
target at each step. We train the two agents 3 times each on environ-
ments with 4 endogenous variables. The graphs, function classes,
and hyperparameters remain the same as described in Section 4.1.

5.2 Results
Figure 4 shows the aggregated results for the two types of agents.
We can see that learning the intervention policy jointly with the CD
policy results in a significantly better estimation of the ground truth
causal structure. Additionally, it decreases the number of learning
steps needed to reach a certain level of performance. Lastly, Fig-
ure 4 suggests that even with random interventions, our approach
performs reasonably well (average SHD of ∼ 2.3). This indicates the
robustness of the CORE agent to less informative interventions.

Overall, we observe that the ability to learn the intervention
policy is an integral part of learning a CD policy and that rewarding
interventions leading to better structure estimates is sensible.

6 APPLICABILITY TO THE REAL-WORLD
Throughout this work, we acknowledge the capability of learning
CD algorithms that can be applied to environments with previously
unseen causal structures with up to 10 variables. This constitutes
a substantial improvement over the SOTA when it comes to the
application of learned CD algorithms in the real world, as many
problems can be modeled with 10 variables [27, 41]. Therefore
CORE, reaches graph sizes that are relevant in CD. However, we
acknowledge that many applications with up to 5000 variables [20]
are currently out of reach. In this section, we shed light on some
of the limitations that this approach currently has with regard to
applying it in a real-world scenario.

Here, we specifically investigate two design aspects that limit
real-world applicability, and they are interconnected. First, during
training, the functions of the SCMs are sampled from a specific

function class, and for some function classes (e.g., non-linear func-
tions), discovering the true causal structure can be harder than for
others [10]. Consequently, as we will show in this section, learning
a CD algorithm for these classes of functions is more difficult.

Second, our approach is tailored to generate graph estimates
for the function class on which it was trained. This means that
when used for different causal structures, the same function class
is expected during inference. Consequently, this can lead to a de-
crease in performance if the function class is altered. We expect an
exception for this for function classes that are either very similar
to the training functions or that subsume them. Therefore, when
CORE is trained with the intention of being used in a real-world
setting, the real-world function class has to be anticipated during
training.

6.1 Transferability across Noise and
Non-Linearity

Motivated by these aspects, we show the difficulty in training CD
policies on some function classes and test CORE on function classes
that it was not trained on.

6.1.1 Experimental Setup. For the data-generating processes in
this section, we test how noise and non-linearities influence the
performance and transferability of CORE. Therefore, we use three
function classes that define each function class 𝑓𝑖(𝑃𝑎(𝑋𝑖),𝑈𝑖) in
an SCM as follows:
● linear: 𝑓𝑖 = Σ𝑋 𝑗 ∈𝑃𝑎(𝑋𝑖)𝑤 𝑗 ⋅ 𝑥 𝑗 (same as Section 4.1)
● linear + noise: 𝑓𝑖 = Σ𝑋 𝑗 ∈𝑃𝑎(𝑋𝑖)𝑤 𝑗 ⋅ 𝑥 𝑗 + 𝑢𝑖 , where 𝑢𝑖 ∼
𝒩 (0, 0.5)
● interaction: 𝑓𝑖 = Σ𝑋 𝑗 ∈𝑃𝑎(𝑋𝑖)𝑤 𝑗 ⋅ 𝑥 𝑗 + 𝑥𝑘 ⋅ 𝑥𝑙 , where 𝑋 𝑗 , 𝑋𝑘 ∈
𝑃𝑎(𝑋𝑖)

where the lowercase 𝑥𝑖 represents the current value of the variable
𝑋𝑖 . Whenever a node is a root node, we set a default value of 0.

We train two CORE models for various graph sizes for each
of the two linear functions, one with an intervention value of 5
and the other with an intervention value of 20. This setup gives
us further insight into how the signal-to-noise ratio affects our
performance. For the interaction function, we train one model with
an intervention value of 5. We then tested all the trained models in
all three function classes.

6.1.2 Results. In Table 2, we show how models that were trained
with one function class perform when applied to various function
classes with previously unseen causal structures.

Our first observation is that, as hypothesized, the application of
our learned CD algorithm on previously unseen function classes is
problematic if the testing function class is very different from the
training function class. While applying the linear models to their
noisy/non-noisy counterparts still leads to good estimates, applying
them to the interaction data mostly fails. This supports our claim
that the function class chosen for training must be informative
about the function class encountered during testing.

Looking at the model that was trained on interaction data, we
observe two interesting aspects. First, for graphs with 4 and 5
variables, CORE fails to learn a CD policy that generalizes to unseen
graphs. We believe that, given the right hyperparameters and a
sufficient training budget, we can solve the task for larger graphs,

3 Variables 4 Variables 5 Variables
lin lin + noise interaction lin lin + noise interaction lin lin + noise interaction

empty 1.8 ± 0.9 3.8 ± 1.1 6.2 ± 0.4
lin 5 0.2 ± 0.4 1.2 ± 0.4 2.2 ± 0.7 0.6 ± 0.7 0.8 ± 0.8 3.4 ± 1.9 1.4 ± 1.1 1.8 ± 1.2 6.1 ± 2.4
lin 20 0.5 ± 0.5 0.8 ± 0.4 2.3 ± 0.5 0.5 ± 0.7 0.6 ± 0.6 3.8 ± 1.8 1.3 ± 1.1 1.2 ± 1.0 6.5 ± 2.2
lin+noise 5 0.7 ± 0.7 0.6 ± 0.7 1.3 ± 0.7 0.6 ± 0.7 0.8 ± 0.8 3.6 ± 2.0 2.0 ± 1.3 2.3 ± 1.3 5.9 ± 2.1
lin+noise 20 0.2 ± 0.4 0.8 ± 0.4 2.0 ± 0.8 0.6 ± 0.6 0.7 ± 0.7 4.3 ± 1.7 1.2 ± 1.0 1.2 ± 1.0 6.8 ± 2.2
interaction 5 0.8 ± 0.7 1.3 ± 0.7 1.0 ± 0.5 4.1 ± 1.3 4.1 ± 1.3 4.0 ± 1.3 7.9 ± 1.7 7.8 ± 1.7 7.9 ± 1.7

Table 2: We show the performance of trained CORE policies on unseen graphs with various function classes for their corre-
sponding SCMs. Each row describes which function class the model was trained on and what intervention value it uses. Each
column describes the function class it was tested on. Empty describes the baseline that generates the empty graph.

based on the results obtained from smaller graphs. However, these
results demonstrate that the performance of a learned CD algorithm
depends on the complexity of the SCM function that generates the
data. Second, we observe that, for the interaction case, the learned
policy can be successfully applied to the linear function. We argue
that this is because the interaction data encompasses the linear
data as well. This suggests that if the function classes used during
training are broad enough, the CD algorithm that is learned will be
relatively more applicable to real-world scenarios.

When comparing linear models with a higher intervention value
with those with a lower intervention value, we observe that they
tend to perform better on function classes that they successfully
learned. We attribute this to a higher signal-to-noise ratio w.r.t. the
data-generating process.

Overall, we can say that learning CD algorithms is limited by
the function class that is observed during training. This currently
obstructs their application to real-world scenarios, but finding more
general functions on which CORE can be trained is a promising
research direction.

6.2 Further Limitations
Apart from aspects related to the function classes on which CORE is
trained, we point out the additional limitations of learning a model
that is applicable to the real world.

One of them is the assumption of being able to intervene on any
variable with any target value. In real-world scenarios, it might
be that some variables cannot be manipulated (imagine changing
the outside temperature) or a good target value is unknown during
training. Furthermore, CORE-like algorithms might suffer from the
presence of unobserved confounders. For both the unknown target
value and unobserved confounders, there is hope that augmenting
the learning procedure in the future will overcome these limitations.

7 SUMMARY AND CONCLUSION
In this paper, we introduce CORE, a deep RL-based approach to
tackle the task of causal discovery. CORE learns a policy to sequen-
tially perform informative interventions and generate candidate
causal graphs from scratch. Moreover, the learned policy general-
izes to previously unseen graphs of up to 10 variables in size. CORE
outperforms the current SOTA baseline (i.e., MCD [28]) both in the
number of variables it can deal with and in the accuracy of the esti-
mated structure. Furthermore, it demonstrates that by learning to

perform the most informative interventions, highly sample-efficient
CD algorithms can be learned (∼ 15 data samples for 10 variables).

Such improvement can be attributed to several key design fea-
tures. One such feature is the imposed additional structure in the
policy that separates the networks for interventions and structural
updates. However, such separation is not completely isolated. As
shown in our ablation study, CORE learns to perform relevant in-
terventions outperforming random interventions. Learning which
interventions are relevant is guided solely through a dense reward
that assesses the accuracy of the generated graph.

Moreover, we outlined the real-world applicability of our ap-
proach in terms of the number of variables and generalizability
across more complex function classes. For the former, while the
number of variables that CORE can deal with matches some do-
mains, for some other domains, usual practice is still out of reach.
For the latter, it turns out that CORE delivers good estimates when
it comes to linear functions, training on noisy functions, and testing
on non-noisy counterparts, and vice versa. However, generalizing to
more complex classes such as non-linear functions necessitates im-
provements. Furthermore, we empirically confirmed that training
on more complex function classes and testing on simpler classes
yields promising estimates. Such an observation can serve as a
key idea along the road of applying these methods to real-world
problems.

Future work includes investigating the limitations of our ap-
proach in the presence of confounders, soft interventions, and
determining the right target value for interventions. In partic-
ular, it would be interesting to understand how robust our ap-
proach is when it comes to different topologies regarding such
non-intervenable variables and unobservable confounders. Another
avenue that we plan to address is an extensive study of the trans-
ferability of our approach across different function classes, such
that learned CD algorithms that autonomously plan interventions
can be applied to real-world data.

ACKNOWLEDGMENTS
We thank Frank van Harmelen for his valuable input throughout
this project and the anonymous reviews for helping to improve the
final version of this work. This research was partially funded by
the Hybrid Intelligence Center, a 10-year programme funded by
the Dutch Ministry of Education, Culture and Science through the
Netherlands Organisation for Scientific Research, https://hybrid-
intelligence-centre.nl, grant number 024.004.022

https://hybrid-intelligence-centre.nl
https://hybrid-intelligence-centre.nl

REFERENCES
[1] Amir Amirinezhad, Saber Salehkaleybar, and Matin Hashemi. 2022. Active

learning of causal structures with deep reinforcement learning. Neural Networks
154 (10 2022), 22–30. https://doi.org/10.1016/J.NEUNET.2022.06.028

[2] Henri Bal, Dick Epema, Cees de Laat, Rob van Nieuwpoort, John Romein, Frank
Seinstra, Cees Snoek, and Harry Wijshoff. 2016. A Medium-Scale Distributed Sys-
tem for Computer Science Research: Infrastructure for the Long Term. Computer
49, 5 (5 2016), 54–63. https://doi.org/10.1109/MC.2016.127

[3] Elias Bareinboim, Juan D. Correa, Duligur Ibeling, and Thomas Icard. 2022. On
Pearl’s Hierarchy and the Foundations of Causal Inference. In Probabilistic and
Causal Inference. ACM, New York, NY, USA, 507–556. https://doi.org/10.1145/
3501714.3501743

[4] Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J Hu, Mo Tiwari, and
Emmanuel Bengio. 2023. GFlowNet Foundations. Journal of Machine Learning
Research 24, 210 (2023), 1–55. http://jmlr.org/papers/v24/22-0364.html

[5] Philippe Brouillard, Sébastien Lachapelle, Alexandre Lacoste, Simon Lacoste-
Julien, and Alexandre Drouin. 2020. Differentiable Causal Discovery from
Interventional Data. In Advances in Neural Information Processing Systems,
H Larochelle, M Ranzato, R Hadsell, M F Balcan, and H Lin (Eds.), Vol. 33. Curran
Associates, Inc., 21865–21877. https://proceedings.neurips.cc/paper_files/paper/
2020/file/f8b7aa3a0d349d9562b424160ad18612-Paper.pdf

[6] David Maxwell Chickering. 2003. Optimal Structure Identification with Greedy
Search. J. Mach. Learn. Res. 3, null (3 2003), 507–554. https://doi.org/10.1162/
153244303321897717

[7] Tristan Deleu, António Góis, Chris Emezue, Mansi Rankawat, Simon Lacoste-
Julien, Stefan Bauer, and Yoshua Bengio. 2022. Bayesian structure learning
with generative flow networks. In Proceedings of the Thirty-Eighth Confer-
ence on Uncertainty in Artificial Intelligence (Proceedings of Machine Learn-
ing Research, Vol. 180), James Cussens and Kun Zhang (Eds.). PMLR, 518–528.
https://proceedings.mlr.press/v180/deleu22a.html

[8] P. Erdós and A. Rényi. 1959. On random graphs. Publicationes Mathematicae
(1959), 290–297.

[9] Fan Feng, Biwei Huang, Kun Zhang, and Sara Magliacane. 2022. Fac-
tored Adaptation for Non-Stationary Reinforcement Learning. In Advances
in Neural Information Processing Systems, S Koyejo, S Mohamed, A Agar-
wal, D Belgrave, K Cho, and A Oh (Eds.), Vol. 35. Curran Associates,
Inc., 31957–31971. https://proceedings.neurips.cc/paper_files/paper/2022/file/
cf4356f994917177213c55ff438ddf71-Paper-Conference.pdf

[10] Clark Glymour, Kun Zhang, and Peter Spirtes. 2019. Review of Causal Discovery
Methods Based on Graphical Models. Frontiers in Genetics 10 (6 2019). https:
//doi.org/10.3389/fgene.2019.00524

[11] Uzma Hasan and Md Osman Gani. 2022. Kcrl: A prior knowledge based causal dis-
covery framework with reinforcement learning. In Machine Learning for Health-
care Conference. 691–714.

[12] Alain Hauser and Buhlmann@stat Math Ethz Ch. 2012. Characterization and
Greedy Learning of Interventional Markov Equivalence Classes of Directed
Acyclic Graphs Peter B ¨ uhlmann. Journal of Machine Learning Research 13
(2012), 2409–2464.

[13] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Computation 9, 8 (11 1997), 1735–1780. https://doi.org/10.1162/neco.1997.
9.8.1735

[14] Antti Hyttinen, Frederick Eberhardt, and Matti Järvisalo. 2014. Constraint-
based Causal Discovery: Conflict Resolution with Answer Set Programming.
In Conference on Uncertainty in Artificial Intelligence. 340–349.

[15] Erik Jenner, Herke vanHoof, andAdamGleave. 2022. Calculus onMDPs: Potential
Shaping as a Gradient. (8 2022). https://arxiv.org/abs/2208.09570v2

[16] Anson Lei, Bernhard Schölkopf, and Ingmar Posner. 2022. Causal Discovery for
Modular World Models. In NeurIPS 2022 Workshop on Neuro Causal and Symbolic
AI (nCSI). https://openreview.net/forum?id=VfkjQzdGCH

[17] Wenqian Li, Yinchuan Li, Shengyu Zhu, Yunfeng Shao, Jianye Hao, and Yan Pang.
2022. GFlowCausal: Generative Flow Networks for Causal Discovery. (2022).
http://arxiv.org/abs/2210.08185

[18] Phillip Lippe, Taco Cohen, and Efstratios Gavves. 2021. Efficient Neural Causal
Discovery without Acyclicity Constraints. In International Conference on Learning
Representations.

[19] Lars Lorch, Scott Sussex, Jonas Rothfuss, Andreas Krause, and Bernhard
Schölkopf. 2022. Amortized Inference for Causal Structure Learning. In
Advances in Neural Information Processing Systems, S Koyejo, S Mohamed,
A Agarwal, D Belgrave, K Cho, and A Oh (Eds.), Vol. 35. Curran Associates,
Inc., 13104–13118. https://proceedings.neurips.cc/paper_files/paper/2022/file/
54f7125dee9b8b3dc798bb9a082b09e2-Paper-Conference.pdf

[20] Marloes H. Maathuis, Diego Colombo, Markus Kalisch, and Peter Bühlmann. 2010.
Predicting causal effects in large-scale systems from observational data. Nature
Methods 2010 7:4 7, 4 (4 2010), 247–248. https://doi.org/10.1038/nmeth0410-247

[21] Arquímides Méndez-Molina, Eduardo F.Morales, and L Enrique Sucar. 2022.
Causal Discovery and Reinforcement Learning: A Synergistic Integration. In

Proceedings of The 11th International Conference on Probabilistic Graphical Mod-
els (Proceedings of Machine Learning Research, Vol. 186), Antonio Salmerón and
Rafael Rumi (Eds.). PMLR, 421–432. https://proceedings.mlr.press/v186/mendez-
molina22a.html

[22] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.
Human-level control through deep reinforcement learning. Nature 518 (2015).
https://doi.org/10.1038/nature14236

[23] Joris M Mooij, Sara Magliacane, and Tom Claassen. 2020. Joint Causal Inference
from Multiple Contexts. Journal of Machine Learning Research 21 (2020), 1–108.
http://jmlr.org/papers/v21/17-123.html.

[24] Suraj Nair, Yuke Zhu, Silvio Savarese, and Li Fei-Fei. 2019. Causal Induction from
Visual Observations for Goal Directed Tasks. (2019).

[25] Andrew Y. Ng, Daishi Harada, and Stuart Russell. 1999. Policy invariance under
reward transformations: Theory and application to reward shaping. ICML (1999),
278–287.

[26] Judea Pearl. 2009. Introduction to Probabilities, Graphs, and Causal Mod-
els. In Causality. Cambridge University Press, 1–40. https://doi.org/10.1017/
CBO9780511803161.003

[27] Karen Sachs, Omar Perez, Dana Pe’er, Douglas A. Lauffenburger, and Garry P.
Nolan. 2005. Causal Protein-Signaling Networks Derived from Multiparameter
Single-Cell Data. Science 308, 5721 (4 2005), 523–529. https://doi.org/10.1126/
science.1105809

[28] Andreas W M Sauter, Erman Acar, and Vincent Francois-Lavet. 2023. A Meta-
Reinforcement Learning Algorithm for Causal Discovery. In Proceedings of the
Second Conference on Causal Learning and Reasoning (Proceedings of Machine
Learning Research, Vol. 213), Mihaela van der Schaar, Cheng Zhang, and Dominik
Janzing (Eds.). PMLR, 602–619. https://proceedings.mlr.press/v213/sauter23a.
html

[29] Nino Scherrer, Olexa Bilaniuk, Yashas Annadani, Anirudh Goyal, Patrick Schwab,
Bernhard Schölkopf, Michael C Mozer, Yoshua Bengio, Stefan Bauer, and
Nan Rosemary Ke. 2022. Learning Neural Causal Models with Active Inter-
ventions. (2022).

[30] Karthikeyan Shanmugam, Murat Kocaoglu, Alexandros G Dimakis, and Sri-
ram Vishwanath. 2015. Learning Causal Graphs with Small Interven-
tions. In Advances in Neural Information Processing Systems, C Cortes,
N Lawrence, D Lee, M Sugiyama, and R Garnett (Eds.), Vol. 28. Curran
Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2015/file/
b865367fc4c0845c0682bd466e6ebf4c-Paper.pdf

[31] Peter Spirtes, Clark N Glymour, and Richard Scheines. 2000. Causation, prediction,
and search. MIT press.

[32] R.S. Sutton and A.G. Barto. 2018. Reinforcement learning: An introduction. MIT
press.

[33] Panagiotis Tigas, Yashas Annadani, Andrew Jesson, Bernhard Schölkopf, Yarin
Gal, and Stefan Bauer. 2022. Interventions, Where and How? Experimental
Design for Causal Models at Scale. Advances in Neural Information Processing
Systems 35 (12 2022), 24130–24143. https://github.com/yannadani/cbed

[34] Jean-François Ton, Dino Sejdinovic, and Kenji Fukumizu. 2021. Meta learning for
causal direction. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 35. 9897–9905.

[35] Matthew J. Vowels, Necati Cihan Camgoz, and Richard Bowden. 2023. D’ya Like
DAGs? A Survey on Structure Learning and Causal Discovery. Comput. Surveys
55, 4 (4 2023), 1–36. https://doi.org/10.1145/3527154

[36] Xiaoqiang Wang, Yali Du, Shengyu Zhu, Liangjun Ke, Zhitang Chen, Jianye Hao,
and Jun Wang. 2021. Ordering-Based Causal Discovery with Reinforcement
Learning. (2021). https://arxiv.org/abs/2105.

[37] Christopher J C HWatkins and Peter Dayan. 1992. Q-Learning. 8 (1992), 279–292.
[38] Yue Yu, Jie Chen, Tian Gao, and Mo Yu. 2019. DAG-GNN: DAG Structure

Learning with Graph Neural Networks. In Proceedings of the 36th International
Conference on Machine Learning (Proceedings of Machine Learning Research,
Vol. 97), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.). PMLR, 7154–
7163. https://proceedings.mlr.press/v97/yu19a.html

[39] Xun Zheng, Bryon Aragam, Pradeep Ravikumar, and Eric P Xing. 2018. DAGs
with NO TEARS: Continuous Optimization for Structure Learning. (2018). https:
//github.com/xunzheng/notears.

[40] Shengyu Zhu, Ignavier Ng, and Zhitang Chen. 2019. Causal Discovery with
Reinforcement Learning. (2019). http://arxiv.org/abs/1906.04477

[41] Matjaz Zwitter and Milan Soklic. 1988. Breast Cancer. UCI Machine Learning
Repository.

https://doi.org/10.1016/J.NEUNET.2022.06.028
https://doi.org/10.1109/MC.2016.127
https://doi.org/10.1145/3501714.3501743
https://doi.org/10.1145/3501714.3501743
http://jmlr.org/papers/v24/22-0364.html
https://proceedings.neurips.cc/paper_files/paper/2020/file/f8b7aa3a0d349d9562b424160ad18612-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/f8b7aa3a0d349d9562b424160ad18612-Paper.pdf
https://doi.org/10.1162/153244303321897717
https://doi.org/10.1162/153244303321897717
https://proceedings.mlr.press/v180/deleu22a.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/cf4356f994917177213c55ff438ddf71-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/cf4356f994917177213c55ff438ddf71-Paper-Conference.pdf
https://doi.org/10.3389/fgene.2019.00524
https://doi.org/10.3389/fgene.2019.00524
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/2208.09570v2
https://openreview.net/forum?id=VfkjQzdGCH
http://arxiv.org/abs/2210.08185
https://proceedings.neurips.cc/paper_files/paper/2022/file/54f7125dee9b8b3dc798bb9a082b09e2-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/54f7125dee9b8b3dc798bb9a082b09e2-Paper-Conference.pdf
https://doi.org/10.1038/nmeth0410-247
https://proceedings.mlr.press/v186/mendez-molina22a.html
https://proceedings.mlr.press/v186/mendez-molina22a.html
https://doi.org/10.1038/nature14236
http://jmlr.org/papers/v21/17-123.html.
https://doi.org/10.1017/CBO9780511803161.003
https://doi.org/10.1017/CBO9780511803161.003
https://doi.org/10.1126/science.1105809
https://doi.org/10.1126/science.1105809
https://proceedings.mlr.press/v213/sauter23a.html
https://proceedings.mlr.press/v213/sauter23a.html
https://proceedings.neurips.cc/paper_files/paper/2015/file/b865367fc4c0845c0682bd466e6ebf4c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/b865367fc4c0845c0682bd466e6ebf4c-Paper.pdf
https://github.com/yannadani/cbed
https://doi.org/10.1145/3527154
https://arxiv.org/abs/2105.
https://proceedings.mlr.press/v97/yu19a.html
https://github.com/xunzheng/notears.
https://github.com/xunzheng/notears.
http://arxiv.org/abs/1906.04477

A EQUIVALENCE OF OUR REWARD AND THE
DIFFERENCE IN SHDS

Let𝐺∗𝑠 be the observational ground-truth graph of the current SCM
𝑀

𝑖
𝑑𝑜(∅). Furthermore, let 𝐺𝑠 be the estimated graph at state 𝑠 , 𝐺𝑠′

the estimated graph in the consecutive state and 𝐸(𝑎) the edge that
is manipulated by action 𝑎. We show that

𝑆𝐻𝐷(𝐺∗𝑠 ,𝐺𝑠) − 𝑆𝐻𝐷(𝐺∗𝑠 ,𝐺𝑠′) =
)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

1 𝑖 𝑓 𝐸(𝑎) ∈ 𝐺∗𝑠
−1 𝑖 𝑓 𝐸(𝑎) ⇑∈ 𝐺∗𝑠
0 𝑖 𝑓 𝐸(𝑎) = ∅

(9)

if 𝑎 adds an edge and

𝑆𝐻𝐷(𝐺∗𝑠 ,𝐺𝑠) − 𝑆𝐻𝐷(𝐺∗𝑠 ,𝐺𝑠′) =
)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

−1 𝑖 𝑓 𝐸(𝑎) ∈ 𝐺∗𝑠
1 𝑖 𝑓 𝐸(𝑎) ⇑∈ 𝐺∗𝑠
0 𝑖 𝑓 𝐸(𝑎) = ∅

(10)

if 𝑎 deletes an edge. In the following, we derive this equality. For a
simplified notation, we write 𝐸𝐺 for the set of edges in 𝐺 . We start
by decomposing the difference in its set-theoretic components.

𝑆𝐻𝐷(𝐺∗𝑠 ,𝐺𝑠) − 𝑆𝐻𝐷(𝐺∗𝑠 ,𝐺𝑠′) =⋃︀ 𝐸𝐺∗𝑠 ∖ 𝐸�̂�𝑠
⋃︀ + ⋃︀ 𝐸

�̂�𝑠
∖ 𝐸𝐺∗𝑠 ⋃︀

− ⋃︀ 𝐸𝐺∗𝑠 ∖ 𝐸�̂�𝑠′
⋃︀ − ⋃︀ 𝐸

�̂�𝑠′
∖ 𝐸𝐺∗𝑠 ⋃︀

We now distinguish the two cases of adding and deleting, and
edge. In these cases, the terms become:

Case 1; an edge is added to 𝐺𝑠 : Then

⋃︀ 𝐸𝐺∗𝑠 ∖ 𝐸�̂�𝑠
⋃︀ − ⋃︀ 𝐸𝐺∗𝑠 ∖ 𝐸�̂�𝑠′

⋃︀=
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

1 𝑖 𝑓 𝑒 ∈ 𝐸𝐺∗𝑠
0 𝑖 𝑓 𝑒 ⇑∈ 𝐸𝐺∗𝑠

(11)

and

⋃︀ 𝐸
�̂�𝑠
∖ 𝐸𝐺∗𝑠 ⋃︀ − ⋃︀ 𝐸

�̂�𝑠′
∖ 𝐸𝐺∗𝑠 ⋃︀=

)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

0 𝑖 𝑓 𝑒 ∈ 𝐸𝐺∗𝑠
−1 𝑖 𝑓 𝑒 ⇑∈ 𝐸𝐺∗𝑠

(12)

Finally, considering the case where the edgewas not manipulated
(𝐸(𝑎) = ∅), we add Equations (11) and (12) and arrive at Equation
(9).

Case 2; an edge is removed from 𝐺𝑠 : In this case, the results in
Equation (11) and (12) are multiplied by −1. After again adding the
inverted parts, we arrive at Equation (10).

B HYPERPARAMETERS
Table 3 describes the main hyperparameters that we used through-
out this paper. For MCD [28], we additionally used the default
hyperparameters that were used in the original paper.

C HARDWARE REQUIREMENTS
We ran training and evaluation on the DAS-6 compute cluster [2].
At inference time, CORE generates a graph estimate in about 18-34
milliseconds, depending on the size of the policy network and the
episode length.

For training, CORE took approximately 51min, 1h40min, 2h5min,
23h, 30h to train for 3, 4, 5, 8, 10 variables, respectively. For the 3, 4,
and 5 variable case these are the results on a 24 core machine with
an RTX4000 GPU, for 8 and 10 variables the results are on a 48 core
A100 machine.

shared layers shared layers size policy layers policy layers size episode length total training steps
3 variables MCD 1 LSTM 64 2 128 10 2000000

CORE 0 - 3 128 5 2000000
4 variables MCD 1 LSTM 64 2 128 16 3500000

CORE 0 - 3 128 8 3500000
5 variables MCD 1 LSTM 128 2 256 20 4500000

CORE 0 - 3 256 10 4500000
8 variables MCD - - - - - -

CORE 0 - 2 1024 12 45000000
10 variables MCD - - - - - -

CORE 0 - 3 1024 15 90000000
Table 3: The hyperparameters that we used to obtain our results. These parameters are the same for all experiments we
performed in this paper.

	Abstract
	1 Introduction and Related Work
	2 Preliminaries and Notation
	2.1 Causal Models
	2.2 Interventions
	2.3 Reinforcement Learning

	3 Learning a Causal Discovery Policy with Informative Interventions
	3.1 POMDP Formulation of Causal Discovery Through Interventions
	3.2 Data-Generation
	3.3 Learning Approach

	4 Generalization to Unseen Structures
	4.1 Training Data
	4.2 Experimental Setup
	4.3 Results
	4.4 Examples

	5 On the Importance of Jointly Learning an Intervention Policy
	5.1 Experimental Setup
	5.2 Results

	6 Applicability to the Real-World
	6.1 Transferability across Noise and Non-Linearity
	6.2 Further Limitations

	7 Summary and Conclusion
	Acknowledgments
	References
	A Equivalence of our Reward and the Difference in SHDs
	B Hyperparameters
	C Hardware Requirements

