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Summary
Policy Mirror Descent (PMD) has emerged as a unifying framework in reinforcement learn-

ing (RL) by linking policy gradient methods with a first-order optimization method known as
mirror descent. At its core, PMD incorporates two key regularization components: (i) a dis-
tance term that enforces a trust region for stable policy updates and (ii) an MDP regularizer
that augments the reward function to promote structure and robustness. While PMD has been
extensively studied in theory, empirical investigations remain scarce. This work provides a
large-scale empirical analysis of the interplay between these two regularization techniques,
running over 500k training seeds on small RL environments.

Contribution(s)
(i) We conduct an empirical analysis of the interaction between the regularization compo-

nents in PMD, running over 500k training seeds and providing insights into the fragility
of these algorithms to regularization temperatures.
Context: Empirical studies on PMD-based RL algorithms are limited.

(ii) We examined the impact of temperature scales across different reward scales and iden-
tified simple heuristics to aid in tuning these temperatures. Additionally, we evaluated
dynamic adaptation strategies for temperature parameters, indicating that maintaining
constant values is often more effective than adapting them.
Context: RL algorithms are sensitive to hyperparameter tuning, making the selection
of appropriate temperatures challenging.

(iii) We examine the effects of different regularization combinations on robustness to tem-
perature tuning and performance, indicating a notable impact.
Context: To the best of our knowledge, no existing study examines the effects of the
interplay between these two components for different choices, leaving a gap in the liter-
ature.
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Abstract

Policy Mirror Descent (PMD) has emerged as a unifying framework in reinforcement1
learning (RL) by linking policy gradient methods with a first-order optimization method2
known as mirror descent. At its core, PMD incorporates two key regularization com-3
ponents: (i) a distance term that enforces a trust region for stable policy updates and4
(ii) an MDP regularizer that augments the reward function to promote structure and ro-5
bustness. While PMD has been extensively studied in theory, empirical investigations6
remain scarce. This work provides a large-scale empirical analysis of the interplay be-7
tween these two regularization techniques, running over 500k training seeds on small8
RL environments. Our results demonstrate that, although the two regularizers can par-9
tially substitute each other, their precise combination is critical for achieving robust10
performance. These findings highlight the potential for advancing research on more11
robust algorithms in RL.12

1 Introduction13

Recent research has revealed a deep connection between policy gradient methods in RL and mirror14
descent — a first-order optimization technique (Beck & Teboulle, 2003; Beck, 2017). This insight15
has led to the development of the PMD framework (Geist et al., 2019; Tomar et al., 2020; Grudzien16
et al., 2022; Lan, 2023; Xiao, 2022; Vaswani et al., 2022; Alfano et al., 2023; Zhan et al., 2023),17
which encompasses a broad class of algorithms distinguished by their choice of regularization, such18
as Trust Region Learning (TRL; Schulman et al. 2015), or Soft Actor-Critic (SAC; Haarnoja et al.19
2018a).20

In the PMD framework, two regularization components are central. The first is a distance term,21
referred to as the Drift regularizer, that ensures the updated policy remains sufficiently close to its22
predecessor – an idea that was prominently implemented in trust region policy optimization (TRPO;23
Schulman et al. 2015), or proximal policy optimization (PPO; Schulman et al. 2017). This trust-24
region idea has been further generalized through the introduction of a Drift functional (Grudzien25
et al., 2022), motivating the term Drift regularizer. The second component is a convex MDP regu-26
larizer that augments the reward function with a structure-promoting term, an approach motivated by27
the objectives of enhanced exploration and robustness (Ziebart, 2010; Haarnoja et al., 2017; Chow28
et al., 2018; Lee et al., 2019). A prominent example hereof is the negative Shannon-Entropy, a core29
component in soft Reinforcement Learning (Haarnoja et al., 2017; 2018a).30

While extensive theoretical work has established strong convergence results for PMD, these guar-31
antees largely disappear in approximate settings where the exact value function is inaccessible. On32
the other hand, only a limited number of numerical experiments have been conducted to validate33
its practical performance (Vieillard et al., 2020; Tomar et al., 2020; Alfano et al., 2023). Notably,34
empirical studies have primarily focused on specific cases, such as the (reverse) KL divergence or35
learning Drift regularizers (Lu et al., 2022; Alfano et al., 2024).36
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In this work, we complement existing empirical studies by systematically analyzing the impact of37
different regularization components on algorithmic performance of RL algorithms based on PMD.38
Our main contributions are:39

• We analyze the interaction between two distinct regularization techniques in RL, a study that, to40
the best of our knowledge, has not been conducted before. To this end, we run over 500k training41
seeds on small RL environments, demonstrating brittleness of these algorithms to regularization42
temperatures.43

• Leveraging recent theoretical advancements, we examine the effects of different regularization44
combinations, particularly their influence on robustness to temperature tuning. Our findings sug-45
gest this aspect may be understudied in the existing literature.46

• We investigate the effects of varying temperature parameters both during training and across dif-47
ferent reward scales, providing insights to support the design of algorithms that mitigate fragility48
to regularization temperatures.49

The rest of the paper is organized as follows: In Section 2, we introduce the necessary background on50
Policy Mirror Descent. Section 3 details the methodology of our numerical experiments, followed51
by a discussion of the results in Section 4. Finally, we conclude with key findings in Section 6.52

2 Background53

We assume a standard Markov Decision Process (MDP) defined by a tupleM = (S,A, p0, p, γ).54
Here, S is a (discrete) state space, A is a discrete action space, p0 ∈ ∆(S)1 is the initial state55
distribution, p(·, ·|s, a) ∈ ∆(S×R) is the probabilistic transition and reward function, and γ ∈ [0, 1)56
is the discount factor. We usually abbreviate the reward by r(s, a) = Es′,r∼p(s′,r|s,a)[r].57

The behaviour of an agent interacting with this MDP is defined by a so-called policy, that is, a58
mapping π : S → ∆(A) assigning a distribution over actions to each state. Each policy induces59
a distribution pπ(τ) on the set of trajectories τ = (s0, a0, s1, . . . ) (Agarwal et al., 2019). The60
(unregularized) value function is defined as V π(s) = Eτ∼pπ(τ)[

∑∞
t=0 γ

t r(st, at)|s0 = s], resulting61
in the (unregularized & point-wise) MDP objective π∗(·|s) = argmaxπ∈Π V π(s).62

Regularized MDP A natural extension hereof can be obtained by adding a regularization term63
on the reward level, also referred to as MDP regularization (Ziebart, 2010; Lee et al., 2019). More64
precisely, given a convex function h : ∆(A)→ R the corresponding regularized Q-value function is65
defined as Qπ

α(s, a) := Eτ∼pπ(τ) [
∑∞

t=0 γ
t {r(st, at)− αh(π(·|st))} |s0 = s, a0 = a] (Lan, 2023).66

Similarly we define state-value function V π
α (s). Note, that this definition of the regularized Q-67

value function differs slightly from how it is defined in Zhan et al. (2023), or in Haarnoja et al.68
(2018a). However, both versions of the regularized Q-value functions can be used interchangeably69
in all schemes presented in this work. The resulting (point-wise) regularized MDP objective can be70
expressed as71

π∗(·|s) = argmax
π∈Π

V π
α (s). (1)

2.1 Policy Mirror Descent72

Mirror Descent A common method to solve optimisation problems like (1) is the so-called mirror73
descent algorithm (Beck & Teboulle, 2003; Beck, 2017). Consider a general differentiable function74
f : X ⊂ Rn → R and the optimisation problem75

x∗ = argmin
x∈X

f(x). (2)

Mirror descent gives the iterative update scheme starting from some x0 ∈ X76

xk+1 = argmin
x∈X
{⟨x,∇f(x)⟩+ λk Bω(x, xk)} . (3)

1∆(X ) denotes the set of probability distributions over a set X
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Here ⟨·, ·⟩ denotes the standard inner product and Bω denotes the (generalized) Bregman divergence77
(Lan et al., 2011) for a convex potential function ω : X → R78

Bω(x, y) = ω(x)− ω(y)− ⟨∇ω(y), x− y⟩, (4)

where ∇ω(y) can be any vector falling within the subdifferential. This scheme generalizes the79
(projected) gradient descent, which is recovered by choosing the squared Euclidean distance as the80
Bregman divergence, i.e. Bω(x, y) = ∥x− y∥22 (Beck & Teboulle, 2003).81

Mirror Descent inspired Policy updates By applying the MD scheme (3) to the regularized ob-82
jective (1) the Policy Mirror Descent Update (see (Lan, 2023), Algorithm 1) can be obtained83

πk+1(·|s) = argmin
π∈Π
{⟨π(·|s),−Qπk

α (s, ·)⟩+ αh(π(·|s)) + λk Bω(π, πk; s)} , (5)

for a sequence of step sizes λk > 0. For notational convenience we write Bω(π, πk; s) instead of84
Bω(π(·|s), πk(·|s)). A popular choice for h is the negative Shannon-Entropy −H, while the (re-85
verse) Kullback-Leibler (KL) divergence is a common selection for D. Notably, the KL divergence86
is induced by the negative entropy as its potential function (Beck & Teboulle, 2003).87

2.2 Regularization in Policy Mirror Descent88

The policy improvement scheme (5) consists of two components. The first, αh(π(·|s)), results from89
regularizing the MDP with a convex potential function h (MDP regularizer). This term modifies90
the value function V π

α , reshaping the optimization surface by influencing how V π
α changes with π91

and the location of (local) minima. The second component, the Drift regularizer λkBω(π, πk; s),92
impacts how this landscape is traversed, by penalising large deviations in updating the policy.93

Interplay of the regularization terms: Convergence Results Intuitively, one might expect that94
reshaping the optimisation landscape with an MDP regularizer h would naturally impact the valid95
choices of the Drift regularizer, or in other words, that these types of regularization have an effect96
on each other. In fact, in the absence of an MDP regularizer (i.e. α = 0), Grudzien et al. (2022)97
have shown that there exists a broad class of valid Drift regularizers, naturally encompassing the set98
of Bregman-Divergences. More specifically it was shown that for any Drift functional Dπ̃(π|s) (a99
distance function with only minimal requirements) the scheme100

πk+1(·|s) = argmin
π∈Π
{⟨π(·|s),−Qπk(s, ·)⟩ +λk Dπk

(π|s)} (6)

provably converges to the optimal policy π∗ with monotonic improvements of the return. Notably,101
this scheme encompasses well-known RL algorithms such as PPO (Schulman et al., 2017), and Mir-102
ror Descent Policy Optimisation (MDPO; Tomar et al. 2020), highlighting that many RL algorithms103
naturally emerge from the mirror descent perspective.104

In contrast, when an MDP regularizer is present (i.e., α ̸= 0), similar results could only be shown105
to hold for the class of Bregman Divergences (Lan, 2023), hence restricting the choice of valid106
Drift regularizers. Moreover, convergence rates improve from sublinear to linear when the potential107
function for the Bregman divergence is chosen to be the MDP regularizer, i.e., when Bω = Bh (Lan,108
2023; Zhan et al., 2023).109

3 Methodology110

Building on the guaranteed monotonic improvements from policy updates in (5) and (6), these up-111
dates can be incorporated into a generalized policy iteration (GPI)-like algorithm that alternates112
between policy evaluation and improvement (Sutton, 2018; Geist et al., 2019; Vieillard et al., 2020).113
While theoretical results assume access to exact value functions, practical actor-critic implementa-114
tions typically rely on neural networks to approximate Qπk ≈ Qϕk , e.g. by minimizing a Bellman115
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residual loss (Haarnoja et al., 2018a). Similarly, policies are parameterized as neural networks,116
πk ≈ πθk , rendering point-wise updates as in (5) infeasible. Instead, we optimize an expectation117
over a state distribution D ∈ ∆(S), leading to a single policy improvement objective:118

θk+1 = argmin
θ∈Θ

Es∼D
[
Ea∼πθ(·|s)[−Q

ϕk
αk

(s, a)] + αk h((πθ(·|s)) + λk D(πθ;πθk |s)
]

(7)

Objects of study Due to the above assumptions, the theoretical guarantees do not translate into119
practise. To bridge this gap, we empirically analyze the effects of both commonly used and less120
conventional regularizers.121

• MDP Regularizers A common choice for this level of regularization are entropy-like functions,122
such as the (negative) Shannon-Entropy−H (Ziebart, 2010; Haarnoja et al., 2017; 2018a;b), or, as123
a generalization hereof, the (negative) Tsallis Entropy −Hm (Lee et al., 2019; Chow et al., 2018).124
Additionally, as less common choices h = || · ||22 and the non-smooth max function will be tested.125
We refer to Appendix A for details.126

• Drift Regularizers A common choice as a Drift regularizer is the (reverse) KL-Divergence127
DKL(π;πk|s), a core component in MDPO (Geist et al., 2019; Tomar et al., 2020), and Uniform128
TRPO (Shani et al., 2020), but was also studied in (Liu et al., 2019; Vieillard et al., 2020). More-129
over, the Bregman-Divergences corresponding to the Tsallis-Entropy, max function and squared130
norm, respectively, will be studied in this work. We refer to Appendix A for details.131

• Temperature Parameters In addition to the choice of regularizers, their weighting coefficients,132
αk and λk, referred to as temperature parameters (Haarnoja et al., 2018a), significantly influence133
algorithm performance. In many RL tasks, MDP regularization acts as an auxiliary reward to134
improve exploration and stability. This makes choosing a fixed αk = α challenging, as effective135
regularization should promote exploration early in training and decrease over time, motivating136
a linear annealing schedule. To simplify the selection of αk, Haarnoja et al. (2018b) proposed137
an adaptive adjustment strategy that maintains a desired level of exploration. Specifically, α is138
updated via gradient descent on the objective J(α) = Es∼D[Ea∼πk

[−α log(πk(a|s)) − αH̄]],139
where H̄ represents the expected minimum entropy of the policy. This approach extends naturally140
to general MDP regularizers h, leading to141

J(α) = Es∼D[−αh(πk(·|s)) + α h̄], (8)

where h̄ can be linearly annealed to reduce the influence of MDP regularization over training.142
Regarding λk, theoretical results (Lan, 2023; Zhan et al., 2023) suggest keeping it constant, i.e.,143
λk = λ. However, empirical findings by Tomar et al. (2020) indicate that linearly annealing λ144
over training may be more effective.145

Algorithm Setting h = −H and D(p, q) = DKL(p, q) recovers the (soft) MDPO algorithm146
(Tomar et al., 2020). As noted in their work, MDPO can be implemented in either an off-policy147
or on-policy manner, depending on design choices. In this study, we adopt an off-policy implemen-148
tation and refer to the resulting algorithm as MDPO(h, D), emphasizing the choice of regularization.149
More details can be found in Appendix D.150

4 Experiments151

Regularization is a key component in many deep RL algorithms but is rarely the sole factor. The152
goal of this work is to study the core effect of RL specific regularization. To hence keep the influence153
of other regularization techniques (Engstrom et al., 2020; Andrychowicz et al., 2020) as minimal as154
possible we focus on small environments with a finite action space. This choice also enables more155
training seeds per experiment, improving statistical reliability (Agarwal et al., 2021). Experiments156
were conducted on the gymnax implementations (Lange, 2022) of Cartpole, Acrobot (Brockman157
et al., 2016), Catch, and DeepSea (Osband et al., 2019), representing a diverse set of tasks.158
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(a) On standard environment suite
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(b) On upscaled versions of Catch
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(c) With APMD policy updates

Figure 1: Mean normalized return after training of MDPO(−H, DKL) for different temperature
levels. Each cell represents the normalized return averaged over environments, seeds and evaluations
as described in (9). All heat maps exhibit the same principal "L" structure, highlighting regions
where performance mainly depends on either of the regularization terms.

To evaluate a fixed algorithm A, i.e. an instance of MDPO(h,D) with specified temperatures and159
regularizers, on a metric d, we compute the mean across environments (e = 1, . . . , E), training160
seeds (n = 1, . . . , N ), and post-training evaluations (m = 1, . . . ,M ) (Agarwal et al., 2021)161

d(A) = 1

EN M

E∑
e=1

N∑
n=1

M∑
m=1

de,n,m(A), (9)

where de,n,m(A) is the metric value for A after training on environment e with seed n. The pri-162
mary metric is the normalized return after training, ensuring comparability across environments.163
Appendix C provides further details.164

4.1 Interplay of MDP & Drift Regularizers165

Baseline As a baseline we select the combination of the two well-studied regularizers h = −H166
and D = DKL, using constant temperature parameters during learning and across all environments.167
We performed minor hyperparameter tuning to ensure learnability with fixed temperature values.168

Figure 1a shows results for varying values of α and λ. Despite differences in reward structures, a169
joint region of well-performing temperature values emerges across environments, highlighting an170
overlap in optimal temperature values. Moreover, the "L" structure of this region indicates that171
Entropy and KL regularization may be substitutable: for sufficiently low λ, performance depends172
primarily on α, and vice versa; a pattern that persists when scaling up the Catch environment (Figure173
1b). However, some degree of regularization remains necessary in all cases to successfully solve the174
given tasks.175

Since the goal is to optimize the unregularized value function V π , MDP regularization may be176
treated as a means to an end. This raises the question of whether policy updates should use the177
regularized value function (7). Homotopic PMD (Li et al., 2023), a special case of Approximate178
PMD (APMD; Lan 2023), provides theoretical justification for replacing the regularized Q-value179
function Qπ

α with the unregularized one Qπ . Figure 1c shows that, at least for the environments180
studied, this substitution has no noticeable effect.181

Varying MDP regularizer and Drift How does the performance landscape evolve with different182
MDP regularizers h? Furthermore, is it beneficial to pair the drift term D with its corresponding183
Bregman divergence D = Bh, as suggested in Zhan et al. (2023)? To explore these questions, we184
replicated the previous experiments using a range of choices for h and D.185

The results are summarized in Figure 2, showing the proportion of tested temperature choices, that186
lead to a performance above a certain threshold τ , denoted as performance frequency. Notably, for187
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Figure 2: Performance frequency curves for
MDPO(h,D) instances, showing the propor-
tion of 784 temperature configurations reach-
ing each performance level. While high-
performance regions (≥ 0.98) narrow simi-
larly, regularizers h and D significantly af-
fect the frequency of achieving ≥ 90% per-
formance.

Table 1: Robustness Measure of
MDPO(h,D) for different pairs (h,D)
in descending order, representing the (nor-
malized) value under the curves in Figure 2.
Robustness appears to depend on the pair of
regularizers rather than on the influence of
one alone.

h D Rbst0.9 Rbst0.95
−H Bmax 0.1403 0.0728
max Bmax 0.0801 0.0339
−H DKL 0.0747 0.0327
−H B−H1.5

0.0698 0.0313
|| · ||22 DKL 0.0680 0.0390
−H B−H0.5

0.0628 0.0261
|| · ||22 B||·||22 0.0598 0.0310
max DKL 0.0457 0.0231
−H0.5 B−H0.5 0.0101 0.0032
−H B||·||22 0.0078 0.0027
−H0.5 DKL 0.0001 0.0000

any combination, we could still find temperature values for α and λ yielding an average performance188
≥ 0.95, confirming the validity of all these theoretically grounded choices.189

While the heat maps (obtained similar to the baseline; see supplementary material) exhibit similar190
structures to the baseline case, with distinct λ- and α-dominant regions, the size of well-performing191
regions varies, indicating an effect on the robustness w.r.t. temperature selection. To quantify this192
intuition of robustness, we employ a simple metric RbstT (A; Φ), that estimates the probability of a193
randomly chosen hyperparameter configuration ϕ ∈ Φ achieving a performance of at least T across194
all evaluated environments. Further details can be found in Appendix B.195

Table 1 presents robustness measures for different (h,D) pairs in descending order. Interestingly,196
the Bregman Divergence derived from the max function seems to exhibit the highest robustness,197
despite being neither smooth nor commonly used. However, robustness appears to depend more on198
the combination of regularizers than on any single component. For instance, pairing entropy with199
different Drift regularizers results in both very high and very low robustness values, respectively.200

4.2 Temperature handling during Training201

We now extend our analysis beyond fixed temperature parameters and test whether the adaptive202
strategies introduced in Section 3 lead to improved performance. For the temperature λ of the Drift203
regularizer we additionally test linear annealing, paired with either linear annealing or a constant204
MDP regularization temperature α. Additionally, we allow α to be learned via the loss in (8), using205
either a linearly decaying h̄ ("learned lin. anneal") or a constant h̄ ("learned constant"). For linear206
annealing, the initial temperature was gradually reduced to zero, while for both versions of learned207
α, the target h̄ was varied.208

To evaluate these strategies, we repeated these experiments for two pairs of h and D. The right part209
of Figure 3 shows the average performance of the top 1% of temperature configurations (out of 784)210
on regions where both regularizations apply (α, λ > 0). The left and right of each pair of columns211
shows the results for MDPO(−H, DKL) and MDPO(−H0.5, D−H0.5

), respectively. Similarly, the212
right block shows the same results for the top 10% temperature configurations. These specific per-213
centiles were selected to reflect the typical effort researchers might invest in hyperparameter tuning.214
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h = h = 0.5 h = h = 0.5 h = h = 0.5 h = h = 0.5

0.99 ± 0.00 0.97 ± 0.01 0.97 ± 0.01 0.72 ± 0.01 0.96 ± 0.02 0.83 ± 0.08 0.92 ± 0.02 0.65 ± 0.04

0.99 ± 0.00 0.98 ± 0.00 0.48 ± 0.03 0.42 ± 0.01 0.98 ± 0.01 0.87 ± 0.07 0.42 ± 0.03 0.37 ± 0.02

0.99 ± 0.00 0.95 ± 0.00 0.76 ± 0.04 0.55 ± 0.02 0.98 ± 0.01 0.88 ± 0.05 0.68 ± 0.04 0.51 ± 0.02

0.94 ± 0.01 0.95 ± 0.00 0.87 ± 0.01 0.51 ± 0.01 0.91 ± 0.02 0.88 ± 0.05 0.83 ± 0.02 0.50 ± 0.01

 constant  linear anneal  constant  linear anneal
top 1% top 10%

 (lin. anneal)

 learned

 (const)

 learned

 anneal

 linear

 const

 (lin. anneal)

 learned

 (const)

 learned

 anneal

 linear

 const

Figure 3: Mean & standard deviations of Top 1% and Top 10% performing hyperparameter config-
urations (out of 841) for MDPO(−H, DKL) and MDPO(−H0.5, D−H0.5

) for different temperature
adaption schemes. For both algorithms keeping λ constant outperforms the linear annealing variant.

The results support theoretical predictions that a constant λ performs well, while linearly annealing215
λ significantly degrades performance at both the 1% and 10% levels. This contrasts with Tomar216
et al. (2020), where a decaying λ was found beneficial; however, their results were obtained in the217
absence of MDP regularization.. In contrast, α handling has little impact on performance, possibly218
due to its smaller scale, making it more robust to tuning. Notably, these trends preserve even when219
changing both the MDP and Drift regularizer.220

4.3 Temperature handling between different environments221

In practice, researchers also need to find an appropriate range to tune their parameters in, which can222
be challenging and require much intuition. However, from (7), we hypothesize that the preferred223
range of α is related to the absolute range of returns, rendering this choice heavily task dependent.224
To study this effect, we reran the experiments for MDPO(−H, DKL) for 841 different constant tem-225
perature pairs each on a set of multiplicatively rescaled versions of CartPole, spanning a maximum226
return range from 5 to 1000.227

Figure 4 illustrates the minimum temperature required for successful learning (normalized return228
≥ 0.85) as a function of the environment’s maximum return. Extracting this value was restricted229
to the region, where this choice was meaningful , that is, the choice for α was done in regions for230
sufficiently low λ and vice versa. Full heat maps are provided in the supplementary material.231

These experiments indeed confirm empirically that both the temperature for the MDP regularizer232
α as well as the temperature for the Drift regularizer λ grow linearly with the maximum return233
obtainable. This can help RL researchers with judging the empirical range they need to test in for234
setting optimal temperature values, aiding in speeding up the hyperparameter optimisation.235

5 Related work236

Unified View on Reinforcement Learning Algorithms Studying regularization is partially in-237
spired by attempts to provide a unified view on RL algorithms. Key milestones include the intro-238
duction of MDPO in (Geist et al., 2019), later explored in (Tomar et al., 2020; Vieillard et al., 2020),239
and the Mirror Learning framework in (Grudzien et al., 2022), which extends regularization beyond240
Mirror Descent. Recent work on Policy Mirror Descent (Lan, 2023; Xiao, 2022; Vaswani et al.,241
2022; Alfano et al., 2023; Zhan et al., 2023) has further detailed the connection between model-free242
algorithms and mirror descent.243
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(a) MDP Regularizer temperature α
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(b) Drift Regularizer temperature λ

Figure 4: Minimal required temperature for successful learning (normalized return ≥ 0.75) as a
function of maximum return in a rescaled CartPole environment. Points indicate minimal tempera-
ture values, and lines show linear regression.The minimal temperatures exhibit a monotonic trend in
the maximum environment return

Regularization in Policy Mirror Descent like Algorithms While RL algorithms can be regular-244
ized using techniques from supervised learning, e.g., weight decay, layer normalization (Nauman245
et al., 2024; Lee et al., 2024; Nauman et al., 2025), this work focuses on RL-specific regularization.246
From a Generalized Policy Iteration (GPI) perspective, regularization can be applied to three princi-247
pal components: (i) the MDP itself, including entropy-based and KL-regularized RL (Ziebart, 2010;248
Haarnoja et al., 2017; Lee et al., 2019; Shani et al., 2020; Rudner et al., 2021; Tiapkin et al., 2023),249
(ii) policy evaluation (critic regularization) (Fujimoto et al., 2018; Nachum et al., 2019; Eysenbach250
et al., 2023; Cetin & Celiktutan, 2023), and (iii) policy improvement (Grudzien et al., 2022; Lan,251
2023; Xiao, 2022; Vaswani et al., 2022; Alfano et al., 2023; Zhan et al., 2023). Unlike prior work on252
learning optimal Drift regularizers (Lu et al., 2022; Alfano et al., 2024), this study examines fixed253
regularizers for policy improvement.254

6 Discussion & Conclusion255

In this work, we empirically analyzed the interplay between the two regularization components in256
PMD: Drift and MDP regularization. Across more than 500k training seeds, we systematically257
examined a broad range of regularizers and their temperature parameters.258

To ensure comprehensive coverage of algorithm configurations, our study focused on a small set of259
environments with a limited number of environment steps, meaning our findings reflect performance260
within this training horizon. Future research could extend this analysis to longer training horizons261
and larger-scale environments to assess whether the observed trends persist.262

Our results indicate that, for most combinations, Drift and MDP regularization can act as substitutes,263
as reflected in the “L”-shaped regions of well-performing temperature values. Selecting well-suited264
temperature values is vital, as our results demonstrate that even in small environments, poorly chosen265
parameters can severely degrade performance. To address this brittleness, we examined the impact266
of temperature scales both during training and across environments, confirming a linear relationship267
between temperature and reward scale for both regularizers. Additionally, we evaluated dynamic268
adaptation strategies for temperature parameters and found that maintaining constant values is of-269
ten more effective, particularly when moving beyond the conventional Entropy-KL regularization270
pair. This raises the question of whether existing adaptation strategies are overly tailored to well-271
established regularizers. Another approach to mitigating this brittleness is through improved robust-272
ness with respect to temperature selection. Our findings suggest that the choice of regularizers plays273
an important role in robustness, particularly for less commonly used ones, highlighting an important274
direction for future research. Overall, our study underscores the need for further investigation into275
regularization in RL to develop not only more performant but also more robust algorithms.276
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A Convex Functions and their Bregman Divergences277

A.1 Entropy278

The Shannon entropy of a (finite) probability distribution p ∈ ∆(X ) is defined as279

H(p) =
∑
x∈X
−p(x) log(p(x)) = Ex∼p[− log(p(x))]. (10)

The Tsallis Entropy for m ̸= 1 is defined as280

Hm(p) =
1

m− 1

∑
x∈X

p(x)− p(x)m. (11)

For m > 0 h(p) = −Hm(p) is a convex function. Moreover, the Tsallis Entropy generalizes the281
Shannon Entropy in the sense, that limm→1Hm = H.282

The Bregman Divergence for a convex potential function is defined as283

Bh(p, q) = h(p)− h(q)− ⟨∇h(q), p− q⟩, (12)

where h(q) is any vector within the subdifferential and ⟨·, ·⟩ denotes the standard inner product on284
R|X |. A straight forward calculation yields285

B−Hm(p, q) =
1

m− 1

∑
x∈X

p(x)m −mp(x)q(x)m−1 − (1−m)q(x)m. (13)

While |H(p)| ≤ log(|X |), the Tsallis Entropy for m ̸= 1 can be bounded on ∆(X ) by286

|Hm(p)| ≤

{
1/(m− 1) m > 1

1/(1−m)maxx∈[0,1] |x− xm| 0 < m < 1.
(14)

This can be used to provide a reasonable guess for setting h̄ in Eq. (8).287

A.2 Lp Norm288

Let X be a finite set, q ∈ ∆(X ). Then289

|| · ||pp : ∆(X )→ R, (15)

q 7→ ||q||pp :=
∑
x∈X
|q(x)|p (16)

is a convex function for p ≥ 1. The corresponding Bregman Divergence for q, q′ ∈ ∆(X ) is given290
by291

B||·||pp(q, q
′) =

∑
x∈X

q(x)p − q′(x)p − p q(x) q′(x)p−1 + p q′(x)p (17)

A.3 Max Function292

Let X be a finite set, q ∈ ∆(X ). Then293

max : ∆(X )→ R, (18)
q 7→ max

x∈X
|q(x)| = max

x∈X
q(x), (19)
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is a convex function. This function is not smooth, however, it is convex with subdifferential294

∂max(q) =

 ∑
j∈J(x)

αjej :
∑

j∈J(x)

αj = 1, J(x) = argmax
x∈X

q(x)

 , (20)

where ej denotes the j-th unit vector in R|X |. The corresponding Bregman Divergence for q, q′ ∈295
∆(X ) can hence be expressed as296

Bmax(q, q
′) = max(q)−max(q′)− ⟨∇max(q′), q − q′⟩, (21)

where we can canonically select∇max(q′) = ej for some j ∈ argmaxx∈X q′(x).297

B Robustness measure of an algorithm298

To quantify robustness of an algorithm Aϕ (in this work an instance of MDPO(h,D) w.r.t. a set of299
hyperparameters Φ (in this work the temperature levels), we define the performance frequency as300
the proportion of hyperparameter configurations achieving at least a given performance τ :301

freq(τ ;A,Φ) = #{ϕ ∈ Φ|d(Aϕ) ≥ τ}
|Φ|

. (22)

Intuitively, the frequency to a given performance level τ may be seen as the probability of achieving302
at least this performance level for a random selection of hyperparameters (within Φ). In this sense,303
the normalized area under this curve would provide a measure of robustness: the likelihood of a304
random configuration achieving at least a certain performance305

RbstT (A; Φ) :=
1

1− T

∫ 1

T
freq(τ ;A,Φ) dτ. (23)

C Experiment Details306

Unless stated otherwise, all algorithms were trained for an equal number of environment steps across307
four environments—CartPole, Acrobot, Catch, and DeepSea—using their standard implementations308
from Gymnax (Lange, 2022). In all environments except Acrobot, the maximum return is attainable309
and was therefore used for return normalization. For Acrobot, we considered the task solved at a310
return of −75, a threshold slightly exceeding the provided PPO baseline in Gymnax (Lange, 2022),311
and used this value for normalization.312

Additionally, experiments were conducted on a scaled-up version of Catch (Figure 1b), where the313
number of rows and columns was increased by factors of two and three, respectively, compared to314
the default configuration.315

For each algorithm configuration, defined by a specific set of temperature parameters for a given316
MDP regularizer h and Drift regularizer D, we ran N = 5 train seeds per environment, followed by317
M = 10 evaluations per trained model. If not specified otherwise, a total of 292 = 841 temperature318
configurations were tested for each instance of MDPO(h,D).319
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D Algorithm Details320

Algorithm 1: Off-policy MDPO(h,D) Algorithm
Init networks (Qϕ0,i)i=1,2, πθ0 , data buffer D = ∅, target networks ϕtarget, i = ϕ0,i

for budget do
for environment steps per update do

/* sample data */
sample (s, a, r, s′, d) ∼ πθk , p,
D ← D ∪ {(s, a, r, s′, d)}

end
Sample train batch D ∼ D

/* Policy Improvement: update Actor network, cf. (7) */
for i = 0, . . . , actor epochs− 1 do

θ
(i+1)
k ← θ

(i)
k − ηθ∇θL(θ, θk)|θ=θ

(i)
k

end
θk+1 = θactor epochsk

/* Policy Evaluation */
LQ(ϕ) =
E(s,a,r,s′)∼D[(Qϕ(s, a)− r − γ Ea′∼πθk+1

[minQϕtarget,i
(s′, a′)− α log(πθk+1

(a′|s′)])2]
for j = 0, . . . , critic epochs− 1 do

ϕ
(j+1)
k ← ϕ

(j)
k − ηϕ∇ϕLQ(ϕ)|ϕ=ϕ

(i)
k

end
ϕk+1 = ϕcritic epochs

k

ϕtarget, k+1 = τ ϕtarget, k + (1− τ)ϕk+1

end

321

Table 2: Fixed hyperparameters for all MDPO(h,D) instances

Parameter Value
Number of environments 16
Max grad norm 1.0
Gamma 0.99
Replay buffer size 105

Environment steps per update 256
Train batch size 512
Critic update epochs 1
Actor update epochs 2
Tau 0.95
Number of minibatches 1
Learning rate 0.0025
Total Environment steps 106
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(c) h = −H, D = DKL; AMPD

Figure 5: Different MDPO(h,D) configurations with constant temperatures
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(a) CartPole
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(b) Acrobot
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(c) Catch
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(d) DeepSea

Figure 6: MDPO(−H, DKL) with constant temperatures on different environments
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(a) h = −H0.5 &
D = DKL
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(c) h = −H0.5&
D = B−H0.5
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(d) h = || · ||22 &
D = BL2

Figure 7: MDPO(h,D) for different h,D pairs
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(c) h = −H &
D = BL2

(d) h = −H &
D = DKL

Figure 8: MDPO(h,D) for different h,D pairs
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(c) h = −H & D = Bmax

Figure 9: MDPO(h,D) for different h,D pairs

(a) α = const., λ =
const.
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(b) α = const., λ =
lin. anneal
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(c) α = lin. anneal, λ =
const.
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(d) α = lin. anneal, λ =
lin. anneal

Figure 10: MDPO(−H, DKL) for different temperature scheduling schemes
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(a) α = learned
const.,
λ = const.
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(b) α = learned
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(c) α = learned
lin. anneal,
λ = const.
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(d) α = learned
lin. anneal,
λ = lin. anneal

Figure 11: MDPO(−H, DKL) for different temperature scheduling schemes
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(a) α = const., λ =
const.
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(c) α = lin. anneal, λ =
const.
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(d) α = lin. anneal, λ =
lin. anneal

Figure 12: MDPO(−H0.5, B−H0.5
) for different temperature scheduling schemes
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(a) α = learned
const.,
λ = const.
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(b) α = learned
const.,
λ = lin. anneal
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(c) α = learned
lin. anneal,
λ = const.
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(d) α = learned
lin. anneal,
λ = lin. anneal

Figure 13: MDPO(−H0.5, B−H0.5
) for different temperature scheduling schemes
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(a) Maximum Return =
1000
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500
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(d) Maximum Return =
400

Figure 14: MDPO(−H, DKL) with constant temperatures on CartPole with different maximum re-
turns
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Figure 15: MDPO(−H, DKL) with constant temperatures on CartPole with different maximum re-
turns
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(a) Maximum Return = 100
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(b) Maximum Return = 50
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Figure 16: MDPO(−H, DKL) with constant temperatures on CartPole with different maximum re-
turns
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Figure 17: Performance frequency curves starting at different performance levels
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