
Foundation of Software

Technology (FaST)

by Marcello Bonsangue

Bachelorklas 2014

12/3/2014

Members

 Professors

 F. Arbab, Head of Cluster

 Joost Kok, Head of Cluster

 Frank de Boer

 Associate Professors

 Jetty Kleijn

 Marcello Bonsangue

 Luuk Groenewegen (retired)

 Assistant Professors

 PostDocs

 Natallia Kokash

 Michiel Helvenstein

 Stijn de Gouw

 PhD Students

 Bahamn Pourvatan

 Jurriaan Rot

 Vlad Serbanescu

 Nikolaos Bezirgiannis

 Kayvan Azadbakht

 Kasper Dokter,

 Sung Jongmans,

 Natallia Kokash,

 Chetan Nagarajagowda

 Behrooz Nobakht

 Secretary

 Marloes van der Nat

12/3/2014

Mission

 Development of formalisms, methods, techniques, and

tools to design, analyze, and construct software systems

out of components and services.

 Issues

 Concurrency

 Coordination

 Model

 Approach
 Formal methods

 Experimental systems

 Empirical studies

 Ingredients
 Classes/Objects

 Components

 Services

 Construction
 Composition

 Correctness

12/3/2014

Vision

 Mastering the complexity of modern software systems
 Embedded systems

 Systems of independent components

 Service composition

 Multi-core chips

 Characteristics
 Concurrency

 Distribution

 Mobility

 Dynamic reconfiguration / self-adaptation

 Multiple, independent providers

 Third-party black-box composition

 Compositional end-to-end QoS

12/3/2014

Areas

 Dynamically reconfigurable systems

 Testing, deductive verification, and model checking

 Formal models of concurrent, distributed, object oriented,
and component-based systems.

 Formal semantics, process algebras and logics for
reasoning about such systems

 Quality of service

12/3/2014

6

Major challenge

Development of techniques for effectively

establishing behavioral properties of

dynamical systems

12/3/2014

Activities – F. Arbab

 Coordination models and languages

 Coordinated composition of software intensive systems

 Coordination language Reo

 Constraint automata

 Use of coordination
 Compositional QoS

 Code generation for multi-core systems

 Service oriented computing

 Testing

12/3/2014

Activities – F.S. de Boer

 Software correctness
 Programming logics

 Deductive proof methods for the verification of programs

Object Orientation
 Verification and Testing

 Concurrency
 Semantics

 Multi-core programming

 Cloud aware programming

 Integrated Formal Methods
 Testing

 Model checking

 Deductive verification

 Abstraction

12/3/2014

Activities – M. Bonsangue

 Formal Methods
Mathematically-based techniques for the specification,

development and verification of software and hardware
systems
 Testing

 Semantics and model checking of software connectors

 Semantics and verification of dynamical evolving systems

 Algebra, Coalgebra and Logic
Mathematical frameworks for the specification of the

reactive behaviour of systems
 Process algebra, regular expressions

 (Probabilistic, non-deterministic, …) automata

 Modal logics

12/3/2014

Activities – L. Groenewegen

 Coordination models

 Paradigm language

 PARallelism, its Analysis, Design and Implementation by a

General Method

 Modeling behaviors and constraints thereon

 Coordination patterns

 Self-adaptation patterns

 McPal

 On-the-fly migration through coordination

 Managing changing processes

12/3/2014

Activities – J. Kleijn

 Concurrency

 Using Petri nets, Team Automata, and other automata

formalisms to model, analyze, and verify the behavior

systems:

 Computation

 Biological systems

 Hardware and software components

12/3/2014

Interest in formal methods

 Maths for formal methods

 Algebras, coalgebras and logics.

 Deductive verification

Study of logical formalism with the goal of proving formally

that the software satisfies its specification.

 Model checking
Development of technique to automatically check that the
software satisfies its specification.

 Testing
Executing a program with the intent of finding bugs.

12/3/2014

Few bachelor projects

 Equations and automata

 Parsing trees from derivatives

 Recursive guarded languages

 Monitoring and runtime verification

 Flow graph for a OO-language

 Resource aware programming

 Application specific scheduling

 Formal methods

Slide 13

12/3/2014

Equations and automata

 Equation aab = ba

 Problem: Find a complete set of equations

satisfied by an automaton.

Formal methods

Slide 14

a,b

a,b

12/3/2014

Parsing trees from derivatives

 S  aSb | ab

 Sab = (Sa)b = (Sb | b)b = S | 

 Problem: Construct a parsing tree from the

derivatives.

Formal methods

Slide 15

S

a b

12/3/2014

Recursive guarded language

 Regular guarded language

0 empty language

1 empty word language

b Boolean actions

a ordinary actions

 r + r, r;r choice, seq. composition

r* recursion

 Problem: Extend it with full recursion.
Formal methods

Slide 16

