
Foundation of Software 

Technology (FaST)  

 

by Marcello Bonsangue 

     

 

Bachelorklas 2014 



12/3/2014 

Members 

 Professors 

 F. Arbab, Head of Cluster 

 Joost Kok, Head of Cluster 

 Frank de Boer 

 

 Associate Professors 

 Jetty Kleijn 

 Marcello Bonsangue 

 Luuk Groenewegen (retired) 

 

 Assistant Professors 

 

 PostDocs 

 Natallia Kokash 

 Michiel Helvenstein 

 Stijn de Gouw 

 

 PhD Students 

 Bahamn Pourvatan 

 Jurriaan Rot 

 Vlad Serbanescu 

 Nikolaos Bezirgiannis 

 Kayvan Azadbakht 

 Kasper Dokter,  

 Sung Jongmans, 

 Natallia Kokash, 

 Chetan Nagarajagowda 

 Behrooz Nobakht 

 

 Secretary 

 Marloes van der Nat 

 



12/3/2014 

Mission  

 Development of formalisms, methods, techniques, and 

tools to design, analyze, and construct software systems 

out of components and services. 

  
 Issues 

 Concurrency 

 Coordination 

 Model 

 

 Approach 
 Formal methods 

 Experimental systems 

 Empirical studies 

 Ingredients 
 Classes/Objects 

 Components 

 Services 

 

 Construction 
 Composition 

 Correctness  



12/3/2014 

Vision 

 Mastering the complexity of modern software systems 
 Embedded systems 

 Systems of independent components 

 Service composition 

 Multi-core chips 

 

 

 Characteristics 
 Concurrency 

 Distribution 

 Mobility 

 Dynamic reconfiguration / self-adaptation 

 Multiple, independent providers 

 Third-party black-box composition 

 Compositional end-to-end QoS 

 



12/3/2014 

Areas 

 Dynamically reconfigurable systems 
 

 

 Testing, deductive verification, and model checking 

 

 Formal models of concurrent, distributed, object oriented, 
and component-based systems. 

 

 Formal semantics, process algebras and logics for 
reasoning about such systems 

 

 Quality of service 

 



12/3/2014 

6 

Major challenge 

 

 

Development of techniques for effectively 

establishing behavioral properties of 

dynamical systems 

 



12/3/2014 

Activities – F. Arbab 

 Coordination models and languages 

 Coordinated composition of software intensive systems 

 Coordination language Reo 

 Constraint automata 

 

 Use of coordination  
 Compositional QoS  

 Code generation for multi-core systems 

 Service oriented computing 

 Testing 



12/3/2014 

Activities – F.S. de Boer 

 Software correctness 
 Programming logics 

 Deductive proof methods for the verification of programs 

Object Orientation 
 Verification and Testing 

 Concurrency 
 Semantics 

 Multi-core programming 

 Cloud aware programming 

 Integrated Formal Methods 
 Testing 

 Model checking 

 Deductive verification 

 Abstraction 



12/3/2014 

Activities – M. Bonsangue 

 Formal Methods 
Mathematically-based techniques for the specification, 

development and verification of software and hardware 
systems 
 Testing 

 Semantics and model checking of software connectors 

 Semantics and verification of dynamical evolving systems 

 

 Algebra, Coalgebra and Logic 
Mathematical frameworks for the specification of  the 

reactive behaviour of systems 
 Process algebra, regular expressions 

 (Probabilistic, non-deterministic, …) automata 

 Modal logics 

 



12/3/2014 

Activities – L. Groenewegen 

 Coordination models 

 Paradigm language 

 PARallelism, its Analysis, Design and Implementation by a 

General Method 

 Modeling behaviors and constraints thereon 

 

 Coordination patterns 

 Self-adaptation patterns 

 McPal 

 On-the-fly migration through coordination 

 Managing changing processes  

 



12/3/2014 

Activities – J. Kleijn 

 Concurrency 

 Using Petri nets, Team Automata, and other automata 

formalisms to model, analyze, and verify the behavior 

systems: 

 Computation 

 Biological systems 

 Hardware and software components 



12/3/2014 

Interest in formal methods 

 Maths for formal methods 

 Algebras, coalgebras and logics. 

 

 Deductive verification 

Study of logical formalism with the goal of proving formally 

that the software satisfies its specification. 

 

 Model checking 
Development of technique to automatically check that the 
software satisfies its specification. 

 

 Testing 
Executing a program with the intent of finding bugs. 



12/3/2014 

Few bachelor projects 

 Equations and automata 

 Parsing trees from derivatives 

 Recursive guarded languages 

 

 Monitoring and runtime verification 

 Flow graph for a OO-language 

 Resource aware programming 

 Application specific scheduling 

 Formal methods 
 

Slide 13 



12/3/2014 

Equations and automata 

 Equation  aab = ba 

 

 

 

 

 Problem: Find a complete set of equations 

satisfied by an automaton. 

Formal methods 
 

Slide 14 

a,b 

a,b 



12/3/2014 

Parsing trees from derivatives 

 S  aSb | ab   

 

 Sab = (Sa)b = (Sb | b)b = S |  

 

 

 Problem: Construct a parsing tree from the 

derivatives. 

Formal methods 
 

Slide 15 

S 

a b 



12/3/2014 

Recursive guarded language 

 Regular guarded language 

0      empty language 

1    empty word language 

b    Boolean actions   

a    ordinary actions    

  r + r, r;r      choice, seq. composition 

r*    recursion  

 

 Problem: Extend it with full recursion. 
Formal methods 
 

Slide 16 


