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Abstract—Supporting humans in the kitchen is a difficult task
for a humanoid robot. This study focuses on one of the tasks
identified in the HUMABOT Challenge; finding a tomato in
a kitchen environment and grabbing it from the table. Three
detection algorithms are evaluated on their performance to find
the tomato without confusion with other vegetables present in
the kitchen. Once found, the location of the tomato relative to
the humanoid robot is estimated. A planning algorithm is then
used to grab the tomato from the table with both arms.

1. Introduction

The use of robots has been increasing over the last
years [1]. Not only in the industry, but also in service
applications, such as health care or education [2]. This
study focuses on a small benchmark to test how a standard
humanoid robot can support humans in a domestic envi-
ronment; inspired by the HUMABOT Challenge of 2014
[3]. In this challenge, a standardized kitchen is used as the
environment where a robot has to perform the following
tasks:

• The safety task: one of the burners in the kitchen is
lit and the robot has to turn it off.

• The shopping list: identify missing objects on the
shelves to make a shopping list.

• The roasted tomato: identify a tomato and put it into
a pan.

This study focuses on “The roasted tomato” task. Sec-
tion 2 will discuss previous research. In Section 3, the used
methods will be explained. Section 4 will demonstrate the
different simulations that were used. In section 5 the results
will be shown. Section 6 will evaluate our findings and
discuss ideas for future research. Section 7 will conclude
this paper.

2. Previous research

Since the initiation of the RoboCup@Home competi-
tion [4] an extensive set of related work is created1. Yet,
the work in the RoboCup@Home competition is not di-
rectly applicable to this challenge. The competitors of the
RoboCup@Home have custom build robots with a dedicated
sensor suite, while the HUMABOT Challenge the task has to

1. https://robocup.rwth-aachen.de/athomewiki/index.php/Publications

be performed with a much smaller sensor suite. Instead, our
research is inspired by two previous studies: the Cognitive
Image Processing (CIP) approach from the Dutch Nao Team
[5] and the work from the HUMABOT Challenge competitor
NAO@UPC.

2.1. Previous competitors

Since the HUMABOT Challenge was held in 2014, the
teams have no incentive to keep their code private any
longer. One of the teams, NAO@UPC, made their imple-
mentation publicly available on GitHub2. In their qualifica-
tion video3, the team shows that they could localize objects
using ORB descriptors, FlannBased with LSH matcher,
Ransac-based PnP approach and Kalman filter 4. Yet, be-
cause the tomato is not a textured object and has not many
other features than being round and red, the tomato is in
their code purely recognized on color and size.

Also the dotMEX team5 recognized an algorithm based
on color and size alone. This in contrast with the color-
independent object detection explained in the next section.

2.2. Cognitive Image Processing (CIP)

One of the 2014 technical challenges of the Standard
Platform League was the Any Place Challenge. In this
challenge a soccer ball has to be found in an arbitrary
environment. This challenge has to be performed with the
same limited sensor suite as the HUMABOT Challenge and
with an object (ball) with nearly the same characteristics as
the tomato in the IKEA kitchen. The approach of Ras [6],
member of the Dutch Nao Team [5], is inspired by the
psychological theory of Recognition-By-Components [7].
In practice, the Cognitive Image Processing approach used
a series of filters and detectors to maximize the accuracy
when finding spherical objects. Since the detection is color
invariant, the program would be able to find objects more
dynamically. In short, it tries to find edges in a blurred image
from the saturation channel of the original image. After
detecting these edges, the user ends up with a binary image,
with the outlines of objects highlighted if the recognition
worked correctly. These binary images are then searched

2. https://github.com/gerardcanal/NAO-UPC
3. https://www.youtube.com/watch?v=AzZZ15W RvM
4. http://docs.opencv.org/master/dc/d2c/tutorial real time pose.html
5. https://www.youtube.com/watch?v=gwG6dQ-fNsc
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for any round shapes using blob detectors. Inspired by this
approach, a variant of this approach, described in section
3.1.3, is evaluated in this study.

3. Method

The robot used in this research is the NAO from Alde-
baran6. The NAO is a 57 cm tall humanoid robot. In this
study, a H21 body and a V4 head is used. The environment
is the standard play kitchen from IKEA, called DUKTIG,
including all the tools and vegetables (see Figure 1). This
research will focus on one of the vegetables: a red tomato
with a green crown with a size of 5 centimeter.

Figure 1. The kitchen environment

The ROS framework [8] was used to give access to
the many tools and libraries it has. To process images, the
OpenCV library [9] is used. The MoveIt library [10] is part
of the ROS framework. MoveIt introduces a number of tools
that aim to create developer-friendly software for mobile
manipulation. This library, among other things, incorporates
kinematics, motion planning and execution. All of these
libraries are available in both Python and C++. The code
presented with this paper is written in Python. All of our
code is available at our GitHub repository7.

The method can be described as three different phases:
detecting, localizing and grabbing the tomato. This section
explains the methods used for the different parts and the
integration of the three phases. In section 3.1, different
approaches to detect the tomato will be explained. Section
3.2 focuses on localizing the tomato and section 3.3 will
explain the MoveIt implementation to grab the tomato.
Section 3.4 will describe the implementation in ROS.

3.1. Detecting

To detect the tomato, three different approaches were
used. Two approaches are based on shape and color charac-
teristics of the tomato. The last approach is based on color-
invariant object recognition.

6. https://www.aldebaran.com/en/cool-robots/nao
7. https://github.com/Caiit/tomato tracker py

3.1.1. Color based and finding contours. The first ap-
proach focuses on the color of the tomato. Because the
tomato is red, the image can be adjusted to filter out
everything that is not red (see Figure 2a). This is done
by transforming the image into the HSV color space and
using the threshold (0, 140, 60) − (3, 250, 250) to get the
binary image of red. Keep in mind that this range depends
on lighting as well as the camera itself, so this threshold
has to be calibrated [11].

After removing the noise by using OpenCV‘s
erode and dilate function, contours were found with
findContours() from OpenCV. From those contours,
the minimal enclosing circles were found, because a tomato
is more or less a circle (see Figure 2b). From these circles,
the “pixel-coordinates” of the center of the tomato and
the radius were obtained. The tomato is detected when
the radius is bigger than 20 pixels to filter out small red
objects in the background. This limitation was put in place,
because the surroundings of the robot are not filtered in
any way. This means that its camera will pick up anomalies
which are not related to the task at hand.

(a) Binary image of red pixels (b) Detecting the tomato with
findingContours()

Figure 2. Color based detection in combination with finding contours

3.1.2. Circle based and average color. The second ap-
proach is based on the fact that a tomato is almost round.
After transforming the image into the HSV color space
and detecting edges with the Canny Edge Detector, circles
were detected in the image using HoughCircles() (see
Figure 3a). The next step is to calculate the average color
of the found circles. If the average color is in the range
(20, 20, 70) − (55, 70, 200), the circle is considered as red
and thus as the tomato (see Figure 3b).

(a) Detecting circles using
HoughCircles()

(b) The best circle with red as
average color

Figure 3. Circle based detection in combination with average color
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The range for red used in this method differs from the
one used in the color based approach. This is because after
a circle is detected, some small areas inside this circle might
not be red, but for instance part of the crown. Because the
circle detector has to find a perfect circle and the tomato
is not, the color of these areas is weighted into the average
color. This makes it not the same shade of red as the tomato,
but a slightly adjusted color.

3.1.3. Color invariant and blob detection. The last ap-
proach is color invariant. It is inspired by the CIP algo-
rithm [6], with some simplifications (because no square
objects had to be detected). It uses blob detection to detect
blobs in the image. In this process, the raw image is parsed
to OpenCV’s SimpleBlobDetector()8, which will then
perform blob detection on the image. These blobs are defined as
regions in the image that differ from surrounding regions. The
algorithm performs four steps:

1) Thresholding: Converts several times the image to a
binary image, each image containing colors that are in-
side the thresholds as white, and the colors outside the
thresholds as black. This is repeated multiple times with
slightly other thresholds, until the entire image is divided.

2) Grouping: For each binary image, the white pixels are
grouped together. The centers of these blobs are calcu-
lated.

3) Merging: If blobs show up across multiple binary images
and their centers are close together, they are considered
the same blob and are merged together.

4) Filtering: Per blob-group, which can span multiple binary
images, several characteristics are calculated. In this case
filtering is performed on characteristics as area, circular-
ity and convexity. The center and radius of the remaining
blob-groups are then returned to the caller.

In the last step it is possible to put constraints on what the
blob looks like, which is comparable with the Geon matching
described in Cognitive Image Processing approach of Ras [6]. For
the tomato detector, a largely circular blob would be accepted and
a quadrilateral shape (quad) would be rejected.

Figure 4. Detecting the tomato using the blobDetector

3.2. Localizing

To localize the relative position of the tomato to the robot a
number of coordination transformations are needed. The correct
procedure is to calibrate the camera, to use a pinhole model to
convert this 2D image point to a 3D vector (using the focal length
found during calibration) and to transform this vector to the body

8. http://docs.opencv.org/2.4/modules/features2d/doc/common
interfaces of feature detectors.html

(a) The robots coordi-
nates system

(b) The different orientations shown in one
image

Figure 5. The different orientations from the robot and the image

frame based on the gaze message which is broadcasted by nao-
remote with the geometry package tf available in ROS (as indicated
in the tutorial section of [12]).

Instead the relative position is estimated with an approximate
method. Since it is known that the target object is at a fixed height
in the area, a simpler method was both easier to implement and
faster to work with. This could be later on replaced by a more
advanced method. The robots starts out receiving images from his
top camera. As long as there is no tomato detected, the robot will
turn to the right. This simplified approach might cause issues in a
more dynamic environment, where the table is further away from
the robot’s starting position (> 1m). At that point, even when the
target object comes into vision, either the resolution of the camera
would make the object too small to detect or the detector would
not consider the generated output as a valid target.

If it does manage to detect the tomato in an image, the x,y-
position and the radius of the tomato are found. Now this position
needs to be converted to real-world coordinates with the robot as
origin (see Figure 5). The z-coordinate is fixed, because the height
of the table is known: 0.35m. This is 0.5m from the center of the
robot coordinate system.

3.2.1. Finding the x-coordinate in the robot orientation.
The x-coordinate of the robot is the distance between the robot
and the tomato. This is calculated by determining what the radius
of the tomato is in an image with the tomato lying on a distance
of 0.3 meter. The radius was 36 pixels. The radius for a distance
of 1 meter can be derived from those values as shown in eq. (1).

radiusToMeters = 36/0.3 (1)

distanceX = radiusToMeters/radius (2)

This constant can now be used to calculate the x-coordinate
(eq. 2).

3.2.2. Finding the y-coordinate in the robot orientation.
When drawing a vertical line in the middle of the image, the y-
coordinate is the offset from this line to the center of the tomato.
There are two possibilities: if the tomato is left of this line, the
y-coordinate is positive; if it is on the right side, the y-coordinate
is negative.

offsetInPixels = (imgWidth/2)− x (3)

pixelToMeter = realWidth/(radius ∗ 2) (4)

offsetY = pixelToMeter ∗ offsetInPixels (5)
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To get this offset in pixels, the x-position of the image is sub-
tracted from this line (eq. 3). Now those pixels must be converted
to meters. This is done using the real width of the tomato, which is
0.05m (eq. 4). Multiplying this with the offset in pixels will result
in the y-coordinate of the robot (eq. 5).

3.3. Grabbing

Grabbing the tomato is done by MoveIt. As mentioned before,
this library contains a number of tools for mobile manipulation.
Only the left and right arm groups are used. Given the center point
of the tomato, MoveIt first moves the arms of the robot 5cm to the
left or to the right of the tomato, but it does not grab it yet. This
is done to correct any possible localization errors. Next, both arms
are moved towards each other with 2cm to squeeze the tomato to
grab it. Finally, the arms are lifted up a bit and moved towards
the chest to avoid hitting the table and to be more stable while
moving.

3.4. Implementation in ROS

The ROS-implementation consists of four nodes (see Figure 6).
The main node is the TomatoDetector node. This node is a sub-
scriber to the Image topic and a publisher to the Point and Pose2D
topics. The Camera and Walker nodes start while running the
nao bringup for the connection with the NAO. Those nodes are
used for the images and to walk. The MoveIt node is used for
inverse kinematics to grab the tomato.
Our ROS implementation (based on the Long Term Service re-
lease ROS Indigo Igloo) for the NAO depends on the following
packages:

• nao robot
• vision opencv
• naoqi bridge
• nao moveit config
• nao dcm robot
• nao virtual

3.4.1. Component integration. The Camera node publishes
images taken by the NAO. The TomatoDetector is subscribed to
those images, so it receives them. Firstly, it tries to find the tomato
in the image. If it does not find the tomato, it turns right and
searches again. If it does find the tomato, it checks whether it
is close enough to grab it. If so, it publishes a Point and the
MoveIt node will start grabbing the tomato. However when it is not
close enough to grab it directly (indicated by MoveIt node that no
solution is possible), the robot Walker receives a Pose2D to move
closer to the tomato. This Pose2D has the obtained x-coordinate of
the tomato minus 0.3m as its x-coordinate, otherwise the robot will
hit the table. The y-coordinate is the y-coordinate of the tomato.
After moving closer to the tomato, it will search for the tomato
again to check if it is now close enough to grab the tomato. This
is done to compensate for possible errors during localization.

4. Simulations

Although the image processing is based on the interface with
the real NAO robot, most of the planning can better be tested
with simulations, to prevent the effect of real collisions. For
the implementation described in this paper, the interface to two
different simulators were used: Webots & RVIZ.

TomatoDetectorCamera MoveIt

Walker

Image Point

Pose2D

Figure 6. The implementation in ROS showing the used nodes and topics

4.1. Webots

Webots is a commercial robot simulator promoted by the
HUMABOT organizers. They made the working environment
available in a format that can be used in Webots, such that
developers that do not have access to physical robots can still
practice programming one. However, it became apparent that in
order to work with Webots, a new controller for our robot would
have to be written, because this application could not be done
with the standard Webots ros-controller. This would make porting
of the experiments directly to the NAO robots difficult. Therefore,
Webots was dropped as a simulator, although the 3D environment
developed by the HUMABOT organizers was ported to RVIZ.

4.2. RVIZ

RVIZ is not an actual simulator, but a 3D visualization tool
integrated with ROS. The program loads configurations that define
what kind of objects are in the world and gets the data from ROS
nodes. By simply listening to the broadcast data it is then able to
show in what way everything is moving. By sending back data, for
instance two objects colliding, it sends information to the relevant
nodes. The MoveIt node, with the inverse kinematics of the NAO
robot, is a fully integrated plugin of RVIZ.

Figure 7. A screenshot of the RVIZ visualization

Due to the architecture of different nodes, controllers are not
necessary. Instead, it is possible to pretend that a real robot is
sending information to RVIZ. This way, while RVIZ thinks a real
robot is connected, it is just receiving broadcast data from a robot
that is running virtually. By design, it is then also possible to
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actually plug in a physical robot, and have the program execute
without significant changes, aside from recalibration.

One drawback from RVIZ was that the kitchen environment
needed for the experiments was not readily available, and had to
be converted manually from the Webots environment. This meant
exporting all the objects to a format that was readable by RVIZ
with Blender and Meshlab9. After converting, all object lost their
original position and had to be manually readjusted. Care has been
taken that also the collision models, needed to predict physics-
based effects, were correctly adjusted.

With RVIZ working and the robot connected, it is now possible
to simulate the robot grabbing a tomato at a specified point, since
MoveIt is also controlled using the ROS system (see Figure 7).
The specification of the location of this point would be combining
by the detector program described in section 3.1 and with the
estimation of the location described in section 3.2.

5. Results

The results described in this section are split into three parts.
This is because these three parts form a core to our study. If
one part was unreliable, the other would suffer from it. Firstly,
the tomato detectors are evaluated in section 5.1. Then, with the
best performing detector, the localization algorithm is evaluated in
section 5.2 and section 5.3 will go into detail about the results of
grabbing the tomato.

5.1. Tomato detector evaluation

The three detection algorithms are tested on ten different
images: five images containing only one vegetable (tomato, car-
rot, cucumber, garlic or lettuce), three images containing all five
vegetables and two images containing all vegetables without the
tomato. Table 1 shows the results of the different detection algo-
rithms. “1” means that it detected the tomato and “0” means that
it did not detect anything. If something else was detected, it will
say what this was. As can be seen in this table, the color based
method always detects the tomato and does not detect anything
else. The circle based approach does detect the tomato most of the
time but it detects something in the background as a tomato once.
The blobs based method detects the tomato most of the time, but
detects a lot of other vegetables as the tomato as well. The color
based method is the best method and is used for the rest of study.

TABLE 1. RESULTS OF THE DIFFERENT DETECTING ALGORITHMS
1 MEANS DETECTED TOMATO, 0 MEANS DETECTED NOTHING

color based Circle based Blobs

tomato 1 1 1
carrot 0 0 0
cucumber 0 0 0
garlic 0 background 0
lettuce 0 0 lettuce
all1 1 1 1
all2 1 0 garlic
all3 1 1 1 & background
without1 0 0 garlic
without2 0 0 carrot

9. https://www.blender.org/ & http://meshlab.sourceforge.net/

5.2. Tomato localization evaluation

In order to create a sensible evaluation, a chessboard was used
to make sure the tomato was put in the same place every time. The
squares on this chessboard are each of a fixed length, making it
very easy to create a discrete space on the surface. The Nao robot
was on a fixed position, only the location of the tomato was varied
(on the chessboard). Table 2 shows the difference between the
detected point and the actual point of the tomato. As can be seen
in this table the localization’s estimation are not work. However
when looking at the differences, the errors are so small that the
can be compensated by the opening the gripper of the NAO wider
during the gripper procedure.

TABLE 2. RESULTS OF THE LOCALIZATION ALGORITHMS, IN METERS

Real x Real y Estim. x Estim. y Diff. x Diff. y

0.22 0 0.23 -0.006 0.001 -0.006
0.22 0.076 0.27 0.077 0.046 0.001
0.22 -0.076 0.27 -0.076 0.046 0.000
0.30 0 0.31 0 0.009 0
0.30 0.076 0.31 0.062 0.009 0.014
0.30 -0.076 0.39 -0.071 0.086 0.005
0.38 0 0.37 0.001 0.004 0.001
0.38 0.076 0.37 0.061 0.004 0.015
0.38 -0.076 0.54 -0.076 0.164 0.000

5.3. Tomato grabber evaluation

Getting MoveIt to run on a physical NAO proved more difficult
than anticipated. Even with the ROS interface being able to easily
swap between a simulation and a real NAO, the actuators that
are controlled by MoveIt did not correspond directly with the
name of the same actuators on the physical NAO. This resulted in
being unable to run a complete test including the tomato grabbing,
without a renaming scheme.

However, the simulation did show great results. The animation
was able to grab the tomato after specifying the location the tomato
detector thought it was at.

6. Discussion

Even though the localization seemed to work within a certain
error margin, future research might want to implement a more
sophisticated process. Our simple approach worked because we op-
timized the algorithm to our environment. The coordination trans-
formation could be calculated with a more advanced routine, but
the major drawback of our method is that distance was estimated
based on the perceived size (which is sensitive to shadows at the
side of the object). When looking at the future, a new method could
be suggested where the x distance from the robot is calculated with
a distance estimate derived from multiple viewpoints.

7. Conclusion

Multiple object recognition methods were explored, imple-
mented and tested in this study. The color-invariant detector does
not work nearly as good as the color-based detectors and was no
longer considered to be integrated in the task. Using the best of
the color-based detectors, the location of the tomato relative to the
robot was estimated. The location was fed to an inverse kinematics
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solver, which would then be able to direct the two arms to a
location where they could grab the tomato; ready to put it into
a pan. We view this as the first steps to a humanoid robot that can
roast a tomato.
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