Learning Relaxed Deep Supervision for Better Edge Detection

Yu Liu and Michael S. Lew

Introduction

Background: recent advances in the design of edge features are moving from carefully-engineered descriptors to hierarchical deep features.

Key motivation:

1. In contrast to using a general ground-truth to guide intermediate predictions, we propose a relaxed deep supervision (RDS) method to consider the diversities in deep neural networks. 2. The relaxed labels in RDS can be seen as some false positives that are difficult to be classified in edge detection. We intend to consider these false positives in the supervision. 3. To alleviate the deficiency of the training images, we capture coarse edge annotations from segmentations.

Method

RDS generation: we present two efficient ways to generate relaxed deep supervision based on Canny [1] or SE [2].

Step1: use SE edge maps and capture relaxed labels.

LIACS Media Lab, Leiden University, Netherlands

Training with RDS: Our RDS method is designed to improve many vision algorithms. In these experiments, we chose the HED network [3] as a representative edge algorithm to improve.

Pre-training with coarse edge annotations

BSDS 500 (a) Fine edge annotations

Ground-truth dilation: we dilate the positive labels in the groundtruth of train set using traditional morphologic dilation operator.

Universiteit Leiden

PASCAL Contexts: 10103 images

(b) Coarse edge annotations

Results

Table 1. Results on BSDS500 testing set					
	ODS	OIS	AP		
Baseline 1	.762	.782	.766		
Baseline 2	.780	.802	.786		
RDS(Canny)	.785	.803	.813		
RDS(SE)	.787	.804	.817		
RDS(gPb)	.786	.803	.814		
CEA	.765	.785	.724		
RDS(Canny) + CEA	.790	.809	.819		
RDS(SE) + CEA	.792	.810	.818		

Table 2. Comparison on BSDS500.

	ODS	OIS
Human	.80	.80
DeepNet	.738	.759
N4-Fields	.753	.769
DeepEdge	.753	.772
MSC	.756	.776
CSCNN	.756	775
DeepContour	.757	.776
HFL	.767	.788
HED	.782	.802
HED-merge	.782	.804
RDS (ours)	.792	.810

** We do not perform late-merging and data augmentation on BSDS500.

.818

Conclusion

(1) This work provides promising insights into efficiently exploiting diverse deep supervision. (2) RDS has achieved top performance on the BSDS500 dataset and may even exceed human levels. (3) It is feasible to apply this relaxation strategy to other visual recognition tasks such as image classification and segmentation.

References

Three measures: fixed contour threshold (ODS), per-image best threshold (OIS) and average precision (AP)

Baseline 1: only supervises the fusion-output prediction with the general supervision (i.e. GT).

Baseline 2: imposes the general supervision to not only the fusion-output prediction, but also five side-output predictions.

758	Table 3. Cro	oss-dataset g	generaliza-
784	tion results.	The model is	trained on
807	BSDS500 ar	nd is used to	n evaluate
787			
798	IN Y U LEST SEL.		
790		maxD1st=.0075	maxDist=.011
795	DeepContour	.55	-
	SE	.55	.64
/0/	RDS(SE)	.611	.627
833	RDS(SE) + CEA	.655	.674

1. J. Canny. A computational approach to edge detection. TPAMI, 1986. 2. P. Dollar and C. L. Zitnick. Structured forests for fast edge detection. ICCV, 2013. 3. S. Xie and Z. Tu. Holistically-nested edge detection. ICCV, 2015.

^{**} NMS: non-maximal suppression