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ABSTRACT

In word spotting,one of the main difficulties is the
falsealarms,especiallyfor small words. A model is
presentedfor predictingthefalsealarmrateon theba-
sis of the phonemiccontentof a word. This model
is testedfor a word spotterthat hasbeenusedin the
TREC Spoken DocumentRetrieval (SDR) track. Fi-
nally, resultsarepresentedfor theretrieval task.

1. INTRODUCTION

Keyword spottingis a form of continuousspeechre-
cognitionthatallows themonitoringof connecteddis-
course(e.g., radiobroadcastsor communicationchan-
nels)for the occurrenceof specificwords. The tech-
niquecanalsobeappliedfor searchingaudioarchives
for specificwords or phrases. Specifically for Spo-
kenDocumentRetrieval (SDR),keywordspottingcan
be usedasan efficient basictechnology, althoughin-
dexing thewordsfrom a largevocabularywordrecog-
nition systemhasled to betterresultsin TREC SDR
tasks[1, 2].

The advantageof using word spotting in spoken
documentretrieval is that at retrieval time any word
or shortphrasecanbe usedassearchkeys, if a pho-
netic transcriptionof the keywords can be found or
generated.Retrieval systems,basedon classiclarge
vocabularyrecognitionsystems,havethedisadvantage
thatthequerywordscanbeOutOf Vocabulary(OOV)
with respectto the recognizer’s vocabulary which is
definedat recognition/indexing time. This may not
seeman importantfeaturein the currentTREC SDR
tasks[1], but it can be important for other ‘delayed
spotting’ tasks,suchas the searchfor propernames
in acousticdatabases.One of the main problemsin
utilizing wordspottingfor SDRis thehigh falsealarm
ratefound,specificallyfor smallkeywords[3]. In this
paperwedescribeexperimentsthatallow predictionof
theeffectivenessof keywords,basedon their phonetic
contents.Thismeansthatweareinvestigatingtheper-
formanceof a word spottingsystemasa function of
thekeywords. Usually, keyword spottingsystemsare

evaluatedfor the setof keywordsasa whole, but we
will show that thereis a strongperformancedepen-
denceon thekeyword.

2. A MODEL FOR WORD SPOTTING

Despitethefair amountof researchin theareaof word
spotting,asolid theoryfor theoperationof wordspot-
ting systemsseemslacking. This may be due to the
fact that there are many different technologicalap-
proachesto the problemof word spotting. We will
presenthereasimplemodelfor theoccurrenceof false
alarmsat a givenrecognitionrate.

The problemof word spottingcanbe statedsuch
that words ��� , �����	��
�
�
�������

must be found and
identifiedin a continuousspeechaudiochannel.The
fractionof wordscorrectlyfoundis calledthehit rate,
or accuracy � , and is usuallypresentedasa percent-
age. The words that are reportedashits, but do not
correspondto theactualspokenwords,arecalledfalse
alarms. The expectednumberof falsealarmsfound
increaseslinearly in the time that the audio channel
is monitored,andthereforethecorrectmeasureis the
falsealarm rate, ��� . Whenmorekeywordsaremoni-
tored,morefalsealarmsareexpected,andtherefore� �
is usuallyexpressedin termsof falsealarmsperkey-
word perunit time.

Many wordspottingsystemshaveanacousticcon-
fidencemeasurethat can be given for all the words
spotted.After theword spottingrun,a thresholdlevel�

canbechosen,abovewhich candidatewordsarese-
lectedasspottedwords.This thresholdwill determine
� ��� ��� and � � ��� . Thefull specificationof thewordspot-
ting systemis then given by the Receiver Operating
Characteristic,ROC, which is a parametricplot of ���
versus � with threshold

�
as parameter. In order to

specifya concisecharacteristicof the ROC, the Fig-
ure Of Merit (FOM) hasbeenintroduced,asa mean
of � � ��� for standardvaluesof ��� � ��� [4]. The trade-
off betweenhits and falsealarms,as summarizedin
theROC, meansthat theperformanceof eitherof the
two quantitiesmustbespecifiedwith thevalueof the



other. In this paperthehit rateis consideredconstant,
i.e., the word spottingparametersaretunedin a way
thata given � is reached.

2.1. Basic framework

We will heretry to model � � for constant� , asa func-
tion of the keyword that is spotted. A stronglysim-
plified modelof speechis madehere.Thecontinuous
discourseof thespeechchannelto bemonitoredis de-
scribedasa randomsequenceof phones� �


�
�
 � �"!�# � � � �%$&# 
�
�

Here, ' is a time index. Thespeedatwhich thephones
occuris on average� phonespersecond.Thephones
� arenot uniformly distributed,e.g.,the ‘schwa’ /ax/
hasa higherprobability thanthe/j/. Let usdenotethe
probability that phone

�
occursat any given time ( � ,

theunigramphoneprobability.
The word spotter is modeledas using acoustic

modelsfor phones
�)�*�	��
�
�
�+��,�-

, thesamebaseunits
of speechthatwe usedin orderto describethecontin-
uousdiscourse.Becausethe modelsarenot perfect,
phonescanberecognizedincorrectly. Thephonecon-
fusionmatrix . �0/ describestheprobabilitythatphone�

is recognizedasphone1 . This includesthe‘special’
indices

�2�43
for a phoneinsertionand 1 �43

for a
phonedeletion. If a phone1 is found in recognition,
the probability 5 / that a differentphonehasbeenut-
teredis

5 / �76
�98: / (

� . �;/ 
 (1)

This immediatelygivesus an expressionfor the ex-
pectedfalsealarmrate <� � for a monophoneword con-
sistingof thesolephone1 :

<� � � �=5 / 

We can generalizethis result for words consist-

ing of morephones,by assumingindependenceof the
probabilities.If aword � is modeledby thewordspot-
ter as a sequenceof phones>?# � >=@ ��
�
�
�� >=A , then this
simplemodelpredictsthefalsealarmrate

<� ��� � � � �
AB

/ : # 5 �DC



(2)

This expectedfalsealarmratedoesnot includefalse
alarms,thatarea correctrecognitionof sub-wordsof
otherwordsor phrases.These‘linguistic ambiguities’
areneglectedasaminor fractionof thefalsealarms.

2.2. Linear approximation

The parametersEF5 /FG of eq. 1 are dependenton the
word spotterused,but of coursealso on the acous-
tic domainfor which the spotteris tested,the speak-
ers,etc. They can,in principle,be obtainedfrom the

phoneconfusionmatrix . �0/ , but it is not trivial to
measurethis matrix. Becauseword spottingintrinsi-
cally involvescontinuousspeech,phonedeletionsand
insertionsposetheproblemof alignmentof reference
andhypothesisphonestrings. Considerphonestring
‘1234’ which is alignedto thehypothesisstring‘154’:
which of two successive referencephones‘23’ is as-
signedthedeletion,andwhich theconfusionwith the
foundphone‘5’?

Anotherapproachfor estimatingEF5 / G canbemade
by measuring� � for many words E ��� G , andfitting the
over-specifiedsetof equationssimilar to eq.2 for all��� . This canbeaccomplishedby takingthelogarithm
of eq.2, for all words ���

HJI?K � ��� ��� � �MLON AQP6
/ : #

HRI	K 5 �9C N�S � 
 (3)

Here,theerrorterm
S � is introducedasaparameterto

be minimizedin the fitting procedure,and
LT� HRI	K � .

Eq. 3 canbe solved in leastsquaressense,i.e., mini-
mizing U � S @� . This maybeappreciatedby rewriting
thesetof equationsintroducingthephonecount V �/ as
thenumberof timesphone1 occursin word �W� :

HJI?K ��� � � � � �XLONZY?[D\6
/ : # V

�/F] / N�S � � (4)

wherewe have written ] / � HJI?K 5 / . Eq.4 is a matrix
equationthat is readily solved in leastsquaressense
for E L=� ] / G , aprocessknown asmultiple linearregres-
sion.

2.3. The number of phones in a word

If we make anevenstrongersimplificationby assum-
ing ] / independentof thephone1 , eq.4 canbefurther
reducedto

HJI?K ��� � � � � �ZL^N ] V �,�- N_S � (5)

whereV �,�- � U / V �/ is thenumberof phonesin word��� . Themany assumptionsmadeabovesuggesta lin-
eardependenceon V �,�- , but higherordertermsareex-
pectedto give a non-lineardependence.The impor-
tanceof eq. 5 is that the total numberof phonesin
a word V �,�- is the lowestorderpredictorof the false
alarmrate.

3. DATABASE AND WORD SPOTTER

A numberof experimentshavebeenperformedon the
TREC SDR-7 test data[5]. The acousticdata,both
for training and testing, consistedof American En-
glish speech,recordedfrom North-AmericanBroad-
castNewsshows[6]. For theexperiments,weusedthe
Abbotspeechrecognitionsystemfor acousticalclassi-
fication[7, 8]. Theacousticalmodelswerekindly pro-
videdby Dr. Tony Robinson.For acousticaltraining,



100 hoursof speechwasavailable,of which approx-
imately70 hourswereused(leaving out commercials
anddatahaving low acousticalconfidenceafterViterbi
alignment). A finite stategrammardecoder(fsgd)
wasusedto build theword spotter. Thegrammarcon-
sistedof

��,�-
phoneswith unigramweights,parallel

to
� ���

keywordswith uniform weighting. A global
parameter̀ controlled the relative total weights of
phonesandkeywords,therebydefiningthe operating
point in theROC.

TheSDR-7testdatabaseconsistedof another100
hoursof similar data. For the falsealarmprediction
experiment,only partof this datahasbeenused.One
CDrom (approximately2.5 hours) was usedfor es-
timating the parametersE L=� ] /FG , anotherCDrom for
evaluatingthe prediction. The TREC SDR task has
beenre-run on the complete100 hoursof test data,
effectively only re-scoringretrieval resultsthat have
beenobtainedin theTNO SDR-7track[9].

3.1. Word spotter evaluation

In orderto evaluatethewordspotter, thespottedwords
hadto be time-alignedto the referencetranscription.
Thiswasmadepossibleby forcedalignmentof theref-
erencetranscription.Wordsnot occurringin theavail-
abledictionary, a20000wordsubsetof theCMU dic-
tionary [10], weredealtwith by defininga ‘reversed
word spotter’grammar. This is a grammarwith refer-
encewordsin order, andwith recurrentparallelphone
statesat the positionsof OOV words. This way, ap-
proximately70% of thetranscriptionscouldbetime-
aligned.Theother30% gave searcherrors,andwere
not usedin theexperiment.

Keywordswereevaluatedas‘correct’ if their time
of occurrenceagreedwith the time alignedreference
transcriptionwithin a smallmargin. In all othercases,
theword wasconsidereda ‘f alsealarm.’ This is quite
a strict definition, e.g., considerthe keyword ‘presi-
dent’ in ‘the president’s wife.’ By the automatically
appliedrulesthis is afalsealarm,but for mostapplica-
tionsthisshouldbeconsideredahit. Detailedanalysis
of approximatelyonehour of testdata,for keywords
containing10phonesor more,indicatesthathalf of the
falsealarmswould beconsideredrelevantin a subjec-
tiveevaluation.

4. EXPERIMENT

Several experimentshave beencarried out with the
SDR-7acousticdataandthe word spotter. The influ-
encesof

� ���
, ` , stop word lists, andunigramword

probabilitieshave beenstudied. For this paper, only
theexperimentsusinga singlekeyword perwordspot
run are reportedon. For all the words occurring in
the referencetranscriptions,a frequency sortedword
list wasmade.For eachof thewords � , all pronunci-
ationsaccordingto the CMU dictionarywere found.

Each of thesepronunciations�ba > # > @)c�c�c > A was
usedin a one-keyword wordspotrun in the acoustic
database.Becauseof the many individual pronunci-
ations(17661),this involvesa considerableprocess-
ing time. Only oneCDrom(typically 2.5hourof time
aligneddata)wasusedfor testexperiments.Theword
spotteris fast,1 approximately

�=dfe?e?3
realtime.

The falsealarmrate � is reportedin falsealarms
perhour, sincethenumberof keywordsis alwaysone
in theseexperiments. The parameter̀ is arbitrarily
chosenas

3 
 g
, distributing thea priori weightof key-

word andfiller phonemodelsevenly. By fixing ` , the
accuracy is moreor lessindependentof thekeyword.

4.1. Dependence on the number of phones

Onewould expectthat the falsealarmratewould de-
pend strongly on the length of the keyword [3], or
better, the numberof phonesin the keyword. In or-
der to testeq.5, we averaged��� for V �,�- �h�?��ei��
�
�


.
In figure 1 the dependenceis shown. The logarith-
mic scaleis suggestedby eq. 5, but the dependence
is not quite linear. Oneof the reasonsmight be that
speechis not a sequenceof randomphones,asis as-
sumedin the model,but hasmany linguistic correla-
tions. Interestinglyenough,thestandarddeviationfol-
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Figure1: The dependenceof the falsealarmrateon
thenumberof phones.Themeanandstandarddevia-
tion of all words��� having thesamenumberof phones
V �,�- is shown.

lows the meanquite closely. This suggeststhat the
distribution of ��� for fixed V �,�- is exponential,i.e., of
the form > �%k � �hl 5 !nmpo . [11] A variancestabilizing
transformationfor � � is � � a HJI?K � � � N ��q � . It hasbeen
verifiedthatsucha transformationmakesthevariance
moreor lessconstantindeed.

1UsinganAlpha processorwith GCCcompiledcodeunderthe
Linux operatingsystem,we realizethe temporaryvalidity of the
statement.



4.2. Multiple linear regression

The samedatadescribedin the previous sectioncan
beusedto solve eqs.4. We useda subsetof theICSI
phoneset,resultingin

� ,�- �rgs�
usedphones.In or-

der to dealwith measuredvalues � � �t3
, we added

theconstant��q �*3 
R�
FA/hour beforetakingtheloga-

rithm. This might be interpretedas ‘unseenfalseal-
arms’ becauseonly a finite time is measured. The
meanlog-weight E ] �9G is u 3s
 v?w?w , with standardde-
viation

3 
 g?3
. This meancorrespondsroughly to the

slopefound in fig. 1. Using the fitted weights E ] �DG ,
we testedthepredictionsto anotherpartof thespeech
database(the 2nd CDrom). In fig. 2, the resultsof
thepredictedversusthemeasuredfalsealarmratesare
shown. The linear relationshipis clearly visible, but
thevariancestill is quitehigh.
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Figure2: Predictedfalsealarmrate
HJI?K � <��� N � q � versus

measured
HRI	K � ��� N � q � . The‘columns’at low ��� result

from discretenumberof falsealarms(0, 1, 2, . . . ) in
themeasurement.

4.3. Database Retrieval

The falsealarmpredictionparametersE ] � ��L G canbe
usedin a spoken databaseretrieval query, asa confi-
dencemeasurefor all of the keywords in the query.
TNO competedin the TREC SDR-7 task under the
name‘TwentyOne’,for the first time in this track. A
simpleword spottingsystemwasusedthen. Oneof
themainproblemsat thetimewasthehigh numberof
falsealarms,specificallyfor shortwords.[3] Thefalse
alarmshave the effect of decreasingthe precisionof
the retrieved documents.We re-scoredour retrieval
resultsbasedon thepredictedfalsealarmrate <��� . This
wascarriedout by weighingthe retrieved documents
with > � <��� � , usingseveral weighingfunctions > . Un-
fortunately, it was not possibleto increasethe av-
erageprecisionof the retrieval resultssignificantly.
For someof the topicsa muchbetterretrieval result
wasobtained,but for othertopicsthe retrieval disim-
proved,yieldinga negligible neteffect.

5. DISCUSSION

For a specificimplementationof a word spotter(Ab-
bot) we haveseenthatthefalsealarmratecanbepre-
dicted, basedon the phonemiccontentsof the key-
word. We believe that similar resultswould be ob-
tainedfor otherword spottingarchitectures,e.g., Hid-
den Markov Model (HMM) basedrecognitionsys-
tems. HMM basedsystemsusuallyhave an acoustic
confidencemeasureof thespottedword,but asa gen-
eralrule, theconfidencewill scalewith thenumberof
phonesin aword.

Although the meanof predictedvaluesbehaves
regularly, asmaybeappreciatedfrom figures1 and2,
thevariability of thepredictionis still very high. This
meansthat theaccuracy of thepredictionis quite low
for the individual key word. Only when large tests
(i.e., many keywords) are performed,the prediction
becomesmoremeaningful.Reasonsfor thishighvari-
ability canbe:

speech The inherentvariability of speech.Someof
the words might be more clearly pronounced
thanothers,for instancebecauseof their higher
risk of confusability.

dictionary Thedictionary, providingthelink between
the spoken word and the spottedword, might
vary in applicabilityfor thewordsin thetestset.

linguistics The model doesnot contain information
aboutthe orderof phonesin speech,which are
given by wordsandgrammar. Simple statisti-
cal techniques,suchastheapplicationof phone
bigramprobabilities,maylower thevariability.

The values E ] /=G fitted using multiple regression
could be interpretedas estimationsfor phoneerror
probabilitiesEF5 / G . Despitethehigh dimensionalityof
thefit (52parameters!)thevaluesfor EF5 / G arereason-
ably ranged.Thelowest 5 / valuesare0.12,0.17,0.18
for /em/, /aw/, /er/, and the highestvaluesare 0.98,
0.99, 1.13 for /dh/, /b/, /p/, respectively. Only one
value is impossiblyhigh, so this is not a bad result
giventhehigh numberof fitting parameters.

Unfortunately, we were not able to use the pre-
dictedfalsealarmratesto increasetheretrieval preci-
sionof theTRECSDR-7task.A reasonfor thismight
bea largevariancein thepredicted� � , in combination
with a low numberof words in eachof the queries.
On average,7 querywordsperquerywereusedfor a
word spotrun. Thepredicted <��� canonly re-orderthe
weightsof this relatively low numberof querywords.
Giventhe largevariances,theprobability for improv-
ing theretrieveddocumentorderis low.

5.1. Further research

It would be interestingto improve the model by in-
cludinglinguisticknowledgeaboutthephones,suchas



statisticalbigrammodels,in orderto reducethe vari-
ability in thepredictionof thefalsealarmrate.

Anothersubjectof further researchis the correla-
tion of the measuredE ] �DG with the phoneconfusion
matrix . �0/ . This needsan algorithmfor solving the
phonealignmentproblem. We have alreadyexperi-
mentedwith suchan algorithm,andwe expectto re-
port on theresultsshortly.

For documentretrieval purposes,queryexpansion
might improve the statisticson which the re-ordering
of retrieveddocumentsis based.
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