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1 Introduction

In state of the art Information Retrieval (IR) systems the most salient problem is
to improve recall rates while retaining high precision. A simple recall enhancing
technique which can be useful for even the simplest boolean retrieval systems is
stemming. It is obvious that an information-seeker who is looking for texts about,
for example, dogs is probably interested in a text which contains the word dog.
An algorithm which maps different morphological variants to their base form
(stem) is called a stemming algorithm. The underlying assumption for fruitful
usage of such a stemmer is that morphological variants of words are semantically
related. This is obviously not always true. In information retrieval, the use of
stemming is controversial (cf. Harman 1991). However, several authors (Frakes
and Baeza-Yates 1992; Krovetz 1993; Popovic̆ and Willett 1992) report favourable
results1.

The UPLIFT project2 investigates whether linguistic tools can improve the per-
formance of an IR system for Dutch texts. As a first step we will adapt and
test two common stemming techniques for Dutch text. The first technique, quite
popular in several experimental and commercial IR systems is suffix stripping.
Suffix stripping is a pragmatic approach. The algorithms are small and efficient
and are not hampered by linguistic claims. Efficiency is an important property of
every subpart of an IR system, especially for modern interactive systems. How-
ever, the simple architecture of such algorithms has drawbacks, such as the easy
introduction of errors. The second technique, Stemming based on morphological
analysis, requires more complex resources. This approach tries to exploit linguis-
tic knowledge about the internal structure of word forms. A necessary component
for such a morphological analysis is a dictionary. In general, each word which
has to be stemmed will involve dictionary lookup and therefore this technique
will be considerably slower than suffix stripping. On the other hand, such careful

1See section 2 for a more elaborate discussion.
2UPLIFT (Utrecht Project: Linguistic Information for Free Text retrieval) is sponsored

by the NBBI, Philips Research, the Foundation for Language Technology, the Ministry of

Education and Science and the Ministry of Economic Affairs.
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morphological analysis can eliminate most errors and can be useful for higher
levels of interpretation, as in a Noun Phrase indexing module.

This paper describes the development and evaluation of a suffix stripper for Dutch.
We have chosen to modify the stemming algorithm developed by Porter (1980)
because it is well known and is frequently used in experimental IR systems.

2 Suffix stripping

The core of every suffix stripper is a set of rules which first test whether a word
ends with a certain character sequence and subsequently delete this sequence.
However, some strippers are a bit more sophisticated than others. Instead of
deleting a suffix, they might replace it by another (shorter) suffix or modify the
stem itself.

Harman (1991) compared three well-known stemming algorithms for English:

� S–stemmer: a simple stemmer removing the plural s

� Lovins (1968): a longest match stemmer consisting of 260 suffixes with a list
of exceptions

� Porter (1980): a multi-step stemmer without exception list

In Harman’s experiments, stemming (i.e. suffix stripping) did not yield any sig-
nificant improvement in the performance of IR systems. Recall did improve, but
precision deteriorated with stemming. Harman suggested that the latter effect
could possibly be prevented by a more elaborate, dictionary based, stemming
algorithm which checks whether the resulting stem is semantically related to the
original term. The latter approach has been investigated by Krovetz (1993), who
did find a significant improvement in performance compared to Porter stemming.

It could also be the case that Harman’s negative results were caused by the relative
simplicity of English morphology. Experiments with a Porter-like stemmer for the
Slovene Language by Popovic̆ and Willett (1992), containing 5276 suffixes, show
a significant improvement in precision (at fixed retrieval of the 10 most highly
ranked documents). Popovic̆’s study included an interesting control experiment.
The Slovene test corpus was translated to English and the experiment was repeated.
This control experiment confirmed Harman’s conclusion that Porter-like stemming
does not improve retrieval for English documents. The study thus supports the
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hypothesis that the effectiveness of stemming in an IR system also depends on the
morphological complexity of a language. Since the morphological complexity of
the Dutch language can be rated somewhere between English and Slovenian, we
decided to further investigate the hypothesis through an experiment using a Dutch
version of the Porter algorithm.

3 A Dutch version of the Porter algorithm

3.1 Introduction

Porter’s algorithm is based on a series of steps that each remove a certain type of
suffix by substitution rules. These rules only apply when certain conditions hold,
e.g. the resulting stem must have a certain minimal length.

Most rules have a condition based on the so-called measure. The measure is the
number of vowel-consonant sequences (where consecutive vowels or consonants
are counted as one) which are present in the resulting stem. This condition must
prevent removal of letters which look like a suffix but are actually part of the stem.
Other simple conditions on the stem are:

� Does the stem contain a vowel?

� Does the stem end with a consonant?

Out of several implementations of Porter’s algorithm for English we chose the
version that was published by Frakes and Baeza-Yates (1992). This version has
the advantage of a clear separation between substitution rules and procedures
which test the attached conditions.

3.2 Extensions to Frakes’ implementation

In Dutch, the prefix (or infix in the case of separable verbs) ge- is used in the
formation of the past participle3. Because this affix can be easily recognised, the
algorithm has been extended to handle pre- and infixes. The original Porter only
treats suffixes.

3Exceptions to this rule are verbs starting with un-accented be-, er-, ge-, her-, ont- and ver-

and inseparable complex verbs with an un-accented first syllable (e.g. voorkómen).
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Another special case is the use of the compounding hyphen. In Dutch it is easy
to create new words by compounding, sometimes using hyphens as glue. The
hyphen is employed in a sometimes rather ad-hoc manner although strict rules
apply for the official Dutch spelling. A stemmer without a dictionary is unable
to do compound analysis, so three approaches are possible: treat the hyphen as
a normal character, remove every hyphen between words, or replace the hyphen
by a blank, having the effect of separating words. For our test corpus the second
option yielded the best results.

Finally the stemmer was extended to handle characters with diacritics such as
diaeresis and accents. The Dutch Porter algorithm can handle the ISO-latin1
character set; the orthographic rules for the placement of these diacritics for
various inflectional forms are respected by the affix-rules which will be described
in the next paragraph, e.g. creëren - creëer but variëren - varieer.

3.3 Affix-rules for Dutch

The affix-rules for Dutch were written using information in the Morfologisch
Handboek van het Nederlands (de Haas and Trommelen 1993), the Algemene Ned-
erlandse Spraakkunst (Geerts et al. 1984) and Woordfrequenties in Geschreven
en Gesproken Nederlands (Uit den Boogaart 1975).

Several criteria were taken into consideration in the definition of the coverage of
the rule clusters, the following being the most important:

� Inflectional morphology should be covered as fully as possible.

Inflectional affixes (e.g. plural endings, verbal inflection etc.) do not affect
the basic meaning of the underlying stem and can therefore be removed
without risk of losing information.

� Only those derivational affixes which do not substantially affect the informa-
tion conveyed by the stem should be removed.

Affixes such as -heid (‘-ness’) can be removed without losing too much
information. On the other hand, removal of an affix like on- (‘un-’), would
result in the loss of valuable information.

� The most frequent affixes should be covered.

Since the number of rules influences the efficiency of the stemming algorithm
we restricted ourselves to removing only the most frequent affixes.
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Taking these considerations into account, six rule clusters were created for the
Dutch Porter stemmer. Each cluster represents a particular class of affixes and
the rules within a class are ordered and mutually exclusive, i.e. the first rule that
matches is applied, and no other rules in the same cluster are tried. The affix-
clusters are defined by the level at which the affixes occur in the word formation
process. For instance, inflectional suffixes which occur on the outside of words
are ordered before derivational suffixes e.g. werk + ing (derivation-Al) + en
(inflectional)4. Complex affixes are thus removed in consecutive steps.

In addition to the affix-rules, a number of special conditions had to be designed to
cover some specific phenomena. Examples of these conditions are, for instance,
EndsWithV/C, i.e. the remaining stem should end in a vowel or consonant. DupV
is a special case. Long vowels in Dutch are spelled single in open syllables and
double in closed ones (e.g. schaap - schapen). After removal of some affixes, e.g.
adjective -e (rode - rood), infinitival -en for verbs (lopen - loop), etc., the stem
vowel needs to be doubled to render an orthographic-ally correct stem. The rules
which remove these affixes are marked for the DupV procedure. DupV identifies
closed syllables and subsequently duplicates the vowel, otherwise the vowel is
left unchanged. This works reasonably well for a, o and u (i is never doubled) but
e poses a special problem since an e in spelling can also stand for an un-accented
schwa which is never doubled. DupV tries to “guess” the status of the e based
on information about the spelling of the word in which it is contained, e.g. if e is
the only vowel in the word it is not a schwa, but without information about word
stress it is impossible to consistently predict the status of e correctly, e.g. kantélen
(‘battlements’) � kanteel v.s. kántelen (‘to turn over’) � kantel.

The affix-rules have the following general form:

suffix � substitution measure-condition � additional conditions � � DupV �

The first cluster of rules covers the inflectional morphology of nouns, adjectives
and verbs, e.g.:

"en" � � measure � 0 EndsWithC DupV (-en plural)

"e" � � measure � 0 EndsWithC DupV (adjective -e)

The second cluster covers the diminutive suffix of nouns, e.g.:

"etj" � � no measure-condition EndsWithC (-etje5)
"tj" � � no measure-condition None (-tje5)

4In some cases this basic ordering could not be adhered to because of rule interaction;

for instance, the rule removing -d (verbal inflectional suffix) had to be ordered after the rule

removing -end (adjective-forming derivational suffix/verbal inflectional suffix).
5final -e has already been removed.
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The third cluster contains noun-forming derivational suffixes, e.g.:

"heid" � � measure � 0 None (-heid)

"ing" � � measure � 0 None DupV (-ing)

The fourth cluster contains adjective-forming derivational suffixes, e.g.:

"baar" � � measure � 0 None (-baar)

"ig" � � measure � 0 None DupV (-ig)

The fifth cluster covers a special case: the affix ge which occurs as a prefix
(regular) or infix (separable verbs) in Dutch participles.

"ge-" � � no measure-condition None (ge-)

"-ge-" � � measure � 0 None (-ge-)

The final cluster contains rules that tidy up the result of previous rule applications,
e.g.:

"v" � "f" no measure-condition None (-v � -f)
"pp" � "p" no measure-condition None (-pp � -p)

Porter reports a reduction of about a third in vocabulary size after application of
his stemmer to a vocabulary of 10.000 different word forms (cf. Porter 1980:
137). We repeated this test using a larger vocabulary for both the Dutch and the
English Porter algorithm (as implemented by Frakes):

NL Porter EN Porter
Original number of word forms 148.601 104.216
After stemming 64.035 49.323
reduction 57 % 53 %

The results of this test show that the behaviour of both stemmers is comparable
with respect to the measure of vocabulary reduction. Although this measure can
be used as a global indication of the effectiveness of the stemming algorithm,
other evaluation measures are necessary to reveal specific error patterns. This
information can subsequently be used to improve the algorithm, where possible.
Some error types, however, are inherent to the suffix-stripping method and without
the additional information provided by, for instance, a dictionary, these errors
cannot be avoided.

The following are examples of these types of errors:

� Linguistically incorrect stems

Some stems which are generated by the Porter algorithm are not linguistically
correct. This may not be a problem if the resulting “stem” is unique and
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consistent for a semantically related group of words, but if the resulting stem
is identical to a stem that is not semantically related, retrieval errors occur.

� Homographs

Homographs are words which are spelled identically but nevertheless have
a different meaning, e.g. kust (3rd person singular of the verb kussen (‘to
kiss’), or a noun meaning ‘coast’). Because the Porter algorithm does not
have access to information about, for instance, word categories, the different
senses of these types of words are not distinguished.

� Irregular verbs

Some verbs exhibit irregularities in the formation of past tense, past participle
or both, e.g. drinken dronk gedronken, zien zag gezien (base vowel alterna-
tion). Others, like zijn (‘to be’), are almost completely irregular. For obvious
reasons, a simple suffix-stripper will never be able to map the different forms
of these types of verbs onto a single stem.

Generally speaking, the different types of errors introduced by suffix-stripping
algorithms like the Porter algorithm can be divided into two classes:

1. Overstemming errors

“Overstemming errors” are those errors which result in the conflation of
semantically unrelated words.

2. Understemming errors

The term “understemming errors” is used for those errors where a failure to
conflate semantically related words is concerned.

In section 4 we will describe a method developed by Paice to calculate an over-
stemming and understemming index for stemming algorithms and introduce the
results we obtained by applying his method to our Dutch version of the Porter
algorithm.

4 Performance evaluation

4.1 Paice’s stemmer evaluation method

In this section we will present an evaluation method proposed by Paice (1994).
Paice has compared different English stemming algorithms in isolation from the
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context of an IR system. He did not use the traditional precision/recall parame-
ters, but instead introduced two new parameters: the over- and understemming
index (UI and OI) and their ratio, the stemming weight (SW), in order to make a
qualitative comparison between different stemmers. A prerequisite of this method
is a list of groups of semantically related words. An ideal stemmer should stem
all words in a group to the same stem. If a stemmed group contains more than one
unique stem, the stemmer has made understemming errors. In an IR system this
corresponds to a negative effect on recall. If a stem of a certain group also occurs
in other stemmed groups, the stemmer has made overstemming errors, which
deteriorate precision. A good stemmer should therefore produce as few under-
and overstemming errors as possible. Note however that there is a tradeoff here.
If suffix stripping rules are added or modified in order to reduce the understem-
ming errors, these modifications will probably introduce additional overstemming
errors. The development of rules is based on a thorough analysis of stemming
errors. The method to be described in 4.4 can be of help in finding an optimal
balance.

It is not trivial to create a large file of grouped words. Paice started from the CISI
corpus (consisting of titles and abstracts), filtered out 9757 unique word forms
and produced a group file in a semi-automatic manner. A grouping program made
the “obvious” decisions and referred to the user in the difficult cases. One rule of
thumb that Paice used was that words must share at least two letters. He did not
want to penalize the stemmer’s ignorance concerning irregular verbs like ‘to be’
or ‘to go’. Paice also experimented with tight and loose grouping processes. This
meant that some tight groups were unified into loose groups, reflecting a more
remote semantical relationship.

We have taken a different approach in producing a group file for Dutch. The
group file was produced by a number of computer programs which exploit the
morphological information of the CELEX database (Baayen et al. 1993). For
our purpose we used the word forms database covering Dutch inflection and
a database of lemmata which gives all possible segmentations of derivational
forms and compounds. The word form database lists a lemma for each word
form. Finding a root form for derivational or compound forms is a bit more
complicated. We have decided not to use the compound segmentation information
since compound analysis is beyond the scope of a suffix stripper. But we did use
the segmentation information about derivational lemmata, e.g. verrader+lijk. All
words with the same root form (lemma) were joined in a group. A prerequisite of
Paice’s evaluation method is that the collection of words which is taken as input
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for the grouping process does not contain duplicates. In order to accomplish this,
ambiguous word forms (i.e. homographs) were removed. Many Dutch verbs are
separable6, e.g. ‘ophalen’. All inflected forms of these verbs which have separate
lexemes (e.g. ‘haalt op’) were removed as well, because adequate stemming
would require syntactic analysis.

Here are some examples of the resulting groups:

1. malloot (‘idiot’) mallotig malloterigheid malloterig mallotigheid malloten malloterigheden

mallotigheden malloterige malloteriger malloterigere malloterigst malloterigste mallotige
mallotiger mallotigere mallotigst mallotigste

2. manoeuvreren (‘to manoeuvre’) gemanoeuvreerd gemanoeuvreerde manoeuvreer ma-

noeuvreerde manoeuvreerden manoeuvreert manoeuvrerend manoeuvrerende manoeu-

vreerbaar manoeuvreerbaarder manoeuvreerbaardere manoeuvreerbaarst manoeuvreer-
baarste manoeuvreerbare

3. verraden (‘to betray’) verraad verraadde verraadden verraadt verradend verradende ver-

ried verrieden verraderlijkheid verraderij verrader verraadster verraderlijk verraadsters
verraders verraderijen verraderlijke verraderlijker verraderlijkere verraderlijkst verrader-

lijkste

4. geboorte (‘birth’) geboorten geboren

5. boren (‘to drill’) boorde boorden boort borend borende geboord geboorde boorden

Processing the example by the Dutch Porter yields:

1. malloot malloot malloot malloot malloot malloot malloot malloot malloot malloot malloot

malloot malloot malloot malloot malloot malloot malloot

2. manoeuvreer manoeuvreer manoeuvreer manoeuvreer manoeuvreer manoeuvreer ma-

noeuvreer manoeuvreer manoeuvreer manoeuvreer manoeuvreer manoeuvreer manoeu-

vreer manoeuvreer manoeuvreer

3. verraad verraad verraad verraad verraad verraad verraad verried verried verrader verraad

verraad verraad verrader verraad verraad verraad verrader verrader verrader verrader ver-

rader

4. boor boor boor

5. boor boor boor boor boor boor boor boor boor

This example displays errors of two different kinds:

1. Group 3 is not conflated to a single root form. This is an example of Un-
achieved merges (understemming).

6These complex verbs consist of a particle and a verbal part which can be separated.
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2. Group 4 and 5 are conflated to one single root form creating a potential
source of “noise” in an IR system. This is an example of Unwanted merges
(overstemming).

The under- and overstemming index can be computed from four parameters:

1. GDMT: The Global Desired Merge Total

2. GDNT: The Global Desired Non-Merge Total

3. GUMT: The Global Unachieved Merge Total

4. GWMT: The Global Wrongly Merged Total

For each group � the desired merge total is equivalent to the total number of
different possible word form pairs in the particular group. On the other hand, the
desired non-merge total for a group can be computed by counting the possible
word form pairs that are composed by a member and a non-member word form
from the group. This can be expressed in the following definitions, where ���
denotes the number of words in a group and � is the total number of words.

��� � �
	 1
2
���
������� 1 �(1)

����� �
	 1
2
���
��� �������(2)

For each stemmed group the Unachieved Merge Total (UMT) can be calculated by
counting the number of merges between individual words that were not achieved.
Suppose a group of size ��� contains � distinct stems after stemming and that the
number of instances of these stems are � 1, � 2, ... ��� respectively. The number of
understemming errors for that group is then given by:

��� � ��	 1

2

� 
�"! 1

���#�$���%���&�$�(3)

An extra operation is needed to compute the Wrongly Merged Total (WMT).
An inverted group file is created by grouping all identical stems labeled with
their original concept group index. Now we can compute the Wrongly-Merged
Total for each inverted group by comparing the indices. If an inverted group
contains only identical indices, then there are no overstemming errors and the
WMT value for that group is zero. However, if an inverted groups contains
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different indices, this means that semantically unrelated words are conflated to
the same stem. In this case the WMT can be computed by counting the number
of possible combinations of two words with different indices within an inverted
group. Suppose a stem group of size � � contains

�
different indices. The stems

in this group thus originate from
�

different concept groups. The number of each
original concept group (labeled with the same index) within this stem group is
represented by � 1, � 2,... ��� . The number of overstemming errors for this group
(WMT) is then defined by:

� � � � 	 1

2

� 
� ! 1
� ����� � ��� � �(4)

The “Global” values of DMT, DNT, UMT and WMT are simply summations over
all groups.

Here are the inverted groups for the examples above:

� malloot: malloot(1) malloot(1) malloot(1) malloot(1) malloot(1) malloot(1) malloot(1)

malloot(1) malloot(1) malloot(1) malloot(1) malloot(1) malloot(1) malloot(1) malloot(1)

malloot(1) malloot(1) malloot(1) WMT = 0

� manoeuvreer: manoeuvreer(2) manoeuvreer(2) manoeuvreer(2) manoeuvreer(2) manoeu-

vreer(2) manoeuvreer(2) manoeuvreer(2)manoeuvreer(2) manoeuvreer(2)manoeuvreer(2)

manoeuvreer(2) manoeuvreer(2) manoeuvreer(2) manoeuvreer(2) manoeuvreer(2) WMT

= 0

� verraad: verraad(3) verraad(3) verraad(3) verraad(3) verraad(3) verraad(3) verraad(3)

verraad(3) verraad(3) verraad(3) verrader verraad(3) verraad(3) verraad(3) WMT = 0

� verried: verried(3) verried(3) WMT = 0

� verrader: verrader(3) verrader(3) verrader(3) verrader(3) verrader(3) verrader(3) WMT =

0

� boor: boor(4) boor(4) boor(4) boor(5) boor(5) boor(5) boor(5) boor(5) boor(5) boor(5)

boor(5) boor(5) WMT = 27

The GDMT and GDNT values are used to normalize the number of over- and
understemming errors to a fraction of 1:

��� 	 � � � �
	 � ��� �
. The over-

stemming index is � � 	 � � � �
	 � �����
. The stemming weight is defined

as: � � 	
� ��	 ��� . SW gives some indication whether a stemmer is weak (low
value) or strong (high value).
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4.2 A comparison with Paice’s results

Paice has compared three English stemmers: Lovins, Paice/Husk and Porter
with the truncate “stemmer”. The trunc(n) stemmer reduces a word to its first n
characters.

We replicate the results of Paice’s analysis in table 1 so that we can compare our
results. We selected the results for tight grouping in which strict semantic rules
were applied for the grouping process, as it seems to correspond well with our
CELEX-based automatic grouping method.

stemming algorithm UI � � � 10 �
5 � � � 10 �

4

trunc(4) 0.062 81.4 131.00
trunc(5) 0.18 26.2 14.80
trunc(6) 0.34 7.3 2.18
trunc(7) 0.53 2.8 0.54
trunc(8) 0.70 1.2 0.17
Lovins 0.33 6.3 1.93
Paice/Husk 0.12 11.8 9.80
Porter 0.37 2.8 0.74

Table 1: Comparison of English stemmers (Paice)

Since we did not have another stemmer for Dutch at our disposal, we decided to
run tests with the truncate “stemmer” as well, just as Paice did for English. We
also ran tests to investigate the effect of varying the number of rule clusters that
were applied: The Porter algorithm with only the first cluster of rules (inflection),
with clusters 1 and 2, etc. The results of these tests are presented in table 2.

The performance of the Dutch Porter algorithm is consistent with the English
version, i.e. it is a rather cautious or “weak”7 stemming algorithm. The tendency
for understemming is, however, not so obvious when the stemmed group files are
inspected: the Dutch stemmer copes very well with verbal inflection or derivation.
A possible cause for this understemming tendency in comparison with the English
stemmers could be the language difference, or a different coverage of the language.
One way to compare the two group collections is to compare the average group
size. We started from 286461 words extracted from CELEX which were split into

7A weak stemmer produces more understemming than overstemming errors, and a strong

stemmer the other way around.
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stemming algorithm UI � � � 10 �
5 � � � 10 �

5

trunc(4) 0.200 80.00 410.00
trunc(5) 0.290 23.60 81.10
trunc(6) 0.390 7.23 18.60
trunc(7) 0.510 2.15 4.20
trunc(8) 0.620 0.92 1.47
trunc(9) 0.723 0.44 0.61
Porter (1 cluster) 0.827 0.05 0.06
Porter (2 clusters) 0.815 0.06 0.08
Porter (3 clusters) 0.621 0.17 0.28
Porter (4 clusters) 0.425 0.36 0.84
Porter (all clusters) 0.310 0.51 1.67

Table 2: Comparison of Porter and trunc(n)

74625 groups i.e. 3.8 words per group. Paice’s corpus consists of 5101 different
groups (tight grouping procedure) which makes the average group size 1.9 words
per group. The Dutch groups contain every possible inflection resulting in large
concept groups which expand from a verbal concept. Our stemmer is not able
to stem inflectional forms of “strong verbs” to one identical stem. These errors
immediately result in a high UMT value just because of the large average “verbal
group” size.

Figure 1 shows the effect of removing rule clusters. Note that Porter with only 1,
2 or 3 rule clusters performs worse than truncation. The plot can be interpreted as
follows: better stemmers are closer to the origin. Unfortunately, UI and OI cannot
be compared in an absolute sense so it is difficult to define an ideal stemming
weight or to express the total error rate in one parameter such as the length of the
vector. The next paragraph describes two possible solutions for this problem.

4.3 Improved metrics: MUR, MOR & MMF

Paice (1995) recently proposed to redefine the Overstemming index by normaliz-
ing it with the Global Actual Merge Total instead of the Global Desired Non-merge
Total. The AMT for each stem group � is defined as:

� � � � 	 1
2
� � �$� � � 1 �(5)
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The normalization in this “local” definition results in figures comparable to the
Understemming Index. Moreover, Paice reports that the new local OI definition
is less dependent on the size of the test corpus. However, Paice does not explain
why the new OI definition gives more satisfactory results (i.e. why the variability
of the “local” definition is smaller).

Figure 2 shows a plot of the same data with the new local OI definition.

We propose to extend the idea of locality even further by giving alternative defi-
nitions of under- and overstemming. Consider the model in figure 3:

A B Inverted Stemmed groups:

B.  koon: koning(A) koon(A’)
      koontjes(A’)
B’. konink: koninklijk(A)a

Concept groups:

A.  koning koninklijk
A’. koon koontjes koninklijk

koon

koontjes

koning

Figure 3: A local stemming model for the word ’koning’

The test corpus in this example consists of two small concept groups which result
in two inverted stem groups after stemming. The example shows both under-
and overstemming errors. The idea is that for each word in the test corpus
we can look up its concept group (set A), and its expansion (i.e. the set of
unstemmed words which are stemmed to the same root as the word in question).
The expansion corresponds to set B. Now the under- and overstemming ratio
can be straightforwardly defined. The understemming ratio is just the fraction
of the original concept group A which is not conflated by the stemmer. The
overstemming ratio is the fraction of the expansion set B which contains unrelated
concepts.
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The figure shows sets A and B for the word koning (‘king’). The concept group
also contains the word koninklijk (‘royal’) but both words are not stemmed to the
same root. Instead, the expansion (set B) of koon (the stem of koning) contains the
words koon (‘cheek’) and koontjes (‘small cheeks’) which are part of the concept
group A’.
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In the same spirit we can define the match factor as the level of overlap between
original concept group A (desired expansion) and actual expansion set B. An ideal
stemmer would result in a MF of 1 for each word.

� � 	
��� ��� � ���

	 �
��� ��� � ���

	 �(8)

We have computed the UR, OR and MF for each word in our test corpus. These
figures were averaged, resulting in the Mean UR (MUR), Mean OR (MOR) and
Mean MF (MMF) respectively. Figure 4 shows the results.

The difference between Paice’s UI and OI (local) and our alternatives MUR and
MOR is conceptually not very large. Paice computes the UI and OI by taking the
quotient of two averages (the GWMT, GDNT etc. can be seen as M times the
average value, where M is the number of groups). Our local definition of MUR
and MOR is based on computing the mean of a quotient. This difference is known
as macro- versus micro-averaging.

Our approach has the advantage that the effects of words in large concept groups
(for example with all verbal forms) do not dominate the results. The weight of
each word is equal.

The second advantage of our proposed alternative model is that we have a single
metric for the quality of a stemmer, the Mean Match Factor. However, the MMF
presupposes that under- and overstemming errors are given equal importance.

Figure 5 combines two performance metrics in one plot: The mean match factor
is given for different values of the stemming weight, which in turn correspond to
different versions of the Porter and truncate stemmer. The plot clearly shows that
the truncate stemmer performs best at n=8. The performance of the Porter stemmer
increases strongly when more rule clusters are applied, with only a modest increase
in stemming weight. The stemming weight stays below 1, indicating that our
stemmer favours precision over recall.

4.4 Fine-tuning the stemmer

In addition to applying Paice’s evaluation method to different stemmers, we also
applied his method to different versions of our Dutch stemmer. The rich lexical
information in the CELEX database enabled us to create group files for a number
of distinct morphological categories. This made it possible to assess the merits of
the Dutch Porter algorithm for different aspects of Dutch morphology in a very
precise way.
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The CELEX lexical database distinguishes between inflectional and derivational
morphology. We have evaluated nearly all inflectional categories. Infinitive
(verbs), absolute (adjectives) and singular (nouns) were excluded from the list of
inflectional categories because these forms are root forms in CELEX and have
no inflection8. Because the Dutch Porter only tries to remove inflectional and
derivational affixes, we only isolated derivational word forms and their root forms
from CELEX and did not decompose compounds. So compound forms without
any inflectional or derivational affixes were treated as root forms. The categories
‘deriv+affixsub’ and ‘deriv+allomorf’ (which are subsets of ‘derivations’) exhibit
irregular morphology. Allomorphy is the phenomenon where stems within words
are different from their generally accepted stem form, e.g. aanspreek + -elijk
yields aansprakelijk. Affix Substitution is the process whereby part of the stem
is replaced when stem and affix are joined together, e.g. emigreer + -atie yields
emigratie.

For each morphological category, groups were produced by taking the inflected
form of a word and its lemma (provided by CELEX). Aggregate group files
were produced by merging inflectional categories from the same syntactical cate-
gory. ‘All verb forms’ contains all verbal inflectional forms , ‘all nouns’ contains
singular, plural nouns and diminutives, ‘all adjectives’ contains ‘absolute’, ‘com-
parative’ and ‘superlative’. Subsequently we ran the UI/OI analysis on all these
group files.

The merit of this detailed analysis is that the effects of small changes in a particular
rule cluster (aimed at the removal of a certain inflectional or derivational suffix)
can be evaluated in a precise way. It is easy to see whether the change affects the
particular suffix category at which it is aimed and (equally importantly) whether
it does not harm the performance on other categories. The scripts can also
automatically generate and sort all over- and understemming errors. We think
that this method is important support for a pure trial and error approach to rule
development.

Table 3 shows that the understemming index is within the same order of magnitude
for all categories. UI is high for the irregular derivational categories, as could
be expected. The overstemming index is low (zero) for these categories, because
the Dutch Porter algorithm treats these words as having regular morphology. The
resulting stems have only a small chance to conflate with other stemmed irregular

8The Dutch Porter algorithm considers the first person singular present tense as the root

form for verbal inflection instead of the infinitive. This discrepancy, however, does not affect

the evaluation method.
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forms. However, some of them will probably conflate with stems of regular word
forms.

Category code # groups # words
��� � � � 10 �

6 � � � 10 �
6

1st pers sing pres 9448 18930 0.253 2.80 11.0
2nd pers sing pres 11001 26854 0.281 3.32 11.8
3rd pers sing pres 10955 21923 0.310 2.75 8.9
present participle 11240 33516 0.190 2.19 11.4
past tense 11752 50687 0.265 6.12 23.1
past participle 11100 29342 0.295 4.72 16.0
participial adjective 11622 30370 0.299 5.57 18.6
all verb forms 12810 94459 0.305 6.65 21.8
plural nouns 60288 123191 0.189 2.47 13.1
diminutives 4034 10608 0.159 20.20 127.0
all nouns 58253 127854 0.245 1.51 6.2
genitive 91 183 0.505 0.00 0.0
dative 54 108 0.167 0.00 0.0
comparative 5501 17544 0.225 16.30 72.7
superlative 5406 17247 0.204 17.60 86.6
all adjectives 12441 55494 0.210 14.50 69.3
derivations 14755 36524 0.388 4.46 11.5
deriv+affixsub 1648 3757 0.665 0.00 0.0
deriv+allomorf 375 793 0.939 0.00 0.0

Table 3: End results of the Dutch Porter

5 Conclusion

The results of our evaluation can be summarised as follows:

� The Dutch Porter stemmer performs rather well, taking into account the
limitations of the algorithm. We expect that Porter stemming will be effective
for Dutch Text Retrieval.

� The qualitative evaluation method based on the over- and understemming
indices introduced by Paice in combination with the lexical information in the
CELEX database offers valuable support for the development and comparison
of stemming algorithms.
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� We propose an alternative “local” model of under- and overstemming. This
model also supports a single metric for the error rate of a stemmer: the mean
match factor.

The following further research seems advisable:

� Comparison of the Porter stemmer with a stemmer based on morphological
analysis. Both techniques should be tested in an IR environment with a
collection of Dutch texts.
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