
The Theory of Tetris

Hendrik Jan Hoogeboom and Walter A. Kosters

Leiden Institute of Advanced Computer Science

Universiteit Leiden, The Netherlands

{hoogeboo,kosters}@liacs.nl

1 Introduction

Any algorithm requires a theoretical analysis. Such an analysis may address issues like complex-
ity (e.g., NP-completeness [9]), decidability and practical properties concerning special cases.
In this paper we would like to discuss the Tetris game in this light. We will first describe the
game and some of its variants, show NP-completeness of a certain decision problem naturally
attached to the game and then prove (un)decidability in some other cases. We conclude with
some practical topics that arise from the NP-completeness proof.
This paper is based on a series of articles that begins with the original NP-completeness

proof of Demaine, Hohenberger and Liben-Nowell from MIT [7], that was well-noticed in the
popular press. The proof was simplified in [3], leading to a joint journal paper [2]. In [13] and
[14] the other issues mentioned above were dealt with. For full proofs we refer to these papers.

Tetris is a one-person game where random pieces consisting of four blocks fall down, one
at a time, in an originally empty rectangular game board. The player is allowed to rotate and
horizontally move the falling piece. If an entire row of the board is filled with blocks, it is
removed (“cleared”). The main purpose of the game is to keep on playing as long as possible.
The decision problem under consideration is essentially the following. Given a partially

filled game board (referred to as a Tetris configuration), and an ordered finite known series of
pieces, is it possible to play in such a way that the whole board is cleared? The NP-completeness
proof is by reduction. It is shown that instances of the so-called 3-Partition problem can be
translated into rather involved Tetris configurations, where solutions correspond with boards
that can be cleared. The configurations used suggest the question of constructibility: which
configurations can be reached during game play? The rather surprising answer appears to be
that almost any configuration can be reached, given suitable pieces. Another issue has to do
with decidability: if the user interaction is somewhat bounded, is it then decidable whether
certain natural sets of piece sequences contain “clearing” sequences? All these topics will be
addressed in the sequel.

2 Rules

The game of Tetris is played on a rectangular board consisting of square (initially empty)
cells. The board is of fixed width w ≥ 4 and, for our purposes, of unbounded height. Seven
game pieces can be used, each covering four board cells — from now on usually called blocks;
they are depicted below. These pieces are known as (from left to right) O or square, J or leftgun,
L or rightgun, I or dash, Z or leftsnake, S or rightsnake, and T or tee:

The “computer” generates a (usually random) sequence of pieces that drop down from the
top of the board until they rest on top of (parts of) previously dropped pieces or on the bottom

1



of the game board. The user/player can determine the position and orientation of the pieces
by rotating and moving them horizontally while they fall. Whenever all the cells of a row (also
called line) of the game board are occupied, the line is cleared; all blocks above it are lowered
by one row (and no more). This row clearing can happen for several lines simultaneously.
In Tetris the purpose usually is to clear as many rows as possible given the generated

sequence of pieces, while avoiding to run out of space vertically. As the game of Tetris itself
is finite state (and hence decidable) when played on a board of given width and height, here we
assume the board is of unbounded height.

Tetris has some peculiar implementation details. Let us mention a few examples.

1. In the NP-completeness proof below it is essential that Tetris pieces that touch the
bottom of the game board or blocks from other pieces can still slide horizontally before
they are “fixed”. In some implementations this is however not possible, and pieces are
then fixed immediately after touchdown. The NP-completeness proof might still hold for
this other version, but a new construction is necessary, since the current one relies on
filling overhangs with horizontally sliding squares.

2. In [7, 2] some attention is given to rotation models. It is indeed a problem, or rather
a convention, to describe which “holes” allow Tetris pieces to pass through, perhaps
involving meticulous intermediate rotations. And when are pieces still allowed to rotate?
In the sequel we do not refer to this issue anymore, since the constructions involved do
not give rise to problems of this kind.

3. Some people are surprised by seeing floating blocks in Tetris configurations. As will be
shown later, (nearly) every configuration is constructible, i.e., can occur during regular
game play. This includes situations where blocks do not rest on other blocks, but just
remain floating — on air, so to speak. This is a consequence of the strictly applied rule
that as one or more lines are cleared, they are removed from the game board; blocks above
these disappearing lines precisely fall down as many lines as were cleared. This issue will
only be of importance in the section on the construction of configurations.

3 NP-completeness

As mentioned in the introduction, we shall analyze the complexity of some decision problems
related to Tetris. We shall also loosely describe the proof of the main NP-completeness result.
Precise definitions, theorems, proofs and related results can be found in [7, 3, 2].
In this section we consider the following decision problem, called Tetris Clearing:

Instance. A Tetris game board partially filled with blocks, and an ordered sequence of
Tetris pieces.

Question. Is it possible to play in such a way that the game board is left empty in the end?

It is not difficult to see that this problem is in the class NP. We now prove NP-hardness. As
mentioned before, the proof is by reduction. We use the 3-Partition problem:

Instance. An sequence a1, a2, . . . , a3s of positive integers and a positive integer T , so that
T/4 < ai < T/2 for all i with 1 ≤ i ≤ 3s and so that

∑3s

i=1
ai = s T .

Question. Can {1, 2, . . . , 3s} be partitioned into s disjoint subsets A1, A2, . . . , As so that for
all j with 1 ≤ j ≤ s, we have

∑

i∈Aj
ai = T?

In [9] it is shown that this problem is NP-complete in the strong sense, which means that it is
NP-hard even if the inputs ai and T are provided in unary.
Now the main result is:

Theorem. Tetris Clearing is NP-complete.

We give a brief sketch of the proof. We start from an instance of the 3-Partition problem. We
then construct the following initial Tetris game board (see picture below, left). The height of

2



b
u
cket

1

b
u
cket

2

b
u
cket

3

b
u
cket

s
−
1

b
u
cket

s

lock

fi
ll
area

the top row is 5T + 18. We call the empty columns buckets and the big rectangular space on
the right fill area; the T-shaped area above right is called the lock. Every bucket represents a
subset as in 3-Partition. There are s buckets just like there are s subsets in 3-Partition.
The sequence of pieces for our game consists of a series of pieces for each ai, followed by

a number of pieces after all the ai’s. Each integer ai is “coded” by one L, ai times the triple
O–J–O, and one pair O–I (see right part of the figure above for ai = 3). The final pieces are:
s successive L’s to fill the buckets, one T to open the lock and exactly enough (i.e., 5T + 16)
successive I’s to cover the fill area.
It is not much of a problem to show that the given sequence of pieces can clear the initial

game board, in the case of a “yes” instance of 3-Partition. It is harder to prove that if the
sequence cannot clear the board, the original instance could not fulfill the properties of a “no”
instance. We just mention a few interesting details.
We suppose that we are looking at a sequence that can clear the original Tetris game

board. The volume of the pieces is precisely what is needed to fill the empty cells in this board.
This implies — among other things — that no pieces are allowed to stick out above the original
highest row. The fill area and the lock ensure that there will be no line clearings before all the
buckets to the left are filled. Then comes the unique T piece that opens the lock in the upper
right, after which a series of I’s does the clearing. The main body of this part of the proof is
devoted to showing that the series of pieces that “code” a number are precisely in this order
required to fill the bucket, and cannot be spread over several buckets. Also notice the use of
sliding O’s to fill the buckets. ¤

4 Decidability

In this section we discuss (un)decidability issues related to the game of Tetris, as reported in
[13] (where details of the proofs can be found).
We consider different models of user intervention. On the one hand we have the normal

Tetris rules, as described above, where the user has many possibilities to influence the result.
At the other extreme we have the model where the user is not allowed any intervention: once
the “computer” fixes the piece, its orientation and its horizontal position, the piece drops down
in the specified orientation, and in the specified position.

3



As for a given game board the number of initial possibilities of each piece — its orientation
and the columns occupied — is bounded, the sequence of pieces dropped can be described
by a string over a finite alphabet. This suggests the following decision problem, Tetris with

Intervention Model M :

Instance. A regular language L describing sequences of Tetris pieces (with their initial ori-
entation and horizontal position) for a given width game board.

Question. Is there a sequence in L that leaves the game board empty after dropping all the
pieces into an initially empty game board, according to the “model” M? I.e., does the
user have a way to clear the entire sequence, while adhering to the rules in M?

Note that if the user is not allowed any intervention (we call this the Null Intervention Model,
and refer to the corresponding decision problem as Tetris without intervention), there are no
choices to be made. For more complicated models, we are looking for “optimal” user actions
that lead to total clearings.

4.1 An undecidability result

We now have the following undecidability result:

Theorem. Tetris without intervention, for sequences consisting only of I’s on a board of
width 10, is undecidable.

The proof is based on a reduction from the Post Correspondence Problem [15]. The basic
idea is the following.

A B X

Given an instance of the PCP — two
sequences (u1, . . . , un) and (v1, . . . , vn)
of strings over a two-letter alphabet
{a, b} — we construct an instance L of
Tetris without intervention, on a board
of width 10. The left and right halves of
the board (each a board of 5 cells wide)
will act as stacks holding proposed solu-
tions to the PCP, i.e., words of the form
ui1ui2 . . . uik

= vi1vi2 . . . vik
for some

k ≥ 1, and 1 ≤ i1, i2, . . . , ik ≤ n. To
build the contents of the stacks we need
three basic piles of I’s, that we call A, B
and X. The first two of these represent the two symbols a and b of the alphabet of the PCP;
the last one is used for padding the two copies of the solutions.
Note that the A and B piles can be removed (popped from the stack) following the rules of

Tetris, by dropping three vertical I’s in the proper columns, provided the piles are next to
an X pile on the other stack. The piles are designed in such a way that the vertical I’s used to
remove the blocks do not fall through to the next pile. Pieces dropped in the first column are
blocked by the bottom rows of the pile, pieces falling in the fifth column are blocked by the
topmost row of the pile below (or by the “floor”).
Now first, the language L (or the corresponding finite automaton) prepares nondeterminis-

tically a sequence of piles, pushing onto the two stacks the same (nonempty) sequence of A’s
and B’s, but randomly interleaved with X’s. This part is independent of the particular instance
of the PCP.
Then, in a second phase, L tries to clear the board, guessing a solution of the PCP, by

repeatedly picking an index i (1 ≤ i ≤ n) and trying to pop the left stack according to the
string ui and the right stack according to the string vi.
The rest of the proof (see [13]) shows that the original PCP has a solution if and only if the

language L has a way to leave the empty game board.

4



X

A

B

X

B

X

X

A

A

X

X

B

X

B

A

X

As an example, a configuration left after the first phase of
our construction is depicted to the right: in the left stack we can
read (top-to-bottom) a, b, ba while we encounter ab, b, a in the right
stack. This corresponds with a solvable PCP. ¤

4.2 Some decidability results

Quite amazingly, the undecidability result uses only a single type of
piece. Let us now look at other ones. A simple argument shows that
a nonempty sequence of either S or Z pieces cannot clear the board
(cf. [5]), so the problem restricted to those pieces becomes trivially
decidable. For the pieces T, L and J we can conceive a configuration
that can be used to construct stacks, and similar arguments as for
I hold (albeit on a board of width 16).
Finally, for O only very regular patterns are possible that leave

an empty board. This is the basis for the following result:

Theorem. Tetris without intervention, for sequences consisting
only of O’s on a board of width 10, is decidable. ¤

We reconsider the decision result above, now allowing user
translation and rotation of the pieces that are specified by the
sequences in the given regular language L. The intervention is just
as in the standard Tetris game. We refer to the corresponding
decision problem as Tetris with normal intervention.
The general question is related to the many tiling problems

for polyominoes (see, e.g., [11, 8]), as a tiling of a rectangle by
Tetris tetrominoes implies a possible clearing of the board using
the Tetris pieces in some suitable order. However, apart from the
fact that the Tetris problem also deals with the order in which the pieces are offered, classical
tiling is more restricted: it does not allow intermediate clearing of rows. As an example, ten T’s
can clear the Tetris game board (of width 10, as below) whereas there is no tiling of the 10
by 4 rectangle using T’s [16].
The sequences of the rectangular Tetris pieces O

and I that can be used to leave an empty game board
have a simple characterization. Our result is valid for
standard width 10, but can be stated slightly more
generally. We need the following Lemma:
Lemma. A sequence of I’s and O’s can be dropped
into an initially empty game board of width 4k + 2
(k ≥ 1) leaving the empty board if and only if the number of pieces is a multiple of 2k+1, and
the number of I’s is even. ¤

We have an immediate corollary:

Theorem. Tetris with normal intervention, for sequences consisting only of I’s and O’s on a
board of width 10, is decidable. ¤

There are connections with the strategies developed for winning two piece Tetris games pre-
sented in [4].

Let us conclude this section with a slightly unexpected result. Restricted to a single piece
(which can be other than the seven tetrominoes in standard Tetris) Tetris with normal
intervention is decidable, even though we do not (need to) explicitly know the decision algorithm
in each particular case:

Theorem. Tetris with normal intervention, for sequences consisting of copies a single fixed
piece, on a board of fixed width, is decidable.

The proof relies on the fact that only the number of pieces matters, and that these numbers
form a so-called semi-linear set [10]. ¤

5



5 Constructibility

The NP-completeness proof requires a rather intricate Tetris configuration to start with. It
seems a natural question to ask whether or not this configuration can occur during normal game
play, and more general: what are the configurations that can occur? The answer is somewhat
surprising: (almost) any configuration can show up!

u u u u

u u u u

u

u

u

u

u

u

u u

u u

u

u

u u

u u

u

¾ -w

A Tetris configuration is a game
board, where some of the cells are al-
ready occupied. A configuration is called
constructible if it is possible to reach it,
from an initially empty board, with a
suitable series of pieces using appropri-
ate translations and rotations. In this sec-
tion we shall prove that essentially every
reasonable configuration is constructible.
The one non-trivial exception deals with
boards of even width, where some simple
parity condition should be fulfilled. The
example configuration to the right, on a
board of width w = 13, is constructible.
Our construction requires 276 Tetris pieces, clearing (4 · 276− 25)/13 = 83 intermediate rows.
Let us first remark that if the width w of the board is a multiple of 4, at any time the

number of blocks in the current configuration is a multiple of 4: each new piece adds 4 blocks,
whereas a line clearing removes w blocks. So clearly, the number of blocks in any constructible
configuration should then be a multiple of 4. Similarly, if w + 2 is a multiple of 4, the number
of blocks should be a multiple of 2. These two simple restrictions appear to be the only ones:

Theorem. A configuration of p blocks is constructible using suitable Tetris pieces starting
from the empty board of width w if and only if

1. no row is completely full, and

2. no row below the highest one containing blocks is completely empty, and

3. if w is a multiple of 4, then so is p; if w + 2 is a multiple of 4, then p is even.

The next section is dedicated to the proof of the theorem, giving an explicit construction (see [12]
for an implementation in the form of a Java-applet). In the sequel we shall assume that all three
conditions mentioned in the theorem are met.

5.1 The construction

The configuration on the board is constructed row-by-row in a modular fashion. In [14] all
details are given. For each row the construction consists of two phases.

∗
?

6
state

First we build a platform that serves
as a scaffolding for the construction work
(it prevents Tetris pieces from falling
down to lower rows). In general the plat-
form looks as follows, see the picture to
the right. The ∗ denotes the bottom right
empty square of the platform; once it is
filled, its whole row will be cleared. The
platform construction requires 3 or 7 in-
termediate rows that are cleared.
The number of squares sticking out ver-

tically above the platform at the left end
may vary between 0 and 3, and is referred to as the state of the platform. We need such a state
as the total number of cells presently occupied or cleared in the past must be a multiple of 4.

6



∗

u u u u u u u

In the second phase, the row construc-
tion phase, we build the blocks u of the
next row of the configuration on top of the
platform, using six additional rows. Ba-
sically we construct consecutive “rectan-
gles” two columns wide and six rows high
with the necessary blocks on top, proceed-
ing from left to right. Again, however, we
have the multiple of 4 restriction, and we
carry a surplus of blocks as state of the
rectangles. This state is visible as indent
of up to three blocks at the bottom in the
left column of the rectangle. The last rect-
angle is designed to fill both the final block of the platform and the six rows of the rectangles,
clearing all additional blocks that are not part of the final configuration.

+ +

∗

u u u u u

As always, the number of blocks occu-
pied in the construction need not be a mul-
tiple of 4, and we have to take this into
account. We solve this by allowing a group
of up to three additional blocks placed on
top of one of the blocks. This overflow is
indicated by + in the figure to the right.
The overflow is used as a starting point
in the construction of the platform for the
next row of blocks. If there is no overflow
then we start the construction by putting
a horizontal I on top of one of the blocks
of the last row (artificially introducing an
overflow of four). In the case of odd width,
the overflow can be removed each time.
The precise form of the rectangles (for each state, number of blocks and overflow) is rather

tedious, see [14]. Particular care has to be taken for the last rectangle which has to clear the
intermediate rows.
The whole construction starts with a horizontal I. It is extended to a platform with state 1.

In order to remove the last overflow — if any —, the construction ends with some simple final
details.
Note that in many cases there exist simpler constructions (for instance for boards of odd

width), but the uniform approach has its own merits. Indeed, some configurations are even
extremely simple to reach (e.g., a single vertical I), whereas our construction uses an abundance
of pieces, clearing many rows on the way.

6 Conclusion

So far we have discussed several issues that are somehow attached to the game of Tetris. The
fact that a well-known and easy to understand game as Tetris possesses such a rich structure
is really surprising. There clearly is a connection between deep mathematical ideas such as
NP-completeness and every day life. This fits in the larger research picture, where for many
games these sorts of problems are addressed, cf. [1, 6].
Many problems remain open. Among others, one can think of variants of the game rules,

but also of more general topics as the characterization of the clearing sequences in decidable
cases.

7



References

[1] E.R. Berlekamp, J.H. Conway, and R.K. Guy. Winning Ways for Your Mathematical

Plays. Volume 1 and 2, Academic Press, New York, 1982.

[2] R. Breukelaar, E.D. Demaine, S. Hohenberger, H.J. Hoogeboom, W.A. Kosters, and D.
Liben-Nowell. Tetris is Hard, Even to Approximate. International Journal of Computa-
tional Geometry and Applications (IJCGA) 14 (2004) 41–68.

[3] R. Breukelaar, H.J. Hoogeboom and W.A. Kosters. Tetris is Hard, Made Easy. Technical
Report 2003–9, Leiden Institute of Advanced Computer Science, 2003.

[4] J. Brzustowski. Can You Win at Tetris? Master’s Thesis, University of British Columbia,
1992.

[5] H. Burgiel. How to Lose at Tetris. Mathematical Gazette 81 (1997) 194–200.

[6] E.D. Demaine. Playing Games with Algorithms: Algorithmic Combinatorial Game The-
ory. Proceedings 26th International Symposium on Mathematical Foundations of Com-
puter Science MFCS2001, J. Sgall, A. Pultr and P. Kolman (editors), Lecture Notes in
Computer Science 2136, pages 18–32, 2001.

[7] E.D. Demaine, S. Hohenberger and D. Liben-Nowell. Tetris is Hard, Even to Approximate.
Computing and Combinatorics, 9th Annual International Conference, T. Warnow and B.
Zhu (editors), Lecture Notes in Computer Science 2697, pages 351–363, 2003.

[8] B. Durand and L. Vuillon (editors). Tilings of the Plane. Special issue of Theoretical
Computer Science, Volume 303, Numbers 2–3, 2003.

[9] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of

NP-completeness. Freeman, New York, 1979.

[10] S. Ginsburg. The Mathematical Theory of Context-Free Languages. McGraw-Hill, New
York, 1966.

[11] S.W. Golomb. Polyominoes: Puzzles, Patterns, Problems, and Packings. 2nd ed., Prince-
ton University Press, Princeton, NJ, 1995.

[12] H.J. Hoogeboom and W.A. Kosters. Website — How to Construct Tetris Configurations.
http://www.liacs.nl/home/kosters/tetris/.

[13] H.J. Hoogeboom and W.A. Kosters. Tetris and Decidability. Information Processing Let-
ters 89 (2004) 267–272.

[14] H.J. Hoogeboom and W.A. Kosters. How to Construct Tetris Configurations. Interna-
tional Journal of Intelligent Games & Simulation (IJIGS) 3 (2004) 94–102.

[15] E.L. Post. A Variant of a Recursively Unsolvable Problem. Bulletin of the American
Mathematical Society 52 (1946) 264–268.

[16] D.W. Walkup. Covering a Rectangle with T -Tetrominoes. American Mathematical
Monthly 72 (1965) 986–988.

8


