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Abstract. We show how the understandability and speed of genetic
programming classification algorithms can be improved, without affect-
ing the classification accuracy. By analyzing the decision trees evolved we
can remove the unessential parts, called introns, from the discovered de-
cision trees. Since the resulting trees contain only useful information they
are smaller and easier to understand. Moreover, by using these pruned
decision trees in a fitness cache we can significantly reduce the number
of unnecessary fitness calculations.

1 Introduction

Algorithms for data classification are generally assessed on how well they can
classify one or more data sets. However, good classification performance alone
is not always enough. Almost equally important can be the understandability of
the results and the time it takes to learn to classify a data set. In this paper we
focus on ways to improve the speed of our genetic programming (gp) algorithms
as well as the understandability of the evolved decision trees.

Evolutionary algorithms generally spend a lot of time on calculating the
fitness of the individuals. However, if one looks at the individuals during an evo-
lutionary run, one often finds that some of the genotypes occur more than once.
The main reason for this is that generally the diversity in a population decreases
over time when a static fitness function is used. We can use these genotypical
reoccurrences to speed-up the fitness calculations by storing each evaluated in-
dividual and its fitness in a fitness cache. If an individual’s genotype is already
stored in the cache then its fitness can simply be retrieved from the cache instead
of the time consuming calculation which would otherwise be needed.

One of the problems of variable length evolutionary algorithms, such as tree-
based genetic programming, is that the genotypes of the individuals tend to
increase in size until they reach the maximum allowed size. This phenomenon is,
in genetic programming, commonly referred to as bloat [2] and is caused by gp

introns [2, 12, 11]. The term introns was first introduced in the field of genetic



programming, and evolutionary computation in general, by Angeline [1] who
compared the emergence of extraneous code in variable length gp structures to
biological introns. In biology the term introns is used for parts of the DNA,
sometimes referred to as junk DNA, which do not have any apparent function
as they are not transcribed to RNA. In genetic programming, the term introns

is used to indicate parts of an evolved solution which do not influence the result
produced by, and thus fitness of, the solution (other than increasing its size).

The occurrence of introns in evolutionary algorithms has both positive and
negative effects. A positive effect is that they might protect against the destruc-
tive effects of crossover operators [2]. However, earlier studies [12, 11] show that
more than 40% of the code in a population can be caused by introns.

gp classifiers that use variable length (decision) tree structures are subject
to bloat and they will thus also contain introns. In the case of our decision
tree representations we can distinguish between two types of introns, intron
subtrees: subtrees which are never traversed, and intron nodes: nodes which do
not influence the classification outcome of the decision tree.

The negative effects of introns are two-fold. The decision trees found by
gp algorithms can contain introns which makes them less understandable than
semantically equivalent trees without introns. The second problem of introns is
that while they do not influence the classification outcome of a decision tree, their
evaluation does take time. More important, introns reduce the effectiveness of our
fitness cache since it does not recognize semantically equivalent but syntactically
different trees.

In this paper we present techniques to detect and prune the introns in decision
trees. The pruned intron-free decision trees will generally be smaller, and thus
easier to understand. By using the pruned intron-free trees for our fitness cache
we improve its effectiveness.

The overview of the rest of the paper is as follows. In Section 2 we introduce
the representations used by our gp algorithms. Then in Section 3 we show how
introns can be detected and pruned. In Section 4 we describe the experiments
followed by the results. Finally, in Section 5 we present the conclusions.

2 Full Atomic Representations

We use full atomic representations. A full atomic representation has atoms in the
internal and leaf nodes. Each atom has a predicate of the form (attribute operator
value(s)), where operator is a function returning a Boolean value (e.g., < or =).
In the leaf nodes we have class assignment atoms of the form (class := C), where
C is a category selected from the domain of the attribute to be predicted. A small
example tree is shown in Figure 1. A full atomic tree classifies an instance I by
traversing the tree from root to leaf node. In each non-leaf node an atom is
evaluated. If the result is true the right branch is traversed, else the left branch
is taken. This process is repeated until a leaf node containing a class assignment
node is reached, resulting in the classification of the instance.



X > 3

class:= A

class := B class := C

truefalse

false true

X < 2

Fig. 1. A full atomic tree.

Table 1. Example data set.

X Y class

1 a A
2 b A
3 a B
4 b B
5 a A
6 b A

We next define the precise decision tree representation by specifying what
atoms are to be used. In this paper we will use two representations:

– Simple gp [5], uses atoms based on each possible attribute-value combina-
tion found in the data set. For non-numerical attributes we use the equality
operator (=) and for numerical attributes we use the less-than operator (<).
The idea of this approach is to give the gp algorithm the most flexibility
and let it decide on the best attribute-value combination at a given point in
a tree.

– The second representation, cluster gp [4], uses unsupervised K-means clus-
tering [13] to partition the domain of numerical valued attributes into a fixed
number of clusters. The advantage of the clustering representation is that it
leads to smaller search space sizes and better classification performance.

Example Consider Table 1. In the case of the simple representation we get the
following atoms:

– Since attribute X has six possible values and is numerical valued we get the
following atoms: (X < 1), (X < 2), (X < 3), (X < 4), (X < 5) and (X < 6).

– Attribute Y is non-numerical resulting in two atoms: (Y = a) and (Y = b).
– The two classes result in two terminal nodes: (class := A) and (class := B).

K-means clustering with k = 3 results in three clusters for attribute X. Thus, in
case of the cluster gp representation the following atoms are used for attribute
X: (X ∈ [1, 2]), (X ∈ [3, 4]) and (X ∈ [5, 6]).

3 Intron Detection and Pruning

In [7] Johnson proposes to replace the standard fitness measures by static anal-
ysis methods [10]. Through these techniques an individual’s behaviour can be
evaluated across the entire input space instead of a limited number of test cases.
However, for data classification replacing the fitness measure with static anal-
ysis techniques does not seem feasible due to the high dimensional nature of



the search space. Instead of replacing the fitness function, Keijzer [8] showed
how static analysis can be used as a pre-processor for fitness evaluations. By
using interval arithmetic to calculate the bounds of symbolic regression trees,
functions containing undefined values are either deleted or assigned the worst
possible performance value.

We will use a combination of static analysis techniques and pruning to detect
and remove introns from decision trees in order to address the problems they
cause. Each individual T that is to be evaluated is scanned for introns. These
introns are marked and a pruned copy T ′ of T is made in which the introns are
removed. If T ′, which is semantically the same as T , matches a tree T c found
in the fitness cache the individual T is assigned the fitness of T c. If T ′ does not
match any tree in the cache it is evaluated using the fitness function and stored
in the cache. In this case T is assigned the fitness of T ′.

Since several syntactically different decision trees can have the same pruned
form this should optimize the effectiveness of the cache. By using the original
trees for the evolutionary process (e.g., crossover and mutation) as well as the
tree size fitness measure, there is no influence on the classification performance
of our algorithms.

3.1 Intron Subtrees

Intron subtrees are subtrees which can and will never be traversed because of
the outcome of nodes higher up in the tree. An example of an intron subtree is
shown in Figure 2(a).

X > 3

class:= A

class := B class := C

truefalse

false true

X < 2

(a)

X > 3

class:= A

false true

class := B

(b)

Fig. 2. Two syntactically different trees which are semantically the same. The left tree
contains an intron subtree indicated by the dotted lines.

In order to detect intron subtrees we recursively propagate the possible do-
mains of the attributes through the decision trees in a top-down manner. Given
a data set T we can determine for each attribute Xi the domain D(Xi) of possi-
ble values. By propagating the domain of each attribute Xi recursively through



the trees we can identify situations in which the domain of an attribute becomes
empty (∅), indicating the presence of a intron subtree.

X > 3

class:= A

class := B class := C

X < 2
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Fig. 3. A full atomic decision tree containing an intron subtree with the domain of
attribute X displayed at each point in the tree.

Observe the decision tree T in Figure 3. Let X be a continuous valued at-
tribute in the range [0, 10]. Before evaluation of the root node (X > 3) the
domain of X is [0, 10]. Just as the node splits a data set into two parts, the
domain of possible values of X is split into two. In the left subtree the domain
of X is limited to [0, 3] and in the right subtree the domain of possible values for
X is (3, 10]. After the evaluation of node (X < 2) the possible domain of X for
the left tree is the same as before the atom was evaluated. However, the possible
domain of X for the right subtree is reduced to ∅, and this subtree is therefore
marked as an intron subtree (see Figure 2 (a)).

After intron subtrees have been detected and marked the tree can be pruned.
During the pruning phase the marked intron subtrees are removed and their
originating root node (X < 2 in our example) is replaced by the remaining valid
subtree. The resulting pruned tree for the example can be seen in Figure 2(b).
Note that we assume that all attributes in the data sets are independent. In
reality there may be relations between attributes (e.g., attribute X is always
larger than attribute Y) in which case some intron subtrees are not detected.

3.2 Intron Nodes

Intron nodes are root nodes of subtrees of which each leaf node contains the same
class assignment atom (e.g., class := A). The internal nodes in such a subtree
do not influence the classification outcome. While the negative effects of intron
subtrees are mostly related to size and thus understandability of our decision
trees, intron nodes have a much more negative influence on the computation
times. An example is shown in Figure 4(a).

In order to detect intron nodes we recursively propagate the set of possible
class outcomes through the tree in a bottom-up manner. A leaf node always
returns a set containing a single class. In each internal node the sets of possible
classes of its children are joined. If the set of possible class outcomes for an



class:= A
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class := Bclass:= A

X > 3
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(b)

Fig. 4. Two syntactically different trees which are semantically the same. The left tree
contains an intron node indicated by the dotted lines.

internal node contains only a single class the node is marked as an intron node.
Once all the intron nodes have been detected the tree can be pruned. During
the pruning phase the tree is traversed in a top-down manner and subtrees
with an intron node as the root node are replaced by class assignment nodes
corresponding to their possible class outcome detected earlier.

class:= A

class := B

class:= A

{A,B}

{A}

{A} {A}

{B}

X > 3

Y < 2

Fig. 5. A full atomic tree with the set of possible target classes for each node.

Consider the tree in Figure 5. The set of possible class outcomes for each
leaf node consists of a single class, namely the target class. In the case of node
(Y < 2), the sets of possible class outcomes of its subtrees are the same and
contain only a single value A. Thus, the set of possible class outcomes for (Y < 2)
also contains only a single value and it is therefore marked as an intron node

(see Figure 4(a)). In the case of node (X > 3) the set of possible class outcomes
consists of two classes and this node is therefore not an intron node. The resulting
tree for the example can be seen in Figure 4(b).

Note that the pruned decision trees in Figures 2(b) and 4(b) are both seman-
tically and syntactically the same although they are derived from syntactically
different trees (Figures 2(a) and 4(a)). When intron node detection and prun-
ing is used in conjunction with intron subtree detection it is important to apply



both detection and pruning strategies in the right order. Intron nodes should be
detected and pruned after intron subtrees to assure that all introns are found
as the pruning of intron subtrees can influence the detection of intron nodes.
Since intron subtree detection works top-down and intron node detection works
bottom-up the two intron detection methods can be performed in a single tree
traversal.

4 Experiments and Results

In order to determine the effects of introns on our gp algorithms we have per-
formed experiments on six data sets from the uci data set repository [3]. An
overview of the data sets as well as the misclassification performance of our gp

algorithms and C4.5 (as reported by Freund and Shapire [6]) is given in Table 2.
For three data sets (Australian credit, Heart disease and German credit) we ap-
plied C4.5 ourselves since no results were reported. Each algorithm is evaluated
using n-fold cross-validation and the performance is the average misclassification
error over n folds. In n-fold cross-validation the total data set is divided into n

parts. Each part is chosen once as the test set while the other n− 1 parts form
the training set. In all our experiments we use n = 10.

Table 2. The data sets used in the experiments.

data set misclassification rates

name records attributes classes simple gp cluster gp C4.5

Australian credit (statlog) 690 14 2 22.0 14.8 15.9
German credit (statlog) 1000 23 2 27.1 28.0 27.2
Pima Indians diabetes 768 8 2 26.3 26.3 28.4
Heart disease (statlog) 270 13 2 25.2 21.3 22.2
Ionosphere 351 34 2 12.4 10.5 8.9
Iris 150 4 3 5.6 2.1 5.9

A single gp implementation was used for both representations. It was pro-
grammed using the Evolving Objects library (EOlib) which is available from
http://eodev.sourceforge.net.

In our gp system we use the standard gp mutation and recombination opera-
tors for trees. The mutation operator replaces a subtree with a randomly created
subtree and the crossover operator exchanges subtrees between two individuals.
Both the mutation rate and crossover rate are set to 0.9, optimizing the size
of the search space that will be explored. The population was initialized using
the ramped half-and-half initialization [2, 9] method to create a combination of
full and non-full trees with a maximum tree depth of 6. We used a generational
model (comma strategy) with population size of 100, an offspring size of 200
and a maximum of 99 generations, resulting in a maximum of 19.900 individu-
als. Parents were chosen by using 5-tournament selection. We did not use elitism
as the best individual was stored outside the population. Each newly created
individual, whether through initialization or recombination, was automatically



pruned to a maximum number of 63 nodes. The results are computed over a 100
runs. The cache memory size did not cause any problems.

Whenever the fitness function has to evaluate a decision tree it first checks if
the tree is already in the fitness cache. If it is, a cache hit occurs and the fitness
of the tree is retrieved from the cache. If it is not in the cache the (pruned)
decision tree is evaluated by the fitness function and the result is stored in the
cache. We will count the number of cache hits to determine the effects of the
intron detection and pruning strategies on the fitness cache.

Observe the cache hit results for the data sets in Tables 3(a) through (f).
When we look at the cache hit percentages of both algorithms it is clear that de-
tecting and pruning intron subtrees results in a larger increase in cache hits than
detecting and pruning intron nodes. As expected the combination of detecting
and pruning both intron subtrees and intron nodes offers the highest number
of cache hits. Since the difference between detecting and pruning both types of
introns on the one hand and detecting and pruning only intron subtrees on the
other hand is in most cases larger than the difference between no intron detec-
tion and detecting and pruning intron nodes it is clear that first removing the
intron subtrees allows for a better detection of intron nodes. If we look at the
average runtimes we see that except for the Ionosphere data, intron detection
and pruning results in a speed increase of up to 50%. The computation time
increase on the Ionosphere data set is probably caused by the relatively large
number of attributes combined with a small number of data records.

To determine the effect of intron detection and pruning we have measured
the average size of all trees after pruning during an evolutionary run. We also
measured the size of trees found to be the best, based on the classification
performance on the training set. When we look at the results we see that there
is virtually no effect of the representation on the sizes of the evolved decision
trees. If we look at the average size of the pruned trees we see that pruning both
intron subtrees and nodes reduces the size of the trees by 30 to 50%. If we look
at the average size of the best found trees we see that pruning both the types of
introns reduces the size by approximately 20%.

5 Conclusions

When we consider the effect of detecting and pruning introns on the size of
the decision trees, it is clear that the pruned trees will be easier to understand
although in some cases they are still quite large. The detection and pruning of
introns also enables us to identify syntactically different trees which are semanti-
cally the same. By comparing and storing pruned decision trees in a fitness cache,
rather than the original unpruned decision trees, we can greatly improve the ef-
fectiveness of the cache. The increase in cache hits means that less individuals
have to be evaluated resulting in reduced computation times.

If we compare the computation times of the algorithms we note that the
combination of both intron detection and pruning methods has a noticeable
effect on the computation times. The decrease in computation time is different



Table 3. The average, minimum and maximum number of cache hits and average
runtimes (relative to no intron detection and pruning).

Australian Credit

algorithm intron % cache hits run-
detection avg min max time

simple gp none 16.9 10.3 31.7 1.0
simple gp nodes 21.5 12.9 41.0 0.9
simple gp subtrees 39.0 24.7 53.8 1.0
simple gp both 46.8 28.9 64.7 0.9

cluster gp none 18.9 10.9 40.1 1.0
cluster gp nodes 23.5 13.5 49.1 0.9
cluster gp subtrees 39.9 25.0 60.9 0.9
cluster gp both 47.0 29.4 68.4 0.8

(a)

German Credit

algorithm intron # cache hits run-
detection avg min max time

simple gp none 15.4 9.5 24.7 1.0
simple gp nodes 19.0 11.8 29.2 0.9
simple gp subtrees 44.1 25.4 56.9 0.7
simple gp both 51.1 30.1 65.2 0.6

cluster gp none 17.3 10.2 28.9 1.0
cluster gp nodes 20.6 12.5 31.5 0.9
cluster gp subtrees 30.3 15.5 48.4 0.9
cluster gp both 35.6 19.7 57.6 0.8

(b)

Pima Indians Diabetes

algorithm intron # cache hits run-
detection avg min max time

simple gp none 15.2 9.0 24.7 1.0
simple gp nodes 19.1 11.7 29.4 0.9
simple gp subtrees 38.6 23.3 57.9 1.1
simple gp both 45.7 27.6 65.9 1.0

cluster gp none 16.5 10.6 29.0 1.0
cluster gp nodes 19.7 13.0 33.2 0.9
cluster gp subtrees 42.1 23.3 61.0 1.0
cluster gp both 48.5 27.2 68.8 0.9

(c)

Heart Disease

algorithm intron # cache hits run-
detection avg min max time

simple gp none 13.7 8.9 22.9 1.0
simple gp nodes 17.3 11.2 27.8 0.9
simple gp subtrees 35.3 22.4 49.7 1.0
simple gp both 42.1 26.4 58.5 0.9

cluster gp none 13.3 10.0 23.8 1.0
cluster gp nodes 16.1 12.3 26.7 1.0
cluster gp subtrees 31.0 18.1 48.4 0.9
cluster gp both 36.7 22.2 55.8 0.9

(d)

Ionosphere

algorithm intron # cache hits run-
detection avg min max time

simple gp none 12.4 8.8 21.6 1.0
simple gp nodes 16.1 11.4 28.7 1.0
simple gp subtrees 22.7 12.0 45.9 1.5
simple gp both 28.1 15.2 54.6 1.4

cluster gp none 14.4 9.2 22.7 1.0
cluster gp nodes 18.1 11.5 27.8 0.9
cluster gp subtrees 27.7 14.0 51.0 1.4
cluster gp both 33.6 17.0 60.0 1.3

(e)

Iris

algorithm intron # cache hits run-
detection avg min max time

simple gp none 18.4 9.1 30.8 1.0
simple gp nodes 21.5 10.4 36.3 1.0
simple gp subtrees 53.0 33.2 65.0 0.7
simple gp both 58.0 36.1 70.4 0.7

cluster gp none 29.2 13.2 38.0 1.0
cluster gp nodes 32.6 14.8 41.9 1.0
cluster gp subtrees 71.0 57.7 77.5 0.6
cluster gp both 74.5 61.9 80.0 0.5

(f)

from what we would expect when looking at the increase in cache hits and the
reduction in tree sizes achieved by the detection and pruning strategies. This
difference can be explained by the time spent by our algorithms on detecting
and pruning the introns, initialization, mutation, recombination and selection as
well as choices made during the implementation of the algorithms. Nevertheless,
on the smallest data set (Iris) detecting and pruning both intron subtrees and



intron nodes reduces the computation times of the cluster gp and simple gp

algorithms by approximately 50% and 30%, respectively. On the German Credit
data set, which contains the most records, the detection and pruning of both
types of introns reduces the average computation time by over 35% for the
simple gp and over 20% for the cluster gp algorithm.

For future research we are planning to test the intron detection and pruning
technique on larger data sets. As the number of records in a data set increases
the advantage of intron removal should become more apparent. We therefore
think that the intron detection and pruning method will allow gp classifiers to
scale better with larger data sets.
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