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1., The setting

let G = Sp(n,E), the real 2n x2n matrices, preaerving the
standard symplectic form of 22 (see [H] )o let E_ denote the 2nx2n
matriz with exacily one nonzere entry, namely the (k,m)th elemsnt,
which egusls ene. Define :

-1

J = (Ekk + En‘+k,n+k);_- B~ E2n,2n °
=l )

An involutive automorphism of G is given by o (g) = JgJ (g G). The
set of fixed peints ef o~ is a connected Lie subgroup H of G H is
isomorphic te Sp{n-1,R)x Sp(1,R). A Cartan-involution € of G, commting
. with o-, is given by @(g) = tgﬂ'l (geG). The set of fixed points of
& is a meximal compwf subgroup K 61‘ G, isomerphic to the reductive
Lie group U(n).

Define X = G/H. Now X is & semisimple symmetric space of split

rank one and rank one. In this note we give & desintegration of Lz(X)

. -

into subspaces corresponding to certain irreducible unitary repreaentations

‘of G. Especially the discrete part of the spectrum is interesting. ;
The main result is giv@n in Propesition 13; however, mo proofs are
given hers -2 they will eppear elsewhere. The aim of this note is te
give an idea of the moat jimportant erguments and results.

The situation dealt with resembles the one discussed in [D,P] .

Nevertheless, there exist several important differences, We shall return

to this later. From now on we let n>2, the case n=2 being esasier.

2. Some structure theo_::x‘

The Lie algebra of G is & =.6%(n,_lﬁ) (gee [H] ). The differentials

of o~ and O, egain dencted by o~ and @, are involutive automorphisms



of . Tt is easy to see that ov(¥) = JYJ and 6(Y) = Y (Yez). The
+1 and -1 eigenspaces of o- (resp. @) are called /and &z (resp. /
and /é). Now / is the Lie algebrs of H and / that of K. A maximal

abelian subspece 2 of/é ng (and ofy) is given by @ = RL, where
L = Ela;zn + En,n-i—l + En—i-l,n + E2n’1 . let 4 = exp «z and define

A(%) = sink®37%2% cosh®2t o (teR),
Let dk be the Haarmeasure on X, normalized by

Jgak=1. ]
Using the generalized Cartan-decomposition G = KAH one can show that

jx?(x)dx = J‘K \j"':; (k- exp(tL) B) A(t) at dk (P€ p(x))
defines a Ginvariant measure on X. We write Lz(x,dx) = Lz(x). ‘

Iri order te construct a parabolic subgroup of G, we define

P o= {Ye% lad(L) ¥ = mY } y (m=1,2),
K-—*exp(/lﬂ-fz) y
M={neHlaa(r)L =L } ’
n-1l : _
w = - By * EBpure,neic? ¥ 1,20 * Bon,1 = Fapnnd ™ Poayn

Then we K and w centralizes A. One computes that dimg; =m) = 4(n-2}
and d.i:né?2 =m, =3; let @ = %ml +m, = 2n-1. It is essy to check

that MAN is a parabolic subgroup of Gj hera M = ¥ u wi. Define two
characters 'KO and % ; of ¥ by’XO = 13 ’X,l(m) = —‘)(_l(wm) =1 (meM),

fhese characters are used to define certain induced representations of G.

3. The model

Bow we give a model for X, which is extremely useful for explicit

computations; also the H-orbit structure on this model can be neatly

-

described: see Lemma 2, Define, for k=0,2 3



4,B,C real nxn matrices; B,C skew }

ae{e- (0 o)

X, is & manifold and G acts on it by g-x = ‘s_a;xg'1 (xexk, geG). First

symmetric; rank x = 25 trace x = k

we consider K2; we shall return to XO later on. let x° = En,n + EZn,Zﬂ’
an element of Xz. As is eagily asen, the stabilizer of xo in G is -
equal to H and furthermore we have: ‘
Lenma lf X and Xé are diffeomorphic.
From now on we identify X and 12,
In order to give a description of the H-orbit structure on X,
we introduce a real anslytic function @ on X by Q(x) = Xn (z__ denoting
the (n,n) entry of the matrix x in X). Using the definition
x(e) ={xex|Q(x)=c} | | (ceR)

we have 2 :, :
Lemma 2 {7) For ¢ # 0,1 X(c) is a (4n-5) Qimensional H-orbit.

(.2) X(0) consists of two H-orbits @ H’(Ell + Eﬁl + En+];,n+1 +
E, +1’2n) = D, and x(0)- s Of dimension 4n-5 and 4n-8 resp.
(.%) %(1) consists of three H-orbits : {xo} ’ E°(Eli +E  +
Foy1,on * By on) = Dy 20 X(l)-Dl—{xo} , of dimension
0, 2n-1 and 4n-5 resp.

4. The mepping M

Loogely speaking, the mapping M gives the mean over the subsets
X(c) of & function on X. Using M, certain differential operators on
X can be viewed as linear differential operators on iR, The mapping M
ig defined as follows s for Q€ (X}, M(P is the function satisfying
£ Fa) @ @) ax = [ F(t) %p(s) as
for all FE& cc(n). Let & = M(D(X}}. Then we have :

Lemma 3 20 consists of all funciions £ of the form




() = fo(t) + fl(t) Y(t) t + fz(t) Y{(t-1) ('9-1)2“'3 (teR)

with £, € D(R) (k=0,1,2).
Here Y(t) = 1 for t >0 and ¥($) = 0 for t<0.

If 3 is equipped with a topology- similar to the one described

in {F] , Appendix, then K becomes a continuous mapping. The dual M!
of M maps 3€¢ into D*(X). 4 crucial result, which is not true for
all rank one spaces, is given in
Theorem 4 M'(3C') consists. of all H-invariant distributions.

For the proof of this theorem one can use the model, given before.

R 5. The spherical distributions

We shall determine the so-called spherical distributions, i.e. the
Heinvariant eigendistributions of the laplace-Beltrami-operator on X, This
differential operater [1 is, at least up to a scalar, determined by
the Casimir-element of G. The scalar is implicitly given by
Lemma § If F¢ CZ(E{), then [J (F+Q) = (LF)Q, where L is the second

order differential operator on B defined by
2
L = at(t-1) & + 8(mt-1) & .
dtz dt '
D generates the ring of G-inv&.riant differential operators on X.
We define for complex hN
Dty (%) = { TeD'(X) | * B-invariant, (] T = )\T} ,
A,H B
the space of spherical digtributions. Using Theorem 4, we transfer
’éheae to elements S of J2', satisfying IS = A S, This leads to the
following definitions, for s €, r € {0,1,2,...} and tel s
sT(e) = B ( -1, g+ 5 235%.)

53(4) “{25'1( 3(g+s) #(g-s) 5 g1 4 1-t ) Ebii
5 <



%) ={2F1( Bee) s Bge) 524t ) (t<0)

- | (>0)
- (3(ers)) [ (3{g-s))

“(s) = [Glgre)) T (ole-

(%(8-§+4))r(vi{-s-g+4))r(g-2) r'(g-l)

ot(s) = (@-2) (g—s-2) /4 .
Note that ST is a Jacobi polynomial of degree r, oL(+(§-2)) = 0
and ol (s) = O for & e{-i—l *’3""’*(3'2)}

Using the Lebeague measure dt on B, S°, ss and S° can be
considered as elements of X' We also define two delta-like elements
E® ana B° of 3° : let £ € €, then

() = £(0)

2n-4
B(£) = 57 b(s) f<k><1)/r(k+1) :
k=0

(g-k-2)T (3(g-s-2)) [ (3(g#a-2))
[ (1) [M(g-2) [ (Bg-5-2x-2)) (#(pre-2u-2)) *

for ke{o,l,z,...,zn-4} ; of. [K,D] , Appendix, After all these

bk(s) =

preparations we can sta.jte
Theorem 6 let N = 82-g2 with 8¢ €, Be 8300 Let us write R(s) =
{M!(Q{.(syS:’ + Es), ﬁ?(- G’L(s) gf + Es)}.
(7) i s {geg+2,g*4,-Q»-} , then D'\’H(x) is two-
dimensional and has basis R(s).
(2) 1f 8 = §+2r (with re {0,1,2,...}-), then D')\’H(X)
is three-dimensionsl and has basia R(s)u {M's"} .
Observe that the dimensions differ from those for the spaces treated
by [F] (dimension neerly always 1, sometimes 2) and by [ X, ]
(dimension always 2). Furthermore, for s = §-2 the basis consists

of two de_zlta—like distributionas this causes & strange phenomencn,

discussed later on.



6. The representations

We give a construction for some representations of G, which are
important for the Plancherel formula. For this purpose we use the
set X,, given before (see p. 4). It is perfectly possible to describe
the representations éntirely in terms of induced representations,

but it is more convenient to nave a model for G/MN at one's disposal.

a = 0 _ . -
Define = = X, and 3 -E B on ™ B * Fantl " Bnaan t
En+l,n+1 + E2n,1' - E2n,2ri
to G/MN, MN being the stabilizer of go in G. From now on, let

s an element of -_:. Now _:_ is diffeomorphic

sel a.ndje{o,l}.nefine :
{f €0 ( 2 )1 £(em exp(t1)-E )= Ky le > 0637

E;} S(E) = —
! for all ge G, mec M and t&R.

We have :
Lemma 7 If § € -, then there are keK and t€R with £=k exp(tL)ogo,'
4 being unique and k being unique modulo KN M. '

Using this lemma we can identify Ej,s( = Jand C;O(B), where
- {k-%ol kek ] ,
C;O(B) -{trec”(®)] f(--ln)__,w'&l);‘i £(b) for all beBl.
Of course, B is isomorphic to K/j(KhH).}h this way Ej,s(“z )
iﬁherits a topology. -

Now we define the representation Tia the space Ej s( = )by
¥ ]

: _ -1 - -
(re; (&) £) (;) -f(‘g‘ ‘%) (ge6, teB; (=), §e2).
'TUj s is a representation of G induced by a character of AN, Let
. . ,
7c!  be the representation on (Ej «-s( = ))* contragredient to TS g
I I f It

¢
For later use we mention a non-degenerate G-invariant bilinear

form < - ; + > on E'j’s( =) xEJ.’_S( Z'), defined by
<gu>= [5£(0) n(b) @b (feE; (T), beB; (Z)).

Here the measure db on B is K-invariant and satisfies

fgap=12.



7. Construction of <. 5
§

We construct certain spherical distributions l‘;j g+ intimately
H

connected with the representations th s just now defined.
9

For xeX and & & =, write (x,£) =% trace(x € ). Define for
s¢ €, BHe s>g, feEj'_s(:), je{o,l} : )
ay () = [ Gog2ei)) ™ [0 He B agntc0)) £(0) v .
Lemma 8 Fix f and j. Then the function s b3 u, s(f) is analytic on
: . b ]
{s €€ |Re s >g} and can be analytically extended to €,

Denoting this extension again by u, (£), we have that us g
9 t Adl

ig an H-invariant element of (EJ s( E J)t for all s€€.
yo
Now we come to the definition of G j' o flet j¢ 10,1} and 5€€, then
®
. = H . . € .
B olP) =<y (P)uy g0y o> (¢ en(e))
We have 3 '
Theorem 9 For je{o,l} and s &, C ., is in D‘)\ (X) with A= az- 2.
JiB 1:! S
So I;J. . is a spherical distribution.
9
In & similar way one can define the Fourier transforms and the
intertwining operators {cf. [F] and [K,D] ). However, they are

not necessary for atating our results and therefore we shall omit

the definitions hers.

8. Asymptotics.

In order to belong to the relative discrete series of X (i.e.
occur as a discrete summand in the Planchersl formula), it is
necegsary for a spherical distribution to have a certain asymptotic
behaviour, cf. [ D,P]f and [K] . More precisely, we have :
Theorem 10 Iet TC be a unitary repreagentetion of G on a Hilbert

subspace of L2(X). Iet T be its 'reproducing distribution’



and assume that T is in B')\ H(X) for & certain A = 32-32,
-

with s¢ € and Re s >0, Then 36{1,3,5,...} and
(7) if s e {1,3,,.,,?4} ,then T is a multiple of M'ES,
(Z) if 8 = g-2, then T is & linear combination of

#0592 ang M'ES?,
(S) if & = gior (with v € {0,1,2,... § ), then T is

. ; r
a multiple of M' ( S |(0’1) +
-1 -2)[ (x41)

9 BT )
[ (gr)

Furthermore, using intertwining operators one can express

- ‘;,J’g+2r " (_1)r+1 r(
(g+r-1) (r+l) _

?:j,s (je {0,1} , € ®) in the basis elements given in Theorenm 6,
For this purpose it appears to be sufficient to consider two special
K-types. We take the trivial orie and the K-type corresponding to
a representation % of K, that contains é, unique vector v which is
KnM-fixed and satisfies T (w) :v = —v. Such & representation of
U{n) (which is isomorphic to K) is given by (T,V), where V is the
space of complex skew symmetric nxn matrices and where U(n) acts
by (k) Y=k Y Yy (keU(n), YeV). For these two K-types very
explicit computations are possible, of. [ K,D]. Instead of giving
all numerical results, we atate |
Theorem 11 let s €T with Re 5 20. |
(7) It 8 & {1,3,5,0. 1 . C  and ﬁl’s are linearly
independenf. |
(Z) If s¢ {1,3,...,g-4} ‘Co,s p.nd‘ql’a are nonzero,
but coincide up to a scalar (see p.12, comment .Z ).
(2) Co,g-z = 0. However, §1,g-2 and (d/dt)ltgg_a'co’t
are linearly inaependent {notice that this last
distribution is in DYy y(X), with N = (g_2)2'_§2)

(£) let s ¢ {g,gw,_...} 5 then C-"O,s =C’l,s = 0, but



=10-

(a/a8)], Qo 4 and (4/a8)] T, , eve linearly
independent.

For ekample, one shows 3
O (-1 we(e8? + 8079,
T, 02 %I—(n)r(n-l) (-1)" (g—a)"l we(RR2 - 592)

These distributions will play an important role in what follows.

9. The c-functions

We shall define the c-functions ¢, ( } (§=0,1), the analogues

of Harish-Chandra's c-function; The c-functions occur in the asympiotic
behaviour of the distributions T, . (of. [ F], p.409) and cen be
explicitly computed :

oo(s) = 282 () [ (a-1) 5[ () /[ (Blew1)) [(B(svg-2))

c (s) = -2 ey(a) / (s+g—2) - | (sec) .
These functions are determined up to a scalar, coming from thé
choice of the measure dx on X. waéver, more important for the
Plancherel formula is the set of poles of l/bj(s)cj(—s) (3=0,1),
.and for this set the scalar does not matter. One easily checks 3
Lemma 12 The poles of the functioﬁs l/cj(s)cj(-s) are situated

in the odd integers (j=0,1). Both 1/5‘(s)c (-s) and

1/6 (a)c {-s) have first order poles 1n.-{+i.+5,...,+(e~4j}

and second order poles 1n,'{+e,+(e+2),...}- Furthermore,

. l/bo(s)co(-s) has a second order pole in g-2, whereas

l/bl(s)cl(aa) has a first order pole in g—é.

10, The P;ancheral‘fdrmula

Before stating the main result of this note, the Plancherel

formula for the space X, we introduce some notations, Define



=11-

223 (@) (@-1) w2 .
Define ¢, % @, (for @ ,,¢, in D(X)) as in [ F] , p.425. Let
a_l(f(s),so) denote the residue of the mercmorphic function f£(s)
in g, and write a_z(f(s,),so) = a_l(f(s)(s-so),so). let r € {0,1,2,...} .
We define the spherical distribution @r for even r by
n+l r
=@r=-(d/d“it=e+zrfo,t + 310" (@) (a-1) (p42)(gee-1) W'S
and for odd r by S ' N
. n
O, (/a¥)] 4 prar Sy, + 2T @I (@-2) ws™
These distributions are nonzero multlples of those ‘mentioned in

Theorem 10 (. %), cf. [F] , chapter 8.

Now we can giire the Plancherel formula for the space X :

Proposition 13 let ¢ € D(X). Then.
C"lfx Lo (x)|2-

t-:o iy (‘P:ﬂ:q’) Cl,p’ (p ‘P)}

2T JV=0 | 0(1\? )co( -iv) cl(lv)el(-l\))
-1
Z . or ) r | ( . __)
r=-n+l cl(S)cl(--S) g+ ‘=1’g+2r LP#(P +
3 |

( —— 2 ) ( -) .
r=0 ‘3_2: cy(s)ey(-8) g O (p#? +
r even
0o _
E;__l_ 3'-2( - (s)c ’ §+2r ) @ (CP#CF) .
r odd

" Phat this is the Plancherel formula for X means among other things,
that all distributions occurring in the right band side are extremal
in the cone of positive definite spherical distributiona with the
corresponding eigenvalue. So they are the 'reproducing distributions'
of irreducible unitary representations of G, except for -possibly-

the distributions ‘ij,j o {3=0,1).
. }
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11, Some commenisg

The proof of the formule itself is along the same lines as

that in [F], p.424-428. An important step is the deseription
of the H-inveriant distributions T on X that satisfy the equation
%)

Or oAt =5G°) (Xet;d(x°) is the Dirac d-function at
One can show, that fqr T & {-—n+1,-n+2,...,-—2} H

a_y( Vey(edog(-s) » g32r )Co,g-»zr =

?’-1( 1/c1(8)cl(-'-s), , gr2r )Cl,gﬂr .
Theorem 10 is crucial for the proof xof Proposition 13. One
gees that all distributions msntioned there indeed occur in the
Plancherel formula, except for M'(EQ"2 + ¥87?), In fact, using
K-fizxed functions, one can show that the distribution
i (E82 - £€72), occurring in the Plancherel formula (it is
a miltiple of Cl’ g_2), is extremal. Here the situation is
quite different from those described in [F] and [K,DJ .
It would be interesting to know the complete set of positive
definite spherical distributioﬁs. In particular, I do not
know whether M‘(Eq-z + %’9-2) is positive definite or not.
The reader should compare Proposition 13 with the results of

Oshima, see for instance [0_] .
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