LIACS — Second Course . .. \/II

Chapter 7

Other language classes

VII 1 other language classes

7.1 Context-sensitive languages
7.2 The Chomsky hierarchy
7.3 2DPDAs and Cook’s theorem

7.1 Context-sensitive languages

VII 2

context-sensitive

CS

T heorem

context-sensitive G = (V, >, P, S)
productions aBy — afy
BeV,apB,ye(VUX)* BFc¢

(o, B,v) — B B — B in context (o,)
rewriting £&1aBvé> = £1a6vEo
L(G)={weX*|S="w}

VII 3 example CS grammar

S — ABSc {a""c" |n>1}in CS - CF
S — Abc
BA - XA BA = XA= XB= AB
XA — XB
” S = ABSc = ABABScc =* (AB)" 15671 =
XB — AB
Bb — b (AB)" 1 Abc" = A(BA)" Lo =+

A a A(AB)" 2 ABbc™ =
A(AB)" 2 Abbc™ = AA(BA)"2bbc™ =*
AA(AB)" 2bbc™ = AA(AB)" 3 ABbbc"™ =
AA(AB)" 3 Abbbc™ = AAA(BA)"3bbbc" =*

ATH e =* ghtpn e

Example 7.1.1

VII 4 length-increasing

MON

length-increasing (monotone)
G — (V7 Z) P) S)
productions a« — g € P | < |8

rewriting v1ay> = 16792
LG)={weZ*| S=*w}

EXx. S—aB5Sc
S — abc
Ba — aB
Bb — bb

L(G)={d"P"c"|n>1}

Example 7.1.2

VII 5 MON and CS

Thm. length-increasing iff context-sensitive
MON=CS CDE — JKLMN

CDE — X1DE
X1DE — X1 XoF
X1 XoFE — X1 X0X3
X1 Xo0X3 = J X2 X3
JXoX3 = JK X3
JKX5 — JKLMN

special symbols X; used here only
only one production for X;

reorder steps
a1CDEB1 = a1 X1 DEB| =" as X1 DEB> = ar X1 XoE B>
a1 = ar DEB1 =" DEfB>
a1CDEB1 =* a1CDEB> = a1 X1DEB> = a1 X1 X>EB> =* a>X1DE S35

etcetera
Theorem 7.1.3

VII 6 L BA

LBA linear-bounded automaton
one-tape nondeterministic Turing machine
with tape markers > <« (4, b)
~ linear space TM

Thm. CS C LBA

introduce ‘tracks’
technically 22 ~» 22 X 21 X 2.5
new alphabets >,

simulate derivation steps nondeterministically

Theorem 7.1.4

VII 7

LBA ~~ CS

Theorem 7.1.5

Thm. LBA C CS

basic simulation

>abX gaBaA< in state ¢ reading a
LBA MON
move right 6(p,X) =(q,Y,R) pX — Yyq
stationary 6(p,X) =(q,Y,S) pX — qY
move left 6(p,X) =(q,Y,L) ZpX — qZY

state ¢ and markers >, < have to disappear

need composite symbols
combine with neighbouring tape symbol

[pX], >X], [X<], [p>X], [PpX], [pX<], [Xpd],
[p>X <], [PpX<], [PXp<]
>abX gaBaA<d ~ [pa]lbX [qa] Bal[A<]

add many cases for the rules

VII 8 simulate LBA by MON
initialize tape (a € X)
S — [goraq] | [gora] S1
S1 — a5y | [CL<1]

cases move right 6(p, X) = (q,Y, R) (X #p)
pXZ.. = .YqZ.. pX|Z — Y [qZ] + variants
>pXZ .. =Y qZ .. >pX] Z — [pY] [gZ]
WpXZA= ..YqZ< pX][Z<] =Y [qZ4]
>pX 74 = bY qZ< >pX] [Z<] — [PY] [gZ4]
. pX<d=..Yq<q pX<] — [Ygq] (l.e., Z=<)
>pX<d = >Yqd >pX<] — [PYg<]

at left marker 6(p,>) = (gq,>, R)

[p>Z] — [>qZ]

[p>Z<] — [>qZ<]
halt and clean
h>X]Y — X[Y'$]
X$]Y — X[V9]
X$][Y<] — XY
h>X<] — X
Theorem 7.1.5 h>X][Y<] — XY

(etcetera)
* stationary 6(p, X) = (q,Y,S)

[pX] — [qY] 4+ variants
bpX] — [>qY] [pX<] = [qY<] [PpX<] — [pqY <]

* move left 6(p, X) =(q,Y,L) (X # <)
Z[pX] — [¢Z]Y + variants
>Z][pX] = [bqZ]Y Z[pX<] — [¢Z][Y<] [Z][pX<] = [peZ][Y q]

LpX] = [g> Z]Y [ppX<] — [g> Z][Y <]

6(p,<) = (g,<, L)

[Zp<] — [qZ<] [Zp<] — [>qZ<]

VII 9 recursive

Thm. Every CSL is recursive

x € L is decidable
technically: by an always halting TM

generate all strings up to length |z|

Theorem 7.1.6

VII 10 diagonalization

Thm. CSL C REC [strict]
diagonalization

fix alphabet {0, 1}

(effectively) enumerate all CSG's G;.
(effectively) enumerate all strings z;.

define L C {0,1}* =z, € L iff z; € L(G;)

x; € L is decidable as z; ¢ L(G;) is decidable.
L # L; for all 2

Theorem 7.1.7

twenty boxes contain six bombs
opening a box with a bomb will detonate it

how can you ‘prove’ that box number one contains a bomb,
that is, without opening it

use a nondeterministic approach

IS not a practical approach

VII 11

complement

nondeterminism

Theorem 7.1.9

T hm.

Prf.

Immerman and Szelepcsényi (1988)
CSL closed under complement

configuration:

state, tape contents, position head
on |x| = n, at most C = |Q||"|"(n +2) moves
accept with empty tape: gg>z< H* h>B"«

1. count reachable configurations
2. complementation
3. implement on LBA

. input: x string,

R number of reachable configurations

accept x when not accepted by M,

when R different configurations +, not h>B"«q,
can be guessed together with computation
go D> xA ¥~

VII 12 counting configurations

inductive counting

1. R; configurations reachable in at most ¢ steps
(from ¢gg > x<)
Ro=1
Rj ~ Riyq

r = 0 counter

for each configuration g

check all possible predecessors (as follows)
guess R, different configurations ~ together
with computation in < moves

if vy=p5 or v+ B then r4+4

(when the guesses do not work, nothing is
accepted)

VII 13 implementation

3. add ‘track’ to tape
linear bounded (~ linear space TM)

technically 22 ~» 22 X 21 X 2.5
new alphabets >,

store number of configurations,
at most C' = |Q||l""(n + 2)

nlg |l +19|Q| + lg(n + 2) bits linear

generate different configurations
(in lexicographic order)

7.2 The Chomsky hierarchy

7.3 2DPDAs and Cook’s theorem

VII 14 2DPDA

2DPDA push-down automaton
deterministic, two-way, endmarkers > < (4, b)

M — (Q? Z? |_7 D? 47 57 QO7 207 F)

Q finite set states

> input alphabet

[tape alphabet

>, < tape endmarkers (not in X)

go € Q initial state

Zo € ' initial stack symbol

F C @ final states

9 (partial) transition function

0:Qx(ZUfo,qah) xIN=>Q x{-1,0,1} xTI*

6(q,a,X) = (p,j,)
NO e-MoOves

VII 15 copy

Ex. {012"|i>1} in 2DPDA - CFL

check input belongs to { 0%1% |3 > 1 }2*
as ordinary (deterministic) PDA

return to left tape marker
check input belongs to 0*{ 1'2* |3 > 1}

open: is CFL C 2DPDA 7

VII 16 copy

Ex. {ww|we {0,1}*} in 2DPDA - CFL

find middle
move left: push length on stack
move right, pop two symbols every step

copy second half on stack
move right, from middle to end

find middle
again, see above, on stack above w

compare 1st half (tape) with 2nd half (stack)
note direction

Example 7.3.2

VII 17 pattern matching

abaabbababcabb

Ex. {zcy |z € {a,b}*, y subword of =z } in 2DPDA

pattern matching:. pattern y, text x
find match: move y along x
here:
move x over y

Example 7.3.3

> a b ba b b a b a b
[]

C

1O

a b a <

Z

A
A
bz
abbabbababZ

abbabbababZ
abbabbababZ
bbabbababZ
babbababZ
babbababZ
bbabbababZ
abbabbababZ
bbabbababZ
bbabbababZ

find ¢

store x

find c
check
mismatch

restore x

pop letter x
check, mismatch .

VII 18 Cook

A 2DPDA can be simulated in linear time on
a RAM.

Theorem 7.3.4

VII 19 closure properties

RLIN CF MON TYPEO

REG DPDA PDAe DLBA LBA REC RE
intersection + — — + + + +
complement -+ + — + + + —
union + — + + + + +
concatenation + — + -+ + + +
star, plus - — + + + + +
e-free morphism + = - + + L +
morphism + — - - — — +
inverse morphism + + + — -+ H[E o
intersect reg lang + + + — -+ H[E o
mirror 4 — + + + + +

fAFL fAFL AFL AFL AFL fAFL

N U boolean operations
U - * regular operations

h h~1 NR (full) trio operations

2FLT

transparencies made for

Second Course in
Formal Languages and
Automata Theory

based on the book by Jeffrey Shallit

of the same title

Hendrik Jan Hoogeboom, Leiden
http://www.liacs.nl/~hoogeboo/second/

http://www.liacs.nl/~hoogeboo/second/

