

Chapter 7

Other language classes

- 7.1 Context-sensitive languages
- 7.2 The Chomsky hierarchy
- 7.3 2DPDAs and Cook's theorem

7.1 Context-sensitive languages

CS

context-sensitive
$$G = (V, \Sigma, P, S)$$

productions $\alpha B \gamma \to \alpha \beta \gamma$
 $B \in V$, $\alpha, \beta, \gamma \in (V \cup \Sigma)^*$, $\beta \neq \epsilon$
 $(\alpha, B, \gamma) \to \beta$ $B \to \beta$ in context (α, γ)
rewriting $\xi_1 \alpha B \gamma \xi_2 \Rightarrow \xi_1 \alpha \beta \gamma \xi_2$
 $L(G) = \{ w \in \Sigma^* \mid S \Rightarrow^* w \}$

$$S \to ABSc$$

$$S \to Abc$$

$$BA \to XA$$

$$XA \to XB$$

$$XB \to AB$$

$$Bb \to bb$$

$$A \to a$$

$$\{ a^{n}b^{n}c^{n} \mid n \geq 1 \} \text{ in CS - CF}$$

$$BA \Rightarrow XA \Rightarrow XB \Rightarrow AB$$

$$S \Rightarrow ABSc \Rightarrow ABABScc \Rightarrow^{*} (AB)^{n-1}Sc^{n-1} \Rightarrow$$

$$(AB)^{n-1}Abc^{n} = A(BA)^{n-1}bc^{n} \Rightarrow^{*}$$

$$A(AB)^{n-2}ABbc^{n} \Rightarrow$$

$$A(AB)^{n-2}Abbc^{n} = AA(BA)^{n-2}bbc^{n} \Rightarrow^{*}$$

$$AA(AB)^{n-2}bbc^{n} = AA(AB)^{n-3}ABbbc^{n} \Rightarrow$$

$$AA(AB)^{n-3}Abbbc^{n} = AA(BA)^{n-3}bbbc^{n} \Rightarrow^{*}$$

$$AA(AB)^{n-3}Abbbc^{n} = AAA(BA)^{n-3}bbbc^{n} \Rightarrow^{*}$$

$$A^{n}b^{n}c^{n} \Rightarrow^{*} a^{n}b^{n}c^{n}$$

MON

```
length-increasing (monotone)
        G = (V, \Sigma, P, S)
        productions \alpha \to \beta \in P |\alpha| \le |\beta|
        rewriting \gamma_1 \alpha \gamma_2 \Rightarrow \gamma_1 \beta \gamma_2
        L(G) = \{ w \in \Sigma^* \mid S \Rightarrow^* w \}
Ex. S \rightarrow aBSc
        S \to abc
        Ba \rightarrow aB
        Bb \rightarrow bb
        L(G) = \{ a^n b^n c^n \mid n \ge 1 \}
```

Thm. length-increasing iff context-sensitive $CDE \rightarrow JKLMN$

MON=CS

$$CDE \to X_1DE$$

$$X_1DE \to X_1X_2E$$

$$X_1X_2E \rightarrow X_1X_2X_3$$

$$X_1X_2X_3 \rightarrow JX_2X_3$$

$$JX_2X_3 \rightarrow JKX_3$$

$$JKX_3 \rightarrow JKLMN$$

special symbols X_i used here only only one production for X_i

reorder steps

$$\alpha_1 CDE\beta_1 \Rightarrow \alpha_1 X_1 DE\beta_1 \Rightarrow^* \alpha_2 X_1 DE\beta_2 \Rightarrow \alpha_2 X_1 X_2 E\beta_2$$

$$\alpha_1 \Rightarrow^* \alpha_2 \qquad DE\beta_1 \Rightarrow^* DE\beta_2$$

$$\alpha_1 CDE\beta_1 \Rightarrow^* \alpha_1 CDE\beta_2 \Rightarrow \alpha_1 X_1 DE\beta_2 \Rightarrow \alpha_1 X_1 X_2 E\beta_2 \Rightarrow^* \alpha_2 X_1 DE\beta_2$$

etcetera

VII 6

linear-bounded automaton

one-tape nondeterministic Turing machine with tape markers $\triangleright \triangleleft (\sharp, \flat)$ \sim linear space TM

Thm. $CS \subseteq LBA$

introduce 'tracks' technically $\Sigma \leadsto \Sigma \times \Sigma_1 \times \Sigma_2$ new alphabets Σ_i

simulate derivation steps nondeterministically

VII 7 LBA ↔ CS

Thm. LBA \subseteq CS

basic simulation

 $\triangleright a b X q a B a A \triangleleft$ in state q reading a

LBA

MON

move right $\delta(p,X) = (q,Y,R)$ $pX \to Yq$

stationary $\delta(p,X) = (q,Y,S)$ $pX \to qY$

move left $\delta(p,X) = (q,Y,L)$ $ZpX \rightarrow qZY$

state q and markers \triangleright , \triangleleft have to disappear need composite symbols

combine with neighbouring tape symbol

$$[pX]$$
, $[\triangleright X]$, $[X\triangleleft]$, $[p\triangleright X]$, $[\triangleright pX]$, $[pX\triangleleft]$, $[Xp\triangleleft]$,

$$[p \triangleright X \triangleleft]$$
, $[\triangleright pX \triangleleft]$, $[\triangleright Xp \triangleleft]$

 $\triangleright a b X q a B a A \triangleleft \leadsto [\triangleright a] b X [qa] B a [A \triangleleft]$

add many cases for the rules

cases $...pXZ... \Rightarrow ...YqZ...$ $\triangleright pXZ ... \Rightarrow \triangleright YaZ ...$ $...pXZ \triangleleft \Rightarrow ...YqZ \triangleleft$ $\triangleright pXZ \triangleleft \Rightarrow \triangleright YqZ \triangleleft$ $..pX \triangleleft \Rightarrow ..Yq \triangleleft$ $\triangleright pX \triangleleft \Rightarrow \triangleright Yq \triangleleft$

initialize tape
$$(a \in \Sigma)$$
 $S \to [q_0 \triangleright a \triangleleft] \mid [q_0 \triangleright a] S_1$
 $S_1 \to aS_1 \mid [a \triangleleft]$
move right $\delta(p,X) = (q,Y,R)$ $(X \neq \triangleright)$
 $[pX] Z \to Y [qZ] + variants$
 $[\triangleright pX] Z \to [\triangleright Y] [qZ]$
 $[pX] [Z \triangleleft] \to Y [qZ \triangleleft]$
 $[pX] [Z \triangleleft] \to [\triangleright Y] [qZ \triangleleft]$
 $[pX \triangleleft] \to [Y q \triangleleft]$ (i.e., $Z = \triangleleft$)
 $[\triangleright pX \triangleleft] \to [\triangleright Y q \triangleleft]$
at left marker $\delta(p,\triangleright) = (q,\triangleright,R)$
 $[p \triangleright Z] \to [\triangleright qZ]$
 $[p \triangleright Z \triangleleft] \to [\triangleright qZ \triangleleft]$
halt and clean
 $[h \triangleright X]Y \to X[Y \$]$
 $[X \$]Y \to X[Y \$]$
 $[X \$][Y \triangleleft] \to XY$
 $[h \triangleright X \triangleleft] \to X$

(etcetera)

* stationary $\delta(p, X) = (q, Y, S)$

$$[pX] o [qY] + \text{variants}$$
 $[\triangleright pX] o [\triangleright qY] ext{ } [pX \lhd] o [qY \lhd] ext{ } [\triangleright pX \lhd] o [\triangleright qY \lhd]$

* move left $\delta(p, X) = (q, Y, L)$ $(X \neq \triangleleft)$

$$\begin{split} Z[pX] &\to [qZ]Y &+ \text{variants} \\ [\triangleright Z][pX] &\to [\triangleright qZ]Y & Z[pX \lhd] \to [qZ][Y \lhd] & [\triangleright Z][pX \lhd] \to [\triangleright qZ][Y \lhd] \\ [\triangleright pX] &\to [q \triangleright Z]Y & [\triangleright pX \lhd] \to [q \triangleright Z][Y \lhd] \end{split}$$

$$\delta(p,\triangleleft) = (q,\triangleleft,L)$$

$$[Zp\triangleleft] \to [qZ\triangleleft] \qquad [\triangleright Zp\triangleleft] \to [\triangleright qZ\triangleleft]$$

VII 9 recursive

Thm. Every CSL is recursive

 $x \in L$ is decidable technically: by an always halting TM

generate all strings up to length |x|

Thm. CSL ⊂ REC [strict]

diagonalization

fix alphabet $\{0,1\}$ (effectively) enumerate all CSG's G_i . (effectively) enumerate all strings x_i .

define $L \subseteq \{0,1\}^*$ $x_i \in L$ iff $x_i \notin L(G_i)$

 $x_i \in L$ is decidable as $x_i \notin L(G_i)$ is decidable.

 $L \neq L_i$ for all i

twenty boxes contain six bombs

opening a box with a bomb will detonate it

how can you 'prove' that box number one contains a bomb, that is, without opening it

use a *nondeterministic* approach

is not a practical approach

nondeterminism

Immerman and Szelepcsényi (1988)

Thm. CSL closed under complement

configuration:

state, tape contents, position head on |x|=n, at most $C=|Q||\Gamma|^n(n+2)$ moves accept with empty tape: $q_0 \triangleright x \triangleleft \vdash^* h \triangleright B^n \triangleleft$

- Prf. 1. count reachable configurations
 - 2. complementation
 - 3. implement on LBA
 - 2. input: x string,

R number of reachable configurations

accept x when not accepted by \mathcal{M} , when R different configurations γ , not $h \triangleright B^n \triangleleft$, can be guessed together with computation $q_0 \triangleright x \triangleleft \vdash^* \gamma$

inductive counting

1. R_i configurations reachable in at most i steps (from $q_0 \triangleright x \triangleleft$)

$$R_0 = 1$$
$$R_i \leadsto R_{i+1}$$

r = 0 counter

for each configuration β check all possible predecessors (as follows) guess R_i different configurations γ together with computation in $\leq i$ moves if $\gamma = \beta$ or $\gamma \vdash \beta$ then r++

(when the guesses do not work, nothing is accepted)

3. add 'track' to tape linear bounded (\sim linear space TM)

technically $\Sigma \leadsto \Sigma \times \Sigma_1 \times \Sigma_2$ new alphabets Σ_i

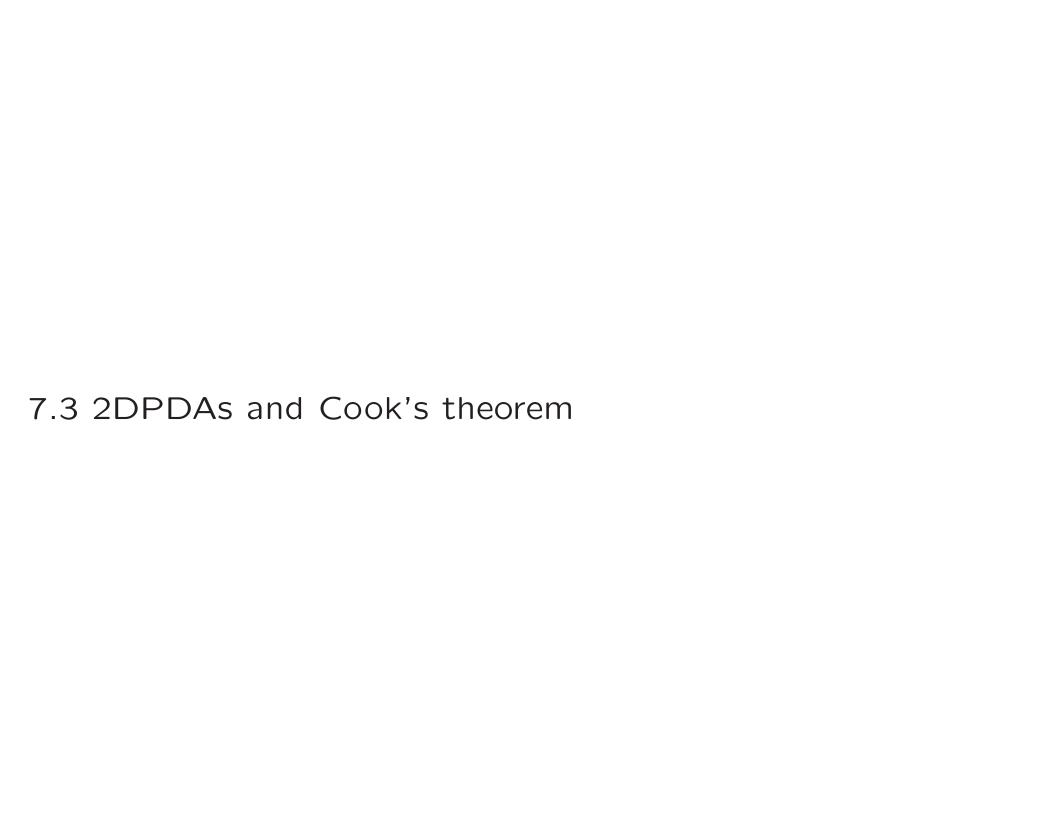
store number of configurations,

at most $C = |Q||\Gamma|^n(n+2)$

 $n \lg |\Gamma| + \lg |Q| + \lg (n+2)$ bits linear

generate different configurations
(in lexicographic order)

7.2 The Chomsky hierarchy



VII 14 2DPDA

2DPDA push-down automaton deterministic, two-way, endmarkers ▷ ▷ (♯, ♭)

$$\mathcal{M} = (Q, \Sigma, \Gamma, \triangleright, \triangleleft, \delta, q_0, Z_0, F)$$

Q finite set states

 Σ input alphabet

Γ tape alphabet

 $\triangleright, \triangleleft$ tape endmarkers (not in Σ)

 $q_0 \in Q$ initial state

 $Z_0 \in \Gamma$ initial stack symbol

 $F \subseteq Q$ final states

 δ (partial) transition function

$$\delta: Q \times (\Sigma \cup \{\triangleright, \triangleleft\}) \times \Gamma \rightarrow Q \times \{-1, 0, 1\} \times \Gamma^*$$

$$\delta(q, a, X) = (p, j, \alpha)$$

no ϵ -moves

Ex. $\{\ 0^i1^i2^i\ |\ i\geq 1\ \}$ in 2DPDA - CFL check input belongs to $\{\ 0^i1^i\ |\ i\geq 1\ \}2^*$ as ordinary (deterministic) PDA return to left tape marker check input belongs to $0^*\{\ 1^i2^i\ |\ i\geq 1\ \}$

open: is $CFL \subseteq 2DPDA$?

VII 16

```
Ex. \{ww \mid w \in \{0,1\}^*\} in 2DPDA - CFL find middle move left: push length on stack move right, pop two symbols every step copy second half on stack move right, from middle to end find middle again, see above, on stack above w compare 1st half (tape) with 2nd half (stack) note direction
```

```
abaabbabab c abb
```

Ex. $\{xcy \mid x \in \{a,b\}^*, y \text{ subword of } x\} \text{ in 2DPDA}$

pattern matching: pattern y, text x

find match: move y along x

here:

move x over y

\triangleright	a	b	b	a	b	b	a	b	a	b	c	a	b	a	\triangleleft		
																Z	find c
																• • •	
																Z	
																Z	store x
																bZ	
						•										• • •	
																abbabbababZ	
																	find c
																abbabbababZ	
																abbabbababZ	check
																bbabbababZ	
																babbababZ	mismatch
																babbababZ	restore x
																bbabbababZ	
																abbabbababZ	
																bbabbababZ	pop letter x
																	check, mismatch

VII 18 Cook

A 2DPDA can be simulated in linear time on a RAM.

	RLIN		CF		MON		TYPE0
	REG	DPDA	PDAe	DLBA	LBA	REC	RE
intersection	+	_	_	+	+	+	+
complement	+	+	_	+	+	+	_
union	+	_	+	+	+	+	+
concatenation	+	_	+	+	+	+	+
star, plus	+	_	+	+	+	+	+
ϵ -free morphism	+	_	+	+	+	+	+
<mark>morphism</mark>	+	_	+	_	_	_	+
inverse morphism	+	+	+	+	+	+	+
intersect reg lang	+	+	+	+	+	+	+
mirror	+	_	+	+	+	+	+
	fAFL		fAFL	AFL	AFL	AFL	fAFL

 \cap c \cup boolean operations

∪ · * regular operations

 $h h^{-1} \cap R$ (full) trio operations

transparencies made for

Second Course in Formal Languages and Automata Theory

based on the book by Jeffrey Shallit of the same title

Hendrik Jan Hoogeboom, Leiden
http://www.liacs.nl/~hoogeboo/second/