Chapter 4

Context-free Grammars and Languages

4.0 Review
4.1 Closure properties
counting letters
4.2 Unary context-free Ianguages
4.6 Parikh's theorem
pumping \& swapping
4.3 Ogden's Iemma
4.4 Applications of Ogden's Iemma
4.5 The interchange lemma
subfamilies 4.7 Deterministic context-free languages
4.8 Linear languages

4.0 Review

The book uses a transition funtion

$$
\delta: Q \times(\Sigma \cup\{\epsilon\}) \times \Gamma \rightarrow 2^{Q \times \Gamma^{*}}
$$

i.e., a function into (finite) subsets of $Q \times \Gamma^{*}$.
My personal favourite is a (finite) transition relation

$$
\delta \subseteq Q \times(\Sigma \cup\{\epsilon\}) \times \Gamma \times Q \times \Gamma^{*}
$$

In the former one writes

$$
\delta(p, a, A) \ni(q, \alpha)
$$

and in the latter

$$
(p, a, A, q, \alpha) \in \delta
$$

The meaning is the same.

7-tuple

$\mathcal{A}=$			$\left(Q, \Sigma, \Gamma, \delta, q_{0}, Z_{0}, F\right)$
Q	states	p, q	
$q_{0} \in Q$	initial state		
$F \subseteq Q$	final states		
$\Sigma \quad$	input alphabet	a, b	w, x
Γ	stack alphabet	A, B	α
$Z_{0} \in \Gamma$	initial stack symbol		

transition function (finite)

$$
\delta: Q \times(\Sigma \cup\{\epsilon\}) \times \Gamma \rightarrow 2^{Q \times \Gamma^{*}}
$$

$Q \times \Sigma^{*} \times \Gamma^{*}$ configuration
$\left.\begin{array}{l}(p, w, \beta) \quad\left\{\begin{array}{l}p \\ w\end{array} \text { state }\right. \\ \beta \\ \text { input, unread part }\end{array}\right\} \begin{aligned} & \text { stack, top-to-bottom }\end{aligned}$
($p, a x, A \gamma) \vdash_{\mathcal{A}}(q, x, \alpha \gamma)$ iff

computation $\vdash_{\mathcal{A}}^{*}$
$L(\mathcal{A})$ final state Ianguage
$\left\{x \in \Sigma^{*} \mid\left(q_{0}, x, Z_{0}\right) \vdash_{\mathcal{A}}^{*}(q, \epsilon, \gamma)\right.$
for some $q \in F$ and $\left.\gamma \in \Gamma^{*}\right\}$
$L_{e}(\mathcal{A})$ empty stack language
$\left\{x \in \Sigma^{*} \mid\left(q_{0}, x, Z_{0}\right) \vdash_{\mathcal{A}}^{*}(q, \epsilon, \epsilon)\right.$ for some $q \in Q\}$

The basic theorem of context-free languages: Theorem 1.5.6. the equivalence of cfg and pda.

It is due to
Chomsky 'Context Free Grammars and Pushdown Storage',

Evey 'Application of Pushdown Store Machines', and

Schützenberger 'On Context Free Languages and Pushdown Automata' all in 1962/3.

Starting with a pda under empty stack acceptance we construct an equivalent cfg. Its nonterminals are triplets
[p, A, q] representing computations of the pda. Productions result from recursively breaking down computations. A single instruction yields many productions, mainly because intermediate states of the computations have to be guessed.

$$
\begin{aligned}
& \text { nonterminals } \quad[p, A, q] \quad p, q \in Q, A \in \Gamma \\
& {[p, A, q] \Rightarrow_{G}^{*} w \Longleftrightarrow(p, w, A) \vdash^{*}(q, \epsilon, \epsilon)} \\
& \text { productions }
\end{aligned}
$$

$$
S \rightarrow\left[q_{i n}, Z_{i n}, q\right] \quad \text { for all } q \in Q
$$

$$
\begin{gathered}
{[p, A, q] \rightarrow a\left[q_{1}, B_{1}, q_{2}\right]\left[q_{2}, B_{2}, q_{3}\right] \cdots\left[q_{n}, B_{n}, q\right]} \\
\delta(p, a, A) \ni\left(q_{1}, B_{1} \cdots B_{n}\right) \\
q, q_{2}, \ldots, q_{n} \in Q \\
{[p, A, q] \rightarrow a r(p, a, A) \ni(q, \epsilon)}
\end{gathered}
$$

$$
\begin{aligned}
& \left\{a^{n} b^{n} \mid n \geq 1\right\}^{*} \cap \\
& \left\{w \in\{a, b\}^{*} \mid \#_{a} x \text { even }\right\}
\end{aligned}
$$

4.1 Closure properties
closed under ...
union, concatenation, star (using grammars)
not under intersection, complement
$L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ not in CF
$\left\{a^{i} b^{i} \mid i \geq 0\right\} c^{*} \cap a^{*}\left\{b^{i} c^{i} \mid i \geq 0\right\}$
$\{a, b, c\}^{*}-L$ is CF (exercise)

	RLIN	CF				MON	
	REG	DPDA	PDAe	DLBA	LBA	REC	RE
intersection	+	-	-	+	+	+	+
complement	+	+	-	+	+	+	-
union	+	-	+	+	+	+	+
concatenation	+	-	+	+	+	+	+
star, plus	+	-	+	+	+	+	+
ϵ-free morphism	+	-	+	+	+	+	+
morphism	+	-	+	-	-	-	+
inverse morphism	+	+	+	+	+	+	+
intersect reg lang	+	+	+	+	+	+	+
mirror	+	-	+	+	+	+	+
	fAFL		fAFL	AFL	AFL	AFL	fAFL

$\cap^{c} \cup$ boolean operations
U . * regular operations
$h h^{-1} \cap R \quad$ (full) trio operations

Next: An 'intuitive' pictorial representation of the direct product construction of a PDA and a FST, showing the image of a PDA language under a transduction is again accepted by a PDA. This proves closure of CF under several operations.

Same construction is given on the transparency after that one, but now in a more precise specification. No formal proof (induction on computations) is given.

Note! Shallit works the reverse way, from full trio operations to FST's. Recall that a family of languages is closed under FST's iff it is closed under morphisms, inverse morphisms and intersection with regular languages. The 'if'-part is Nivat's Theorem 3.5.3, the 'only-if' follows from the fact that these operations can all be performed by a suitable FST.

Thm. CF is closed under fs transductions $L \in C F$ (given by PDA) FST $\mathcal{A}: \Sigma^{*} \rightarrow \Delta^{*}$ $T(\mathcal{A})(L)=\left\{v \in \Delta^{*} \mid u \in L,(u, v) \in T(\mathcal{A})\right\}$

Cor. CF is closed under morphisms, inverse morphisms; intersection, quotient \& concatenation with regular languages (x3); prefix, suffix

$$
\begin{aligned}
& \text { PDA } \mathcal{A}=\left(Q, \triangle, \Gamma, \delta, q_{i n}, Z_{i n}, F\right) \\
& \text { FST } \mathcal{M}=\left(P, \triangle, \Sigma, \varepsilon, p_{i n}, E\right) \\
T(\mathcal{M})(L(\mathcal{A})) \Rightarrow & \text { PDA } \mathcal{A}^{\prime}=\left(Q^{\prime}, \Sigma, \Gamma, \delta^{\prime}, q_{i n}^{\prime}, Z_{i n}, F^{\prime}\right)
\end{aligned}
$$

$$
\text { formally }-Q^{\prime}=Q \times P
$$

$$
-q_{i n}^{\prime}=\left\langle q_{i n}, p_{i n}\right\rangle
$$

$$
-F^{\prime}=F \times E, \text { and }
$$

$$
-\delta^{\prime} \text { is defined by }
$$

$$
\bigcirc \xrightarrow{\left.\frac{a, A / \alpha}{a / b} \bigcirc \bigcirc \bigcirc \xrightarrow{b, A / \alpha} \bigcirc \bigcirc\right)}
$$

$$
\text { if } \delta\left(q_{1}, a, A\right) \ni\left(q_{2}, \alpha\right), \text { and }\left(p_{1}, a, b, p_{2}\right) \in \varepsilon
$$

$$
\text { (with } a \neq \epsilon \text {) }
$$

then

$$
\delta^{\prime}\left(\left\langle q_{1}, p_{1}\right\rangle, b, A\right) \ni\left(\left\langle q_{1}, p_{1}\right\rangle, \alpha\right)
$$

$\bigcirc \xrightarrow{\epsilon, A / \alpha} \bigcirc \Rightarrow \bigcirc \xrightarrow{\epsilon, A / \alpha} \bigcirc$

if $\delta\left(q_{1}, \epsilon, A\right) \ni\left(q_{2}, \alpha\right)$ and $p \in P$, then $\quad \delta^{\prime}\left(\left\langle q_{1}, p\right\rangle, \epsilon, A\right) \ni\left(\left\langle q_{1}, p\right\rangle, \alpha\right)$
if $q \in Q$ and $\left(p_{1}, \epsilon, b, p_{2}\right) \in \varepsilon$,
then

$$
\delta^{\prime}\left(\left\langle q, p_{1}\right\rangle, b, A\right) \ni\left(\left\langle q, p_{1}\right\rangle, \alpha\right)
$$

As an example of finite state transducers and the closure construction: the inverse morphism.

In Shallit this is Thm. 4.1.4, without explicit FST.

For a morphism h we construct a FST that realizes h^{-1}. Then for the contextfree language $K=\left\{(100)^{n}(10)^{n} \mid\right.$ $n \geq 0\}$ we construct PDA for K and $h^{-1}(K)$.
$h:\left\{\begin{array}{rll}a & \mapsto & 100 \\ b & \mapsto & 10 \\ c & \mapsto & 010\end{array}\right.$

100100100101010 a a ab bb bc cc bb $a \quad b \quad c \quad c \quad b \quad b$
$K=\left\{(100)^{n}(10)^{n} \mid n \geq 0\right\}$

$$
h^{-1}(K)=\left\{w \in\{a, b, c\}^{*} \mid h(w) \in K\right\}
$$

$$
\begin{aligned}
& L_{1}, L_{2} \subseteq \Sigma^{*} \\
& L_{1} / L_{2}=\left\{x \in \Sigma^{*} \mid x y \in L_{1} \text { for some } y \in L_{2}\right\}
\end{aligned}
$$

can 'hide' computations

$$
\begin{array}{ll}
\text { Ex. } & L_{1}=\left\{a^{2 n} c b a^{n} \mid n \geq 1\right\}\left\{b a^{2 n} b a^{n} \mid n \geq 1\right\}^{*} b a \\
& L_{2}=c \cdot\left\{b a^{n} b a^{n} \mid n \geq 1\right\}^{*} \\
& L_{1} / L_{2}=\left\{a^{2^{n}} \mid n \geq 1\right\}
\end{array}
$$

Thm. CF not closed under quotient

As promised, the CF languages are closed under right quotient with regular languages, since for every regular language R we can transform the FSA for R into a FST that performs the quotient by R as its function.

The next slide implements this construction. Given a $\operatorname{PDA} \mathcal{A}$ and a $\operatorname{FSA} \mathcal{M}$ it
directly constructs the PDA for the quotient of the languages. It uses the general format for transductions from previous slides, as if the transducer for the quotient had been given. In fact, is has been implicitly derived from the FSA, by adding a single state \mathbf{I}, see sketch to the left for a specific example.

$$
\begin{array}{ll}
L(\mathcal{A})=L & \text { PDA } \mathcal{A}=\left(Q, \Delta,\left\ulcorner, \delta, q_{i n}, Z_{i n}, F\right)\right. \\
L(\mathcal{M})=R & \text { FSA } \mathcal{M}=\left(P, \Delta, \varepsilon, p_{i n}, E\right)
\end{array}
$$

PDA for right quotient L / R

$$
\begin{aligned}
& \mathcal{A}^{\prime}=\left(Q^{\prime}, \Delta,\left\ulcorner, \delta^{\prime}, q_{i n}^{\prime}, Z_{i n}, F^{\prime}\right)\right. \\
& Q^{\prime}=Q \times(P \cup\{1\})
\end{aligned}
$$

quotient transducer

δ^{\prime} contains
$\left(\left\langle q_{1}, 1\right\rangle, a, A,\left\langle q_{2}, 1\right\rangle, \alpha\right) \quad$ for $\delta\left(q_{1}, a, A\right) \ni\left(q_{2}, \alpha\right)$ $\left(\langle p, 1\rangle, \epsilon, A,\left\langle p, p_{\text {in }}\right\rangle\right) \quad$ for $p \in P, A \in \Gamma$ $\left(\left\langle q_{1}, p\right\rangle, \epsilon, A,\left\langle q_{2}, p\right\rangle, \alpha\right)$ for $\delta\left(q_{1}, \epsilon, A\right) \ni\left(q_{2}, \alpha\right), p \in Q$
$\left(\left\langle q_{1}, p_{1}\right\rangle, \epsilon, A,\left\langle q_{2}, p_{2}\right\rangle, \alpha\right)$
for $\delta\left(q_{1}, a, A\right) \ni\left(q_{2}, \alpha\right) \&\left(p_{1}, a, p_{2}\right) \in \varepsilon$
$q_{i n}^{\prime}=\left\langle q_{i n}, 1\right\rangle$
$F^{\prime}=F \times E$
family of languages \mathcal{L} is a full trio (or cone)
iff \mathcal{L} is closed under morphism h, inverse morphism h^{-1}, and intersection with regular languages $\cap R$
iff \mathcal{L} is closed under finite state transductions T
Cor. full trio closed under prefix, quotient, ...

Thm. REG and CF are full trio's.
4.2 Unary context-free languages

$$
\begin{array}{ll}
L \subseteq\{0\}^{*} & L \in \mathrm{CF} \text { iff } L \in \mathrm{REG} \\
& \text { pumping constant } n, m \geq n \\
& z=0^{m}=u v w x y \\
& a_{m}=|u w y|, b_{m}=|v x| \\
& z=0^{a_{m}} 0^{b_{m}}, 1 \leq b_{m} \leq n \\
& M=\left\{m \in \mathbb{N} \mid 0^{m} \in L\right\} \\
& L^{\prime}=\{x \in L| | x \mid<n\} \\
& L=L^{\prime} \cup \bigcup_{m \in M} 0^{a_{m}} 0^{b_{m}}=L^{\prime} \cup \cup_{m \in M} 0^{a_{m}}\left(0^{b_{m}}\right)^{*} \\
& \\
z=0^{a_{m}} 0^{b_{m}} & b=b_{m}=b_{m^{\prime}}, m<m^{\prime}, a_{m}=a_{m^{\prime}}(\bmod b) \\
z^{\prime}=0^{a_{m}^{\prime}} 0^{b_{m}^{\prime}} & 0^{a_{m}}\left(0^{b}\right)^{*} \supseteq 0^{a} m^{\prime}\left(0^{b}\right)^{*} \\
& m_{a b}=\min \left\{m \in M \mid b_{m}=b, a_{m}=a(\bmod b)\right\} \\
& L=L^{\prime} \cup \cup_{0 \leq a<b \leq n} 0^{m_{a b}}\left(0^{b}\right)^{*}
\end{array}
$$

4.6 Parikh's theorem

$$
h: \Sigma \rightarrow\{0\}, \quad x \mapsto 0
$$

CF \rightsquigarrow REG same length sets
Parikh map commutative image

$$
\psi: \Sigma^{*} \rightarrow \mathbb{N}^{k}
$$

$$
w \mapsto\left(|w|_{a_{1}}, \ldots,|w|_{a_{k}}\right)
$$

$$
\text { aabaccbacca } \mapsto(5,2,4)
$$

$$
c(a b)^{*} c(b c)^{*} c \mapsto\{(k, k+\ell, 3+\ell) \mid k, \ell \in \mathbb{N}\}=
$$

$$
\{(0,0,3)+k \cdot(1,1,0)+\ell \cdot(0,1,1) \mid k, \ell \in \mathbb{N}\}
$$

$$
(a b c)^{*}
$$

REG

$$
\left\{(a b)^{n} c^{n} \mid n \in \mathbb{N}\right\}
$$

$$
\left\{w \in\{a b, c\}^{*} \mid \#_{a}(w)=\#_{b}(w)\right\} \quad \text { CF - LIN }
$$

$$
\left\{a^{n} b^{n} c^{n} \mid n \in \mathbb{N}\right\} \quad \text { CS - CF }
$$

$$
\mapsto\{(n, n, n) \mid n \in \mathbb{N}\}=\{n \cdot(1,1,1) \mid n \in \mathbb{N}\}
$$

linear set $\quad \vec{u}_{0}, \vec{u}_{1}, \ldots \vec{u}_{r} \in \mathbb{N}^{k}$
$A=\left\{\vec{u}_{0}+a_{1} \vec{u}_{1}+\ldots+a_{r} \vec{u}_{r} \mid a_{1}, \ldots, a_{r} \in \mathbb{N}\right\}$
semilinear finite union
4.6.1 semilinear sets closed under union, intersection and complement
4.6.3 X semilinear, then $X=\psi(L)$ for regular L

$$
\begin{aligned}
& \omega\left(\vec{u}_{0}\right) \cdot\left\{\omega\left(\vec{u}_{1}\right), \ldots, \omega\left(\vec{u}_{r}\right)\right\}^{*} \\
& \omega: \mathbb{N}^{k} \rightarrow\left\{a_{1}, \ldots, a_{k}\right\}^{*} \quad \psi(\omega(\vec{u}))=\vec{u}
\end{aligned}
$$

4.6.5 $\psi(L)$ semilinear for CFL L

Lemma 4.6.4
G Chomsky normal form
k variables $p=2^{k+1}$
$z \in L(G),|z| \geq p^{j}$
$S \Rightarrow{ }^{*}$
$u A y \Rightarrow^{*}$
$u v_{1} A x_{1} y \Rightarrow *$
$u v_{1} v_{2} A x_{2} x_{1} y \Rightarrow *$

$$
\Rightarrow^{*}
$$

$u v_{1} v_{2} \ldots v_{j} A x_{j} \ldots x_{2} x_{1} y \Rightarrow^{*}$
$u v_{1} v_{2} \ldots v_{j} w x_{j} \ldots x_{2} x_{1} y=z$
$v_{i} x_{i} \neq \epsilon$
$\left|u v_{1} v_{2} \ldots v_{j} x_{j} \ldots x_{2} x_{1} y\right| \leq p^{j}$

Theorem 4.6.5
$\psi(L)$ semilinear for CFL L
$L_{U} \subseteq L$
derivation with variables U
$L=\cup_{S \subseteq U \subseteq V} L_{U}$
$\ell=|U|$
$E=\left\{w \in L_{U}| | w \mid<p^{\ell}\right\} \quad S \Rightarrow^{*} w$
$F=\left\{v x\left|1 \leq|v x| \leq p^{\ell}\right.\right.$,
$A \Rightarrow^{*} v A x$ for some $\left.A \in U\right\}$
$\psi\left(L_{U}\right)=\psi\left(E F^{*}\right)$
" \subseteq " induction on $|z|, z \in L_{U}$
"?" induction on t,
$z=e_{0} f_{1} \ldots f_{t} \in E F^{*}$

Ex. $L=\left\{a^{i} b^{j} \mid j \neq i^{2}\right\}$ not in CF
$\psi(L)=\left\{(i, j) \mid j \neq i^{2}\right\}$ not semilinear complement $\left\{\left(i, i^{2}\right) \mid i \in \mathbb{N}\right\}$ corresponding regular language? lengths $\left\{i^{2}+i \mid i \in \mathbb{N}\right\}$ cannot be pumped
4.3 Ogden's Iemma
4.4 Applications of Ogden's Iemma
long words can be pumped
\forall for every CF language L
\exists there exists a constant $n \geq 1$
such that
\forall for every $z \in L$ with $|z| \geq n$
\exists there exists a decomposition $z=u v w x y$
with $|v w x| \leq n,|v x| \geq 1$
such that
\forall for all $i \geq 0, u v^{i} w x^{i} y \in L$
$\|x\|$ marked symbols in x
\forall for every CF language L
\exists there exists a constant $n \geq 1$
such that
\forall for every $z \in L$ with $\|z\| \geq n$
\exists there exists a decomposition $z=u v w x y$
with $\|v w x\| \leq n,\|v x\| \geq 1$
such that
\forall for all $i \geq 0, u v^{i} w x^{i} y \in L$

$S \Rightarrow^{*} u A y$
$A \Rightarrow^{*} v A x$
$A \Rightarrow{ }^{*} w$
$u v^{i} w x^{i} y \in L$
$G=(V, \Sigma, P, S)$
$k=|V| d=\max \{|\alpha| \mid A \rightarrow \alpha \in P\}$
branch point: ≥ 2 children with marked descendants
if each path has $\leq \ell$ branch points, then $\leq d^{\ell}$ marked letters
pumping constant $n=d^{k+1}>d^{k}$
\exists path with $>k$ branch points
take path with most branch points
α, α^{\prime} same label A,
as low as possible
$\|v x\| \geq 1 \quad \alpha$ branch point
$\|v w x\| \leq n$
no repetition below α
$\|w\| \geq 1 \quad \alpha^{\prime}$ branch point

$$
L=\left\{a^{i} b^{j} c^{k} \mid \quad\right. \text { possibilities }
$$

$$
i=j \text { or } j=k \text { but not both }\}
$$

- $v x=a^{k}$

$$
u v^{0} w x^{0} y=a^{n-k} b^{n} c^{n+n!} \notin L
$$

n as Ogden, assume ≥ 3

- $v=a^{k}, x=b^{\ell}(k \neq \ell)$

$$
u v^{0} w x^{0} y=a^{n-k} b^{n-\ell} c^{n+n!} \notin L
$$

- $v=a^{k}, x=b^{\ell}(k=\ell)$ consider $i=\frac{n!}{\ell}+1$ add $i-1$ copies of ℓ a's

$$
u v^{i} w x^{i} y=a^{n+n!} b^{n+n!} c^{n+n!} \notin L
$$

- $v=a^{k}, x=c^{\ell}$

$$
u v^{2} w x^{2} y=a^{n+k} b^{n} c^{n+n!+\ell} \notin L
$$

grammar ambiguous
language inherently ambiguous
$L=\left\{a^{i} b^{j} c^{k} \mid i=j\right.$ or $\left.j=k\right\}$.
is inherently ambiguous

$$
z=a^{n} b^{n} c^{n+n!} \quad z^{\prime}=a^{n+n!} b^{n} \underline{c}^{n}
$$

see example 4.3.2

$$
[p, A, q] \Rightarrow_{G}^{*} w \Longleftrightarrow(p, w, A) \vdash_{\mathcal{M}}^{*}(q, \epsilon, \epsilon)
$$

Thm. PDA \mathcal{M} with n states and p stack symbols each CFG for $L_{e}(\mathcal{M})$ has at least $n^{2} p$ variables
4.5 The interchange Iemma
\forall for every CF language L
\exists there exists constant $c>0$
\forall such that for all $n \geq m \geq 2$, all subsets $R \subseteq L \cap \Sigma^{n}$
\exists there exists $Z=\left\{z_{1}, z_{2}, \ldots, z_{k}\right\} \subseteq R$, with $k \geq \frac{|R|}{c(n+1)^{2}}$
and compositions $z_{i}=w_{i} x_{i} y_{i}$
such that
(a) $\quad\left|w_{1}\right|=\left|w_{2}\right|=\ldots=\left|w_{k}\right|$
(b) $\left|y_{1}\right|=\left|y_{2}\right|=\ldots=\left|y_{k}\right|$
(c) $\quad \frac{m}{2}<\left|x_{1}\right|=\left|x_{2}\right|=\ldots=\left|x_{k}\right| \leq m$
(d) $\quad w_{i} x_{j} y_{i} \in L$ for all $1 \leq i, j \leq k$

Lem. G CFG in Chomsky normal form for $L, m \geq 2$ $z \in L,|z| \geq m$, then $S \Rightarrow^{*} w A y \Rightarrow^{*} w x y=z$ with $\frac{m}{2}<|x| \leq m$

$$
z \rightsquigarrow\left(n_{1}, A, n_{2}\right) \text { where } n_{1}=|w|, n_{2}=|z|
$$

Chapter 2 Thue-Morse sequence t_{n} number of 1 's in base-2 expansion of n or iterate $0 \mapsto 01,1 \mapsto 10$ $0 \cdot 1 \cdot 10 \cdot 1001 \cdot 10010110 \cdot 1001011001101001 \ldots$ overlapfree no axaxa $\left(a \in \Sigma_{2}, x \in \Sigma_{2}^{*}\right)$

$$
00 \mapsto 1,01 \mapsto 2,10 \mapsto 0,11 \mapsto 1 \quad \text { 'sliding' }
$$ 2102012101202102012021012102012... squarefree no $x x\left(x \in \Sigma_{3}^{*}\right)$

$\Sigma=\{0,1, \ldots, i-1\} \quad L_{i}=\left\{x y y z \mid x, y, z \in \Sigma^{*}, y \neq \epsilon\right\}$
Thm. L_{6} not in CF
[see Chapter 2] $\quad r$ squarefree string of length $\frac{n}{4}-1$ over $\{0,1,2\}$
$A_{n}=\left\{3 r 3 r \amalg s \mid s \in\{4,5\}^{n / 2}\right\}$
\amalg perfect shuffle (alternate strings)
$z \in A_{n}$ contains a square iff it is a square
$B_{n}=L_{6} \cap A_{n}=\left\{3 r 3 r \amalg s s \mid s \in\{4,5\}^{n / 4}\right\}$
$\left|B_{n}\right|=2^{\frac{n}{4}} \quad$ choose $m=n / 2$
[take n large] $Z=\left\{z_{1}, z_{2}, \ldots, z_{k}\right\} \quad k \geq \frac{2^{n / 4}}{c(n+1)^{2}}>2^{n / 8}$
$z_{i}=w_{i} x_{i} y_{i}, \frac{m}{2}<\left|x_{i}\right| \leq m$ (etc.)
$w_{i} x_{j} y_{i} \in B_{n}$ hence $x_{i}=x_{j}$
(x_{i} fixed by other symbols in z_{i})
hence $\frac{n}{4}$ symbols fixed for $Z, \frac{n}{8}$ in $\{4,5\}$ at most $\frac{n}{8}$ free, $|Z| \leq 2^{n / 8}$
4.7 Deterministic context-free languages
what we Iearn about
deterministic context-free languages

- is an automaton notion
- Iess powerful than CF
- closed under complement (nontrivial)
- see also Chapter 5 on parsing

	RLIN	CF					
	REG	DPDA	PDAe	DLBA	LBA	REC	RE
intersection	+	-	-	+	+	+	+
complement	+	+	-	+	+	+	-
union	+	-	+	+	+	+	+
concatenation	+	-	+	+	+	+	+
star, plus	+	-	+	+	+	+	+
ϵ-free morphism	+	-	+	+	+	+	+
morphism	+	-	+	-	-	-	+
inverse morphism	+	+	+	+	+	+	+
intersect reg lang	+	+	+	+	+	+	+
mirror	+	-	+	+	+	+	+
	fAFL		fAFL	AFL	AFL	AFL	fAFL

$\cap^{c} \cup$ boolean operations
U.* regular operations
$h h^{-1} \cap R \quad$ (full) trio operations

$$
\begin{gathered}
a ; Z / Z A \\
b ; Z / Z B \\
\epsilon ; Z / \epsilon \\
a ; A / \epsilon \\
b ; B / \epsilon
\end{gathered}
$$

$$
\begin{aligned}
& Z \rightarrow a Z A \\
& Z \rightarrow b Z B \\
& Z \rightarrow \epsilon \\
& A \rightarrow a \\
& B \rightarrow b
\end{aligned}
$$

Determinism means the automaton has no choice: at each moment it can take at most one step to continue its computation. To translate this intuition to a restriction on the instructions for PDA is nontrivial, as the next step is determined both by input letter and by topmost stack symbol. Additionally this is complicated by the choice between reading an input letter and following a λ-instruction.

We quote from our chapter:

The $\operatorname{PDA} \mathcal{A}=\left(Q, \triangle, \Gamma, \delta, q_{\text {in }}, A_{\text {in }}, F\right)$ is deterministic if

- for each $p \in Q$, each $a \in \Delta$, and each $A \in \Gamma, \delta$ does not contain both an instruction $(p, \lambda, A, q, \alpha)$ and an instruction ($p, a, A, q^{\prime}, \alpha^{\prime}$).
- for each $p \in Q$, each $a \in \Delta \cup\{\lambda\}$, and each $A \in \Gamma$, there is at most one instruction (p, a, A, q, α) in δ.
determinism means 'no choice'
... where to start (ok)
... between two actions
with same tape \& stack symbols
... between letter or ϵ
not allowed

FSA $=$ DFSA $=$ RLIN $\mathrm{PDAe}=\mathrm{PDA}=\mathrm{CF}$ DPDAe \subset DPDA $\subset C F$

$$
\begin{array}{ll}
(p, a, A) \ni\left(q_{1}, \alpha_{1}\right) & (p, a, A) \ni\left(q_{1}, \alpha_{1}\right) \\
(p, a, A) \ni\left(q_{2}, \alpha_{2}\right) & (p, \epsilon, A) \ni\left(q_{2}, \alpha_{2}\right)
\end{array}
$$

final state: deterministic CF Ianguages 'context-free' but uses automata

$$
\begin{aligned}
& a ; Z / Z A \\
& \epsilon ; Z / X \\
& b ; X / X \\
& \epsilon ; X / \epsilon \\
& a ; A / \epsilon
\end{aligned}
$$

$\left\{a^{n} b^{m} a^{n} \mid m, n \in \mathbb{N}\right\}$

closure under complement $F \leftrightarrow Q-F$

* completely read input
* input+stack may block
* infinite ϵ-computations!
* computations without reading
* accept afterwards

$\{A, B, Z\}$, initial Z

Lem. equivalent PDA that always scans entire input

$$
\begin{array}{ll}
& \left(q_{0}, w, Z_{0}\right) \vdash^{*}(q, \epsilon, \alpha) \quad q \in Q, \alpha \in \Gamma^{*} \\
& \mathcal{M}=\left(Q, \Sigma, \Gamma, \delta, q_{0}, Z_{0}, F\right) \\
& Q^{\prime}=Q \cup\{d, f\}, \Gamma^{\prime}=\Gamma \cup\left\{X_{0}\right\}, F^{\prime}=F \cup\{f\}, \\
\text { 'dead' states } & \delta^{\prime}(d, a, X)=\{(d, X)\} \\
& \delta^{\prime}(f, a, X)=\{(d, X)\} \text { for } a \in \Sigma \text { and } X \in \Gamma^{\prime}
\end{array}
$$

avoid empty stack $\delta^{\prime}\left(q_{0}^{\prime}, \epsilon, X_{0}\right)=\left\{\left(q_{0}, Z_{0} X_{0}\right)\right\}$ add 'bottom' X_{0} $\delta^{\prime}\left(q, a, X_{0}\right)=\left\{\left(d, X_{0}\right)\right\}$ for $q \in Q$ and $a \in \Sigma$
undefined transitions
$\delta^{\prime}\left(q, a, X_{0}\right)=\left\{\left(d, X_{0}\right)\right\}$
when $\delta(q, a, X)=\varnothing$ and $\delta(q, \epsilon, X)=\varnothing$
infinite loops*
*"The actual
when \mathcal{M} enters infinite ϵ-Ioop on (q, ϵ, X)
$\delta^{\prime}(q, \epsilon, X)=\{(d, X)\}$
$\delta^{\prime}(q, \epsilon, X)=\{(f, X)\}$
without final states with final state implementation is a bit complex"

Thm. DCFL (= DPDA) closed under complement

$$
\begin{aligned}
& \mathcal{M}=\left(Q, \Sigma, \Gamma, \delta, q_{0}, Z_{0}, F\right) \\
& Q^{\prime}=Q \times\{n, y, A\}, F^{\prime}=Q \times\{A\} \\
& q_{0}^{\prime}=\left[q_{0}, y\right] \text { if } q_{0} \in F, q_{0}^{\prime}=\left[q_{0}, n\right] \text { otherwise } \\
& \delta(q, a, X)=(p, \gamma) \quad \delta^{\prime}([q, y], a, X)=([p, y], \gamma) \quad p \in F \\
& (a \in \Sigma) \quad \delta^{\prime}([q, y], a, X)=([p, n], \gamma) \quad p \notin F \\
& \delta^{\prime}([q, n], \epsilon, X)=([q, A], X) \\
& \delta^{\prime}([q, A], a, X)=([p, y], \gamma) \quad p \in F \\
& \delta^{\prime}([q, A], a, X)=([p, n], \gamma) \quad p \notin F \\
& \delta(q, \epsilon, X)=(p, \gamma) \quad \delta^{\prime}([q, y], \epsilon, X)=([p, y], \gamma) \\
& \delta^{\prime}([q, n], \epsilon, X)=([p, y], \gamma) \quad p \in F \\
& \delta^{\prime}([q, n], \epsilon, X)=([p, n], \gamma) \quad p \notin F
\end{aligned}
$$

Ex. $\left\{w \in\{a, b\}^{*} \mid w \neq x x\right\}$ not in DCFL

Thm. L DCFL

at least one Myhill-Nerode class is infinite
$x \in \Sigma^{*} \rightsquigarrow x^{\prime}, q, A \alpha$
after processing $x x^{\prime}$ stack height $|A \alpha|$ minimal
$\left(q_{0}, x x^{\prime}, Z_{0}\right) \vdash^{*}(q, \epsilon, A \alpha)$
any continuation independent of α infinitely many $x x^{\prime}$ end in same minimal q, A infinitely many $x x^{\prime}$ all in L or all in $\Sigma^{*}-L$ have the same 'extensions'
$\left(q_{0}, x x^{\prime} z, Z_{0}\right) \vdash^{*}(q, z, A \alpha) \vdash^{*}(p, \epsilon, \gamma \alpha)(p \in F)$ iff $\left(q_{0}, x_{1} x_{1}^{\prime} z, Z_{0}\right) \vdash^{*}\left(q, z, A \alpha_{1}\right) \vdash^{*}\left(p, \epsilon, \gamma \alpha_{1}\right)$

Cor. PAL $=\left\{x \in\{a, b\}^{*} \mid x=x^{R}\right\}$ not in DCFL (exercise) no strings equivalent

Consider a language that both includes string x and an extension $x y$ of it. Nondeterministic automata may have quite different accepting computations on both strings. For deterministic automata we know that the computation that accepts $x y$ must start with the accepting computation on x. \quad
language $L \quad x \in L, x y \in L$

* nondeterminism
$a^{n} b^{n}$

$a^{n} b^{m} c^{n} \quad$ different behaviour on b 's
* determinism

computation on $x y$ and on x must coincide! apply this to:
$\operatorname{haspref}(L)=\{x y \mid \underset{\sim}{x} \in L, \underline{x} y \in L, y \neq \epsilon\}$

In order to rigorously show that DPDA \subset PDA $=C F$ we define a 'strange operation' haspref. We show that DPDA and CF behave differently with respect to this operator. See properties on the slide.

This part of the slides was used for another lecture (where closure under complement was not proved).

$$
\begin{aligned}
& \operatorname{haspref}(L)=\{x y \mid x \in L, x y \in L, y \neq \epsilon\} \\
& L_{0}=\left\{a^{n} b^{n} \mid n \geq 1\right\} \cup\left\{a^{n} b^{m} c^{n} \mid m, n \geq 1\right\} \\
& \text { haspref }\left(L_{0}\right)=\left\{a^{n} b^{m} c^{n} \mid m \geq n \geq 1\right\} \notin \mathrm{CF}
\end{aligned}
$$

* CF $=$ PDA is not closed under haspref * DPDA is closed under haspref
[proof follows]
consequences
* DPDA \subset PDA $=\mathrm{CF} \quad L_{0} \in \mathrm{CF}-\mathrm{DPDA}$
* DPDA is not closed under union
* also $\left\{w w^{R} \mid w \in\{a, b\}^{*}\right\} \notin$ DPDA

Geraud Senizergues (2001) proved that the equivalence problem for deterministic PDA (i.e. given two deterministic PDA A and B, is $L(A)=L(B)$?) is decidable.

For nondeterministic PDA, equivalence is undecidable.
4.8 Linear languages

$$
\begin{aligned}
& a ; Z / Z A \\
& \epsilon ; Z / X \\
& b ; X / X \\
& \epsilon ; X / \epsilon \\
& a ; A / \epsilon
\end{aligned}
$$

$Z \rightarrow a Z a$
$Z \rightarrow X$
$X \rightarrow b X$
$X \rightarrow \epsilon$
$\left\{a^{n} b^{m} a^{n} \mid m, n \in \mathbb{N}\right\}$

linear grammar: rhs at most one variable $A \rightarrow \alpha B \beta, X \rightarrow \alpha$

$$
A, B \in V, \alpha \cdot \beta \in \Sigma^{*}
$$

$\left\{a^{n} b^{n} \mid n \in \mathbb{N}\right\}$
$\left\{a^{n} b^{n} c^{m} \mid m, n \in \mathbb{N}\right\}$
$\left\{a^{n} b^{n} a^{m} b^{m} \mid m, n \in \mathbb{N}\right\} \quad$ not LIN, why?
long words can be pumped
\forall for every LIN Ianguage L
\exists there exists a constant $n \geq 1$
such that
\forall for every $z \in L$ with $|z| \geq n$
\exists there exists a decomposition $z=u v w x y$
with $|u v x y| \leq n,|v x| \geq 1$
such that
\forall for all $i \geq 0, u v^{i} w x^{i} y \in L$

$$
\begin{array}{ll}
\text { context-free } & ((()(())())()))(()) \\
\text { linear } & (((()()))))) \\
\text { example } \quad((()))((()))) \\
L=\left\{a^{i} b^{i} c^{j} d^{j}\right. & \mid i, j \geq 0\} \text { in CFL - LIN } \\
z=a^{n} b^{n} c^{n} d^{n} \\
|u v x y| \leq n \\
v \text { and } x \text { each consist of } a^{\prime} \text { s or } d^{\prime} s \\
v=a^{k}, x=d^{\ell}, k+\ell \geq 1 \\
u v^{0} w x^{0} y=a^{n-k} b^{n} c^{n} d^{n-\ell} \notin L \\
\text { and two other possibilities }
\end{array}
$$

$$
\begin{aligned}
& \left\{x \in\{a, b\}^{*} \mid x=x^{R}\right\} \text { in LIN - DCF } \\
& \left\{a^{i} b^{i} c^{j} d^{j} \mid i, j \geq 0\right\} \text { in DCF - LIN }
\end{aligned}
$$

$$
\begin{aligned}
& \left\{a^{i} b^{i} c^{j} d^{j} \mid i, j \geq 0\right\} \text { in CFL }- \text { LIN } \\
& =\left\{a^{i} b^{i} \mid i \geq 0\right\} \cdot\left\{c^{j} d^{j} \mid j \geq 0\right\} \text { in LIN•LIN } \\
& \text { not closed under concatenation }
\end{aligned}
$$

$$
=\left\{a^{i} b^{i} \mid i \geq 0\right\} \cdot c^{*} d^{*} \cap a^{*} b^{*} \cdot\left\{c^{j} d^{j} \mid j \geq 0\right\}
$$

not closed under intersection
closed under finite state transductions: (inverse) morphism, intersection regular use machine model \longrightarrow
not closed under star

$$
T\left(\left\{a^{i} b^{i} \mid i \geq 0\right\}^{*}\right)=\left\{a^{i} b^{i} c^{j} d^{j} \mid i, j \geq 0\right\}
$$

As we have seen, both the context-free and the reguar languages have characterizations using grammars as well as using automata.

Here we show the same holds for the linear languages, they are accepted by oneturn push-down automata, where the stack behaviour consists of two phases, the first one adding to the stack, the second one popping.

This cannot be directly derived from the classical PDA to CFG triplet construction, as this will not generally yield a linear grammar when one starts with a one-turn pushdown.
one-turn pushdown automata

RLIN $=\mathrm{FSA}$
$\mathrm{LIN}=1 \mathrm{tPD}$
$C F=P D$

$Q=Q^{+} \cup Q^{-}, q_{\text {in }} \in Q^{+}$
$(p, a, A, q, \alpha) \in \delta$ then $\left\{\begin{array}{l}p, q \in Q^{+} \text {and }|\alpha| \geq 1 \text {, or } \\ p \in Q, q \in Q^{-} \text {and }|\alpha| \leq 1\end{array}\right.$
standard construction:
$(p, a, A, q, B C) \in \delta$ then

$$
[p, A, r] \rightarrow a[q, B, s][s, C, r]
$$

not linear
$[p, A, q] \Rightarrow_{G}^{*} w \Longleftrightarrow(p, w, A) \vdash^{*}(q, \epsilon, \epsilon)$
here $q \in Q^{-}$

$$
\begin{gathered}
\delta(p, a, A) \ni\left(q_{1}, B_{1} \cdots B_{n}\right) \\
{[p, A, q] \rightarrow a\left[q_{1}, B_{1}, q_{2}\right] \underbrace{\left[q_{2}, B_{2}, q_{3}\right] \cdots\left[q_{n}, B_{n}, q\right]}_{\text {generate regular languages }}}
\end{gathered}
$$

$$
p, q_{1} \in Q, q, q_{2}, \ldots, q_{r} \in Q^{-}
$$

$$
B_{1}, \ldots, B_{r} \in \Gamma(1 \leq r \leq \text { max-rhs })
$$

$$
p \in Q^{-} \text {if }(q, \alpha) \in \delta(p, a, A) \text { then } q \in Q^{-},|\alpha| \leq 1
$$

$$
[p, A, r] \rightarrow a[q, B, r] \quad \delta(p, a, A) \ni(q, B)
$$

$$
[p, A, q] \rightarrow a \quad \delta(p, a, A) \ni(q, \epsilon)
$$

include this information in $\left[q_{1}, B_{1}, q_{2}\right]$ generate regular language(s) to the right backwards! (left-linear grammar)
then next step pushdown

LIN / LIN = RE

Iater perhaps, Chapter 6
LIN not closed under quotient
extra exercise
7. Is the class of CFLs closed under the shuffle operation shuff || (introduced in Section 3.3)? How about perfect shuffle \amalg ?
not context-free
$\left\{w w \mid w \in \Sigma^{*}\right\}$
$\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$
$\left\{a^{n} b^{m} a^{n} b^{m} \mid n, m \geq 0\right\}$
intersect shuffle with regular language
15. Let $G=(V, \Sigma, P, S)$ be a context-free grammar.
(a) Prove that the language of all sentential forms derivable from S is context-free.
(b) Prove that the language consisting of all sentential forms derivable by a leftmost derivation from S is context-free.
variables V become terminals simulated by 'new' variables
leftmost derivations are precisely simulated when constructing PDA for CFG

transparencies made for

Second Course in Formal Languages and Automata Theory

based on the book by Jeffrey Shallit of the same title

Hendrik Jan Hoogeboom, Leiden
http://www.liacs.nl/~hoogeboo/second/

