
LIACS — Second Course . . . IV

Chapter 4

Context-free Grammars and Lan-
guages

IV 1 context-free languages

4.0 Review

4.1 Closure properties

counting letters 4.2 Unary context-free languages

4.6 Parikh’s theorem

pumping & swapping 4.3 Ogden’s lemma

4.4 Applications of Ogden’s lemma

4.5 The interchange lemma

subfamilies 4.7 Deterministic context-free languages

4.8 Linear languages

4.0 Review

⊲

The book uses a transition funtion

δ : Q× (Σ ∪ {ǫ})× Γ → 2Q×Γ∗
,

i.e., a function into (finite) subsets of

Q× Γ∗.

My personal favourite is a (finite) transi-

tion relation

δ ⊆ Q× (Σ ∪ {ǫ})× Γ×Q× Γ∗.

In the former one writes

δ(p, a,A) ∋ (q, α)

and in the latter

(p, a,A, q, α) ∈ δ.

The meaning is the same. ⊳

IV 2 pushdown automaton (syntax)

a

input tape

· · · · · ·

δ

p

finite
control

stack

top

A

...

7-tuple

A = (Q,Σ,Γ, δ, q0, Z0, F)

Q states p, q
q0 ∈ Q initial state
F ⊆ Q final states
Σ input alphabet a, b w, x
Γ stack alphabet A,B α
Z0 ∈ Γ initial stack symbol

transition function (finite)

δ : Q× (Σ ∪ {ǫ})× Γ → 2Q×Γ∗

from to

(p a A) ∋ (q α)
read pop push

︸ ︷︷ ︸

before
︸ ︷︷ ︸

after

IV 3 pushdown automaton (semantics)

a· · · · · ·
︸ ︷︷ ︸

w = ax

p A
...

β
=
A
γ

a· · · · · ·
︸ ︷︷ ︸

x

q
α

...

α
γ

Q×Σ∗ × Γ∗ configuration

(p, w, β)







p state
w input, unread part
β stack, top-to-bottom

move (step) ⊢A

(p, ax,Aγ) ⊢A (q, x, αγ) iff

(p, a,A, q, α) ∈ δ, x ∈ Σ∗ and γ ∈ Γ∗

computation ⊢∗
A

L(A) final state language

{ x ∈ Σ∗ | (q0, x, Z0) ⊢∗
A (q, ǫ, γ)

for some q ∈ F and γ ∈ Γ∗ }

Le(A) empty stack language

{ x ∈ Σ∗ | (q0, x, Z0) ⊢∗
A (q, ǫ, ǫ)

for some q ∈ Q }

⊲

The basic theorem of context-free lan-

guages: Theorem 1.5.6. the equivalence

of cfg and pda.

It is due to

Chomsky ‘Context Free Grammars and

Pushdown Storage’,

Evey ‘Application of Pushdown Store

Machines’, and

Schützenberger ‘On Context Free Lan-

guages and Pushdown Automata’ all in

1962/3.

Starting with a pda under empty stack

acceptance we construct an equiva-

lent cfg. Its nonterminals are triplets

[p,A, q] representing computations of

the pda. Productions result from re-

cursively breaking down computations.

A single instruction yields many produc-

tions, mainly because intermediate states

of the computations have to be guessed.

⊳

IV 4 pushdown automaton cf grammar

Theorem 1.5.6

A
p q

nonterminals [p,A, q] p, q ∈ Q, A ∈ Γ

[p,A, q] ⇒∗
G w ⇐⇒ (p, w,A) ⊢∗ (q, ǫ, ǫ)

productions

S → [qin , Zin , q] for all q ∈ Q

A B3

B2

B1

B2

B3

p q1 q2 q3 q

[p,A, q] → a [q1, B1, q2] [q2, B2, q3] · · · [qn, Bn, q]

δ(p, a,A) ∋ (q1, B1 · · ·Bn)

q, q2, . . . , qn ∈ Q

[p,A, q] → a δ(p, a,A) ∋ (q, ǫ)

IV 5 intersection with regular languages

Theorem 1.5.8

a;A/α

a

a;A/α

ǫ;A/α ǫ;A/α

︷
︸
︸

︷

⇒

⇒

{ anbn | n ≥ 1 }∗ ∩

{ w ∈ {a, b}∗ | #ax even }

r1 p1 q1

r0 p0 q0

r p q
ǫ

ǫ;Z/Z

a;+A

b;A/ǫ
ǫ;Z/Z

ǫ

ǫ;Z/Z

b;A/ǫ

ǫ

ǫ;Z/Z

b;A/ǫ

ǫ;Z/Z

ǫ;Z/Z

a;+A a;+A

0

1

aa

b

b

4.1 Closure properties

IV 6 first course . . .

closed under . . .

union, concatenation, star

(using grammars)

not under intersection, complement

L = { anbncn | n ≥ 0 } not in CF

{aibi | i ≥ 0}c∗ ∩ a∗{bici | i ≥ 0}

{a, b, c}∗ − L is CF (exercise)

IV 7 closure properties

RLIN CF MON TYPE0

REG DPDA PDAe DLBA LBA REC RE

intersection + – – + + + +
complement + + – + + + –
union + – + + + + +
concatenation + – + + + + +
star, plus + – + + + + +
ǫ-free morphism + – + + + + +
morphism + – + – – – +
inverse morphism + + + + + + +
intersect reg lang + + + + + + +
mirror + – + + + + +

fAFL fAFL AFL AFL AFL fAFL

∩ c ∪ boolean operations

∪ · ∗ regular operations

h h−1 ∩R (full) trio operations

Next: An ’intuitive’ pictorial representa-
tion of the direct product construction of
a PDA and a FST, showing the image
of a PDA language under a transduction
is again accepted by a PDA. This proves
closure of CF under several operations.

Same construction is given on the trans-
parency after that one, but now in a more
precise specification. No formal proof (in-
duction on computations) is given.

Note! Shallit works the reverse way,

from full trio operations to FST’s. Recall

that a family of languages is closed un-

der FST’s iff it is closed under morphisms,

inverse morphisms and intersection with

regular languages. The ’if’-part is Nivat’s

Theorem 3.5.3, the ’only-if’ follows from

the fact that these operations can all be

performed by a suitable FST.

IV 8 CF & fs transductions

Theorem 4.1.5

Thm. CF is closed under fs transductions

L ∈ CF (given by PDA) FST A : Σ∗ → ∆∗

T(A)(L) = { v ∈ ∆∗ | u ∈ L, (u, v) ∈ T(A) }

a,A/α

a, b

b, A/α

ǫ, A/α ǫ,A/α

ǫ, b b

︷
︸
︸

︷

⇒

⇒

⇒

Cor. CF is closed under morphisms, inverse mor-

phisms; intersection, quotient & concatena-

tion with regular languages (x3); prefix, suffix

. . .

IV 9 specification

a,A/α

a/b
b,A/α

ǫ,A/α ǫ,A/α

ǫ/b b

⇒

⇒

⇒

PDA A = (Q,∆,Γ, δ, qin , Zin , F)

FST M = (P,∆,Σ, ε, pin , E)

T(M)(L(A)) ⇒ PDA A′ = (Q′,Σ,Γ, δ′, q′
in
, Zin, F

′)

formally – Q′ = Q× P

– q′
in

= 〈qin , pin〉

– F ′ = F ×E, and

– δ′ is defined by

if δ(q1, a, A) ∋ (q2, α), and (p1, a, b, p2) ∈ ε

(with a 6= ǫ)

then δ′(〈q1, p1〉, b, A) ∋ (〈q1, p1〉, α)

if δ(q1, ǫ, A) ∋ (q2, α) and p ∈ P ,

then δ′(〈q1, p〉, ǫ, A) ∋ (〈q1, p〉, α)

if q ∈ Q and (p1, ǫ, b, p2) ∈ ε,

then δ′(〈q, p1〉, b, A) ∋ (〈q, p1〉, α)

As an example of finite state transducers

and the closure construction: the inverse

morphism.

In Shallit this is Thm. 4.1.4, without ex-

plicit FST.

For a morphism h we construct a FST

that realizes h−1. Then for the context-

free language K = {(100)n(10)n |

n ≥ 0} we construct PDA for K and

h−1(K).

IV 10 example: inverse morphism

Theorem 4.1.4

h :







a 7→ 100
b 7→ 10
c 7→ 010

ε 0

10

00

1/b

0/ǫ

0/c 1/ǫ

1/a 0/ǫ

100100100101010

a a a b b b

b c c c b b

a b c c b b

K = { (100)n(10)n | n ≥ 0 }

1

23

4

5

6
1,+A

0

0

ǫ

1, A/ǫ0

ǫ, Z/ǫ

h−1(K) = { w ∈ {a, b, c}∗ | h(w) ∈ K }

1.ε

1.10

2.0

2.00

3.ε

3.0

4.ε

4.10

40

5.0
5.00

6.ε

6.10

6.0

a,+A

b,+A

ǫ

ǫ,+A

ǫ

ǫ

c

ǫ

ǫ

ǫ, A/ǫ

b

b,A/ǫ

a;A/ǫ

ǫ, Z/ǫ

ǫ, Z/ǫ

ǫ, Z/ǫ

ǫ

IV 11 example (repetition)

Theorem 4.1.6

L1
︷ ︸︸ ︷

︸ ︷︷ ︸

L2

x

L1, L2 ⊆ Σ∗

L1/L2 = { x ∈ Σ∗ | xy ∈ L1 for some y ∈ L2 }

can ’hide’ computations

Ex. L1 = { a2ncban | n ≥ 1 }{ ba2nban | n ≥ 1 }∗ba

L2 = c · { banban | n ≥ 1 }∗

L1/L2 = { a2
n
| n ≥ 1 }

Thm. CF not closed under quotient

As promised, the CF languages are closed
under right quotient with regular lan-
guages, since for every regular language
R we can transform the FSA for R into a
FST that performs the quotient by R as
its function.

The next slide implements this construc-
tion. Given a PDA A and a FSA M it

directly constructs the PDA for the quo-

tient of the languages. It uses the gen-

eral format for transductions from pre-

vious slides, as if the transducer for the

quotient had been given. In fact, is has

been implicitly derived from the FSA, by

adding a single state ı, see sketch to the

left for a specific example.

IV 12 specific case: right quotient regular

Exercise 4.18

quotient transducer

ı
a/ǫ

a/ǫ

b/ǫ b/ǫ

ǫ/ǫ

a/a
b/b

︸︷︷︸
copy x

︸ ︷︷ ︸

check y∈R

K/R =

{ x | xy ∈ K and y ∈ R }

L(A) = L PDA A = (Q,∆,Γ, δ, qin , Zin , F)

L(M) = R FSA M = (P,∆, ε, pin , E)

PDA for right quotient L/R

A′ = (Q′,∆,Γ, δ′, q′
in
, Zin , F

′)

Q′ = Q× (P ∪ {ı})

δ′ contains

(〈q1, ı〉, a, A, 〈q2, ı〉, α) for δ(q1, a, A) ∋ (q2, α)

(〈p, ı〉, ǫ, A, 〈p, pin〉) for p ∈ P , A ∈ Γ

(〈q1, p〉, ǫ, A, 〈q2, p〉, α)

for δ(q1, ǫ, A) ∋ (q2, α), p ∈ Q

(〈q1, p1〉, ǫ, A, 〈q2, p2〉, α)

for δ(q1, a, A) ∋ (q2, α) & (p1, a, p2) ∈ ε

q′
in

= 〈qin , ı〉

F ′ = F × E

IV 13 full trio

family of languages L is a full trio (or cone)

iff L is closed under morphism h,

inverse morphism h−1, and

intersection with regular languages ∩R

iff L is closed under finite state transductions T

Cor. full trio closed under prefix, quotient, . . .

Thm. REG and CF are full trio’s.

4.2 Unary context-free languages

IV 14 unary languages

Theorem 4.2.1

L ⊆ {0}∗ L ∈ CF iff L ∈ REG

pumping constant n, m ≥ n

z = 0m = uvwxy

am = |uwy|, bm = |vx|

z = 0am 0bm, 1 ≤ bm ≤ n

M = {m ∈ N | 0m ∈ L}

L′ = {x ∈ L | |x| < n}

L = L′∪
⋃

m∈M 0am0bm = L′∪
⋃

m∈M 0am(0bm)∗

infinite union ⇒ finite

z = 0am0bm b = bm = bm′, m < m′, am = am′ (modb)

z′ = 0a
′
m0b

′
m 0am(0b)∗ ⊇ 0am′(0b)∗

mab = min{ m ∈M | bm = b, am = a (modb) }

L = L′ ∪
⋃

0≤a<b≤n 0
mab(0b)∗

4.6 Parikh’s theorem

IV 15 Parikh

h : Σ → {0}, x 7→ 0

CF REG same length sets

Parikh map commutative image

ψ : Σ∗ → Nk

w 7→ (|w|a1, . . . , |w|ak)

aabaccbacca 7→ (5,2,4)

c(ab)∗c(bc)∗c 7→ { (k, k+ ℓ,3 + ℓ) | k, ℓ ∈ N } =

{ (0,0,3)+ k · (1,1,0)+ ℓ · (0,1,1) | k, ℓ ∈ N }

(abc)∗ REG

{ (ab)ncn | n ∈ N } LIN – REG

{ w ∈ {ab, c}∗ | #a(w) = #b(w) } CF – LIN

{ anbncn | n ∈ N } CS – CF

7→ { (n, n, n) | n ∈ N } = { n · (1,1,1) | n ∈ N }

IV 16 semilinear sets

Theorem 4.6.5

linear set ~u0, ~u1, . . . ~ur ∈ Nk

A = {~u0 + a1~u1 + . . .+ ar~ur | a1, . . . , ar ∈ N}

semilinear finite union

4.6.1 semilinear sets closed under

union, intersection and complement

4.6.3 X semilinear, then X = ψ(L) for regular L

ω(~u0) · { ω(~u1), . . . , ω(~ur) }∗

ω : Nk → {a1, . . . , ak}
∗ ψ(ω(~u)) = ~u

4.6.5 ψ(L) semilinear for CFL L

IV 17 proof

Lemma 4.6.4

G Chomsky normal form

k variables p = 2k+1

z ∈ L(G), |z| ≥ pj

S ⇒∗

uAy ⇒∗

uv1Ax1y ⇒∗

uv1v2Ax2x1y ⇒∗

. . . ⇒∗

uv1v2 . . . vjAxj . . . x2x1y ⇒∗

uv1v2 . . . vjwxj . . . x2x1y = z

vixi 6= ǫ

|uv1v2 . . . vjxj . . . x2x1y| ≤ pj

Theorem 4.6.5

ψ(L) semilinear for CFL L

LU ⊆ L

derivation with variables U

L =
⋃

S⊆U⊆V LU

ℓ = |U |

E = { w ∈ LU | |w| < pℓ } S ⇒∗ w

F = { vx | 1 ≤ |vx| ≤ pℓ,

A⇒∗ vAx for some A ∈ U }

ψ(LU) = ψ(EF ∗)

“⊆” induction on |z|, z ∈ LU

“⊇” induction on t,

z = e0f1 . . . ft ∈ EF ∗

IV 18 application Parikh

Example 4.6.6

Ex. L = { aibj | j 6= i2 } not in CF

ψ(L) = { (i, j) | j 6= i2 } not semilinear

complement { (i, i2) | i ∈ N }

corresponding regular language?

lengths { i2 + i | i ∈ N } cannot be pumped

4.3 Ogden’s lemma
4.4 Applications of Ogden’s lemma

IV 19 ‘Bar-Hillel’ pumping lemma

Theorem 1.5.5

long words can be pumped

∀ for every CF language L

∃ there exists a constant n ≥ 1

such that

∀ for every z ∈ L

with |z| ≥ n

∃ there exists a decomposition z = uvwxy

with |vwx| ≤ n, |vx| ≥ 1

such that

∀ for all i ≥ 0, uviwxiy ∈ L

IV 20 Ogden

Lemma 4.3.1

‖x‖ marked symbols in x

∀ for every CF language L

∃ there exists a constant n ≥ 1

such that

∀ for every z ∈ L

with ‖z‖ ≥ n

∃ there exists a decomposition z = uvwxy

with ‖vwx‖ ≤ n, ‖vx‖ ≥ 1

such that

∀ for all i ≥ 0, uviwxiy ∈ L

IV 21 proof Ogden

Lemma 4.3.1

A
α′

A
α

S

u v w x y

S ⇒∗ uAy

A⇒∗ vAx

A⇒∗ w

uviwxiy ∈ L

G = (V,Σ, P, S)

k = |V | d = max{|α| | A→ α ∈ P}

branch point: ≥ 2 children with

marked descendants

if each path has ≤ ℓ branch points,

then ≤ dℓ marked letters

pumping constant n = dk+1 > dk

∃ path with > k branch points

take path with most branch points

α, α′ same label A,

as low as possible

‖vx‖ ≥ 1 α branch point

‖vwx‖ ≤ n no repetition below α

‖w‖ ≥ 1 α′ branch point

IV 22 application Ogden

Example 4.3.2

L = { aibjck |

i = j or j = k but not both }

not context-free

n as Ogden, assume ≥ 3

z = an bn cn+n!

z = uvwxy

v, x each cannot have different

symbols else uv2wx2y /∈ a∗b∗c∗

possibilities

• vx= ak

uv0wx0y = an−kbncn+n! /∈ L

• v = ak, x = bℓ (k 6= ℓ)

uv0wx0y = an−kbn−ℓcn+n! /∈ L

• v = ak, x = bℓ (k = ℓ)

consider i = n!
ℓ +1

add i− 1 copies of ℓ a’s

uviwxiy = an+n!bn+n!cn+n! /∈ L

• v = ak, x = cℓ

uv2wx2y = an+kbncn+n!+ℓ /∈ L

IV 23 application Ogden

Theorem 4.4.1

grammar ambiguous

language inherently ambiguous

L = { aibjck | i = j or j = k }.

is inherently ambiguous

see example 4.3.2

z = an bn cn+n! z′ = an+n! bn cn

IV 24 triples

Theorem 4.4.2

[p, A, q] ⇒∗
G w ⇐⇒ (p, w,A) ⊢∗

M (q, ǫ, ǫ)

Thm. PDA M with n states and p stack symbols

each CFG for Le(M) has at least n2p variables

4.5 The interchange lemma

IV 25 interchange lemma

Lemma 4.5.1

∀ for every CF language L

∃ there exists constant c > 0

∀ such that for all n ≥ m ≥ 2,

all subsets R ⊆ L ∩Σn

∃ there exists Z = {z1, z2, . . . , zk} ⊆ R,

with k ≥
|R|

c(n+1)2

and compositions zi = wixiyi
such that

(a) |w1| = |w2| = . . . = |wk|

(b) |y1| = |y2| = . . . = |yk|

(c) m
2 < |x1| = |x2| = . . . = |xk| ≤ m

(d) wixjyi ∈ L for all 1 ≤ i, j ≤ k

IV 26 8+16

Lemma 4.5.2

Lem. G CFG in Chomsky normal form for L, m ≥ 2

z ∈ L, |z| ≥ m, then S ⇒∗ wAy ⇒∗ wxy = z

with m
2 < |x| ≤ m

z (n1, A, n2) where n1 = |w|, n2 = |z|

IV 27 squarefree

Theorem 2.5.2

Chapter 2 Thue-Morse sequence

tn number of 1’s in base-2 expansion of n

or iterate 0 7→ 01, 1 7→ 10

0 · 1 · 10 · 1001 · 10010110 · 1001011001101001 . . .

overlapfree no axaxa (a ∈ Σ2, x ∈ Σ∗
2)

00 7→ 1, 01 7→ 2, 10 7→ 0, 11 7→ 1 ‘sliding’

2102012101202102012021012102012 . . .

squarefree no xx (x ∈ Σ∗
3)

IV 28 application interchange

Theorem 4.5.4

Σ = {0,1, . . . , i−1} Li = { xyyz | x, y, z ∈ Σ∗, y 6= ǫ }

Thm. L6 not in CF

[see Chapter 2] r squarefree string of length n
4−1 over {0,1,2}

An = {3r3r ∐ s | s ∈ {4,5}n/2}

∐ perfect shuffle (alternate strings)

z ∈ An contains a square iff it is a square

Bn = L6 ∩An = {3r3r ∐ ss | s ∈ {4,5}n/4}

|Bn| = 2
n
4 choose m = n/2

[take n large] Z = {z1, z2, . . . , zk} k ≥ 2n/4

c(n+1)2
> 2n/8

zi = wixiyi,
m
2 < |xi| ≤ m (etc.)

wixjyi ∈ Bn hence xi = xj
(xi fixed by other symbols in zi)

hence n
4 symbols fixed for Z, n8 in {4,5}

at most n
8 free, |Z| ≤ 2n/8

contradiction

4.7 Deterministic context-free languages

what we learn about

deterministic context-free

languages

- is an automaton notion

- less powerful than CF

- closed under complement

(nontrivial)

- see also Chapter 5 on parsing

IV 29 closure properties

RLIN CF MON TYPE0

REG DPDA PDAe DLBA LBA REC RE

intersection + – – + + + +
complement + + – + + + –
union + – + + + + +
concatenation + – + + + + +
star, plus + – + + + + +
ǫ-free morphism + – + + + + +
morphism + – + – – – +
inverse morphism + + + + + + +
intersect reg lang + + + + + + +
mirror + – + + + + +

fAFL fAFL AFL AFL AFL fAFL

∩ c ∪ boolean operations

∪ · ∗ regular operations

h h−1 ∩R (full) trio operations

IV 30 non-determinism

a;Z/ZA
b;Z/ZB
ǫ;Z/ǫ
a;A/ǫ
b;B/ǫ

Z → aZA
Z → bZB
Z → ǫ
A→ a
B → b

P = { wwR | w ∈ {a, b}∗ } guessing the middle

(aabbaa, Z) ⊢ (aabbaa, ǫ) 6⊢

T

(abbaa, ZA) ⊢ (abbaa,A) ⊢ (bbaa, ǫ) 6⊢

T

(bbaa, ZAA) ⊢ (bbaa,AA) 6⊢

T

(baa, ZBAA) ⊢ (baa, BAA) ⊢ (aa,AA) ⊢ (a,A) ⊢ (ǫ, ǫ) ok.

T

(aa, ZBBAA) ⊢ (aa,BBAA) 6⊢

T

(a, ZABBAA) ⊢ (a,ABBAA) ⊢ (ǫ, BBAA) 6⊢

T

(ǫ, ZAABBAA) ⊢ (ǫ, ABBAA) 6⊢

also { anbn | n ∈ N } ∪ { anbℓcn | ℓ, n ∈ N }

Determinism means the automaton has

no choice: at each moment it can take

at most one step to continue its compu-

tation. To translate this intuition to a

restriction on the instructions for PDA is

nontrivial, as the next step is determined

both by input letter and by topmost stack

symbol. Additionally this is complicated

by the choice between reading an input

letter and following a λ-instruction.

We quote from our chapter:

The PDAA = (Q,∆,Γ, δ, qin , Ain, F)

is deterministic if

• for each p ∈ Q, each a ∈ ∆, and

each A ∈ Γ, δ does not contain both

an instruction (p, λ,A, q, α) and an

instruction (p, a,A, q′, α′).

• for each p ∈ Q, each a ∈ ∆ ∪ {λ},

and eachA ∈ Γ, there is at most one

instruction (p, a,A, q, α) in δ.

IV 31 definition

FSA = DFSA = RLIN

PDAe = PDA = CF

DPDAe ⊂ DPDA ⊂ CF

determinism means ‘no choice’

. . . where to start (ok)

. . . between two actions

with same tape & stack symbols

. . . between letter or ǫ

not allowed

p

a;A/α1

a;A/α2

(p, a, A) ∋ (q1, α1)

(p, a, A) ∋ (q2, α2)

p

a;A/α1

ǫ;A/α2

(p, a,A) ∋ (q1, α1)

(p, ǫ, A) ∋ (q2, α2)

final state: deterministic CF languages

‘context-free’ but uses automata

IV 32 determinism can be hard

1

a;Z/ZA
ǫ;Z/X
b;X/X
ǫ;X/ǫ
a;A/ǫ

{ anbman | m,n ∈ N }

Z A
Z A
Z A
Z X X X

A
A
A ⊥

a a a ǫ b b ǫ a a a

deterministic:

1o

1e 2×

b×

3× 4×

a;+A
a;+A

b;Z/Z

b;A/A

b;Z/Z

b;A/A

b;A/A

a;A/ǫ

a;A/ǫ ǫ;Z/ǫ

IV 33 please note . . .

closure under complement F ↔ Q− F

⋆ completely read input

∗ input+stack may block

∗ infinite ǫ-computations!

⋆ computations without reading

∗ accept afterwards

ǫ;A/ǫ

ǫ;A/ǫ

ǫ;B/ǫ

ǫ;Z/ǫ

ǫ

a;+A
b;+B

{A,B,Z}, initial Z

IV 34 avoid blocking & loops

Lemma 4.7.1

∗“The actual

implementation

is a bit complex”

Lem. equivalent PDA that always scans entire input

(q0, w, Z0) ⊢∗ (q, ǫ, α) q ∈ Q, α ∈ Γ∗

M = (Q,Σ,Γ, δ, q0, Z0, F)

Q′ = Q ∪ {d, f}, Γ′ = Γ ∪ {X0}, F
′ = F ∪ {f},

‘dead’ states δ′(d, a,X) = {(d,X)}

δ′(f, a,X) = {(d,X)} for a ∈ Σ and X ∈ Γ′

avoid empty stack δ′(q′0, ǫ,X0) = {(q0, Z0X0)}

add ‘bottom’ X0 δ′(q, a,X0) = {(d,X0)} for q ∈ Q and a ∈ Σ

undefined transitions δ′(q, a,X0) = {(d,X0)}

when δ(q, a,X) = ∅ and δ(q, ǫ,X) = ∅

infinite loops∗ when M enters infinite ǫ-loop on (q, ǫ,X)

δ′(q, ǫ,X) = {(d,X)} without final states

δ′(q, ǫ,X) = {(f,X)} with final state

IV 35 deterministic complement

Theorem 4.7.2

x /∈ L(M)
a

︸ ︷︷ ︸

x

ǫ’s

a;X/γ

ǫ’s

x ∈ L(M)

x /∈ L(M′) n y y
a

ǫ’s

a;X/γ

ǫ’s

x ∈ L(M′) 0 n n n A
a

ǫ’s

ǫ;X/X a;X/γ

ǫ’s

IV 36 DCFL complement

Theorem 4.7.2

Thm. DCFL (= DPDA) closed under complement

M = (Q,Σ,Γ, δ, q0, Z0, F)

Q′ = Q× {n, y,A}, F ′ = Q× {A}

q′0 = [q0, y] if q0 ∈ F , q′0 = [q0, n] otherwise

δ(q, a,X) = (p, γ) δ′([q, y], a,X) = ([p, y], γ) p ∈ F
(a ∈ Σ) δ′([q, y], a,X) = ([p, n], γ) p /∈ F

δ′([q, n], ǫ,X) = ([q, A], X)
δ′([q, A], a,X) = ([p, y], γ) p ∈ F
δ′([q, A], a,X) = ([p, n], γ) p /∈ F

δ(q, ǫ,X) = (p, γ) δ′([q, y], ǫ,X) = ([p, y], γ)
δ′([q, n], ǫ,X) = ([p, y], γ) p ∈ F
δ′([q, n], ǫ,X) = ([p, n], γ) p /∈ F

IV 37 not DCFL

Example 4.7.2

Ex. { w ∈ {a, b}∗ | w 6= xx } not in DCFL

IV 38 DCFL & Myhill-Nerode

Theorem 4.7.4

Thm. L DCFL

at least one Myhill-Nerode class is infinite

x ∈ Σ∗
 x′, q, Aα

after processing xx′ stack height |Aα| minimal

(q0, xx
′, Z0) ⊢∗ (q, ǫ, Aα)

any continuation independent of α

infinitely many xx′ end in same minimal q, A

infinitely many xx′ all in L or all in Σ∗ − L

have the same ’extensions’

(q0, xx
′z, Z0) ⊢∗ (q, z, Aα) ⊢∗ (p, ǫ, γα) (p ∈ F)

iff (q0, x1x
′
1z, Z0) ⊢∗ (q, z, Aα1) ⊢∗ (p, ǫ, γα1)

Cor. PAL = { x ∈ {a, b}∗ | x = xR } not in DCFL

(exercise) no strings equivalent

⊲

Consider a language that both includes

string x and an extension xy of it. Non-

deterministic automata may have quite

different accepting computations on both

strings. For deterministic automata we

know that the computation that accepts

xy must start with the accepting com-

putation on x. ⊳

IV 39 determinism & prefixes

*

language L x ∈ L, xy ∈ L

∗ nondeterminism
x

xy

an bn

an bm cn different behaviour on b’s

∗ determinism
x

y

computation on xy and on x must coincide!

apply this to:

haspref(L) = { xy | x ∈ L, xy ∈ L, y 6= ǫ }

In order to rigorously show that DPDA ⊂
PDA = CF we define a ‘strange opera-
tion’ haspref. We show that DPDA and
CF behave differently with respect to this
operator. See properties on the slide.

This part of the slides was used for an-

other lecture (where closure under com-

plement was not proved).

IV 40 a strange operation

*

haspref(L) = { xy | x ∈ L, xy ∈ L, y 6= ǫ }

L0 = { anbn | n ≥ 1 } ∪ { anbmcn | m,n ≥ 1 }

haspref(L0) = { anbmcn | m ≥ n ≥ 1 } /∈ CF

> CF = PDA is not closed under haspref

> DPDA is closed under haspref

[proof follows]

consequences

> DPDA ⊂ PDA = CF L0 ∈ CF− DPDA

> DPDA is not closed under union

> also { wwR | w ∈ {a, b}∗ } /∈ DPDA

Geraud Senizergues (2001) proved that the equivalence problem for

deterministic PDA (i.e. given two deterministic PDA A and B, is

L(A) = L(B)?) is decidable.

For nondeterministic PDA, equivalence is undecidable.

4.8 Linear languages

IV 41 anbman is linear

1

a;Z/ZA
ǫ;Z/X
b;X/X
ǫ;X/ǫ
a;A/ǫ

Z → aZa

Z → X

X → bX

X → ǫ

{ anbman | m,n ∈ N }

Z A
Z A
Z A
Z X X X

A
A
A ⊥

a a a ǫ b b ǫ a a a

linear grammar: rhs at most one variable

A → αBβ, X → α

A,B ∈ V , α.β ∈ Σ∗

{ anbn | n ∈ N }

{ anbncm | m,n ∈ N }

{ anbnambm | m,n ∈ N } not LIN, why?

IV 42 LIN pumping lemma

Lemma 4.8.2

long words can be pumped

∀ for every LIN language L

∃ there exists a constant n ≥ 1

such that

∀ for every z ∈ L

with |z| ≥ n

∃ there exists a decomposition z = uvwxy

with |uvxy| ≤ n, |vx| ≥ 1

such that

∀ for all i ≥ 0, uviwxiy ∈ L

IV 43 non-linear language

Example 4.8.3

context-free ((((())())()))(())

linear (((((())))))

example ((()))(((())))

L = { aibicjdj | i, j ≥ 0 } in CFL – LIN

z = anbncndn

|uvxy| ≤ n

v and x each consist of a’s or d’s

v = ak, x= dℓ, k+ ℓ ≥ 1

uv0wx0y = an−kbncndn−ℓ /∈ L

and two other possibilities

IV 44 family picture

{ x ∈ {a, b}∗ | x = xR } in LIN - DCF

{ aibicjdj | i, j ≥ 0 } in DCF - LIN

IV 45 LIN closure properties

*

{ aibicjdj | i, j ≥ 0 } in CFL – LIN

= { aibi | i ≥ 0} · {cjdj | j ≥ 0 } in LIN·LIN

not closed under concatenation

= { aibi | i ≥ 0} · c∗d∗ ∩ a∗b∗ · {cjdj | j ≥ 0 }

not closed under intersection

closed under finite state transductions:

(inverse) morphism, intersection regular
use machine model −→

not closed under star

T({ aibi | i ≥ 0}∗) = { aibicjdj | i, j ≥ 0 }

⊲

As we have seen, both the context-free
and the reguar languages have character-
izations using grammars as well as using
automata.

Here we show the same holds for the lin-
ear languages, they are accepted by one-
turn push-down automata, where the
stack behaviour consists of two phases,
the first one adding to the stack, the sec-
ond one popping.

This cannot be directly derived from the
classical PDA to CFG triplet construc-
tion, as this will not generally yield a
linear grammar when one starts with a
one-turn pushdown.

⊳

IV 46 push, then pop

*

RLIN = FSA

LIN = 1tPD

CF = PD

one-turn pushdown automata

Z Z
A B A

X
A B X

X A A
A B X

Z

Q = Q+ ∪Q−, qin ∈ Q+

(p, a,A, q, α) ∈ δ then

{
p, q ∈ Q+ and |α| ≥ 1, or

p ∈ Q, q ∈ Q− and |α| ≤ 1

standard construction:

(p, a,A, q, BC) ∈ δ then

[p,A, r] → a[q,B, s][s, C, r]

not linear

[p,A, q] ⇒∗
G w ⇐⇒ (p, w,A) ⊢∗ (q, ǫ, ǫ)

here q ∈ Q−

IV 47 LIN = 1tPD (proof)

*

δ(p, a,A) ∋ (q1, B1 · · ·Bn)

[p,A, q] → a [q1, B1, q2] [q2, B2, q3] · · · [qn, Bn, q]︸ ︷︷ ︸

generate regular languages

p, q1 ∈ Q, q, q2, . . . , qr ∈ Q−

B1, . . . , Br ∈ Γ (1 ≤ r ≤ max-rhs)

p ∈ Q− if (q, α) ∈ δ(p, a,A) then q ∈ Q−, |α| ≤ 1

[p,A, r] → a[q,B, r] δ(p, a,A) ∋ (q,B)

[p,A, q] → a δ(p, a,A) ∋ (q, ǫ)

include this information in [q1, B1, q2]

generate regular language(s) to the right

backwards! (left-linear grammar)

then next step pushdown

IV 48 powerful quotient

*

LIN / LIN = RE

later perhaps, Chapter 6

LIN not closed under quotient

extra exercise

IV 49 exercise

Ex. 4.7

7. Is the class of CFLs closed under the shuffle

operation shuff ‖ (introduced in Section 3.3)?

How about perfect shuffle ∐?

not context-free

{ ww | w ∈ Σ∗ }

{ anbncn | n ≥ 0 }

{ anbmanbm | n,m ≥ 0 }

intersect shuffle with regular language

IV 50 exercise

Ex. 4.15

15. Let G = (V,Σ, P, S) be a context-free gram-

mar.

(a) Prove that the language of all sentential

forms derivable from S is context-free.

(b) Prove that the language consisting of all sen-

tential forms derivable by a leftmost deriva-

tion from S is context-free.

variables V become terminals

simulated by ‘new’ variables

leftmost derivations are precisely simulated

when constructing PDA for CFG

1 2FLT

transparencies made for

Second Course in
Formal Languages and
Automata Theory

based on the book by Jeffrey Shallit

of the same title

Hendrik Jan Hoogeboom, Leiden

http://www.liacs.nl/~hoogeboo/second/

http://www.liacs.nl/~hoogeboo/second/

