
Undecidable Problems for Context-free Grammars

Hendrik Jan Hoogeboom
Universiteit Leiden (NL)

Abstract. We discuss some basic undecidable problems for context-free lan-
guages, starting from Valid and invalid computations of TM’s: a tool for prov-
ing CFL problems undecidable, Section 8.6 of the famous “Cinderella Book” by
Hopcroft and Ullman [HU79].

As original source for the undecidability results the book refers to Bar-Hillel
etal. [B-HPS61] and Ginsburg&Rose [GR63]. The main results relating tm

computations to cfg’s are from Hartmanis [Ha67]. Before that connection,
undecidability results were usually obtained by reduction from pcp, see here
Section 2, where the connection to tm computations is hidden. It seems that
the pcp is still vary useful when considering undecidability for linear grammars.

Thus in Section 1 we will consider the basic intersection problem for context-
free grammars using a direct coding of tm computations. In Section 2 we
improve this to linear grammars as an application of the undicidability of pcp.
General problems for (linear) context-free grammars are the topic of Section 3
which starts by considering invalid computations.

It is assumed that basic notions of context-free grammars and Turing ma-
chines are known. In particular it is should be understood how to construct
cfg’s for the languages {x#xR# | x ∈ Σ∗}∗ and {x#yR | x, y ∈ Σ∗, x 6= y}.
Here # is a symbol not in Σ and ·R denotes the mirror operator.

L(G1) ∩ L(G2) = ∅ disjointness Theorem 3
L(G) = Σ∗ universality Theorem 10
L(G) = R ”
L(G1) = L(G2) equality ”
L(G) is ambiguous ambiguity Theorem 8
L(G) is regular regularity Theorem 11

1 Coding Turing Machine Computations

The basic tool for proving the various undecidability results for cf languages is
a proper coding of tm computations.

A configuration of tmM is a string w ∈ Γ∗QΓ∗, where Γ is the tape alphabet
of M and Q is the state set of M. Thus w = xqy with x, y ∈ Γ∗ and q ∈ Q,
meaning that the tape has left and right parts x and y, and the tm is in state
q with its head at the first letter of x. The tape alphabet Γ contains a special
symbol B to represent blank cells. Clearly we only represent a finite number
of B’s in a configuration. A single computational step from configuration x to
configuration y is denoted as x ⊢ y.

A valid computation (of length n) is represented by string of the form
w0#wR

1 #w2#wR
3 # . . .#wR

2k−1
(n = 2k−1 is odd) orw0#wR

1 #w2#wR
3 # . . .#w2k#

(n = 2k is even) in which the consecutive wi represent the consecutive configu-
rations from initial to halting. Adding the mirror at alternating positions makes

1

the coding feasible for context-free grammars, as will be clear next. Thus, the
requirements for a valid computation are

• w0 = Bq0x is the initial configuration for some input x ∈ Σ∗,
• consecutive configurations are obtained by a tm step wi ⊢ wi+1 for 0 ≤
i < n, and

• wn is accepting, i.e., of the form yhz where h is a halting state.

The language of valid computations of tm M is denoted by valid(M).

Theorem 1. Given a tm M one effectively constructs two cfg G1, G2 such
that valid(M) = L(G1) ∩ L(G2).

Proof. We use the fact that tm steps ony locally rewrites the tape contents. Let
x, y ∈ Γ∗. Then

xZpX y ⊢ x qZY y if (p,X, q, Y, L) ∈ δ ‘move left’
x pX y ⊢ xY q y if (p,X, q, Y,R) ∈ δ ‘move right’
x pX y ⊢ x qY y if (p,X, q, Y, S) ∈ δ ‘stay’

If we take note of the mirror operation, consecutive configurations are coded
as #xZpXy# yRY ZqxR #, move left for even steps, etc.

Now we define two grammars: G1 generates repeated occurrences of even
steps wi#wR

i+1, while G2 takes care of the odd steps wR
i #wi+1.

Let Le = {u#vR# | u, v ∈ Γ∗QΓ∗, u ⊢ v} and Lo = {uR#v# | u, v ∈
Γ∗QΓ∗, u ⊢ v}. Then G1 generates L∗

e ({λ} ∪ Γ∗HΓ∗), while similarly G2 gen-
erates Bq0({B} ∪ Σ+)L∗

o ({λ} ∪ Γ∗HΓ∗). Note how the first and last position
contain initial and final configurations. Then the intersection of both languages
yields computations of M.

Checking whether wn is final is simple, the form of the possible strings is
regular. This restriction can be added to the grammars.

Now the first undecidability result for cfg’s is a simple consequence from the
fact that it is undecidable whether the language accepted by a Turing machine
is empty. We then immediately apply this to Theorem 1.

Proposition 2. It is undecidable whether valid(M) is empty, for tm M.

Theorem 3 ([B-HPS61, Thm 6.1 a]). It is undecidable whether L(G1)∩L(G2) =
∅ for two cfg’s G1, G2.

Given two cfg’s G1, G2 it is easy to construct a cfg for the concatena-
tion L(G1)L(G2) of their languages. Similarly we can consider the language
L(G1) ♭ L(G2) ♭ where ‘marker’ ♭ is a new symbol. Note that L(G1)∩L(G2) 6= ∅

iff L(G1) ♭ L(G2) ♭ contains a square, i.e., a word of the form ww.
Similarly we can observe that L(G1)∩L(G2) 6= ∅ iff L(G1) ♭ L(G2)

R contains
a palindrome, i.e., a word w for which w = wR.

Thus we have.

Theorem 4. For cfg G it is undecidable whether

• L(G) contains a square.
• L(G) contains a palindrome.

2

2 Post Correspondence Problem

We can improve Theorem 3 using pcp. It enables us to simplify the proof, and
to restrict the type of cfg used to linear grammars.

An instance of Post Correspondence Problem [Po46] is given by two lists of
equal length, A = (x1, x2, . . . , xn) and B = (y1, y2, . . . , xn), of words over an
alphabet Σ. It has a solution if there is a sequence of integers i1, i2, . . . , im,
m > 0, such that xi1xi2 . . . xim = yi1yi2 . . . yim .

Also the undecidability of pcp is usually obtained by coding tm computa-
tions. (Usually as a first step one considers modified pcp where the solutions of
pcp are restricted to i1 = 1.)

Proposition 5. pcp is undecidable.

A cfg is called linear if it only has productions of the form A → xBy and
A → x (with A,B nonterminal, and x, y terminal).

Consider a list A = (x1, x2, . . . , xn) over an alphabet Σ. It is quite easy to
encode the strings of words generated by A together with their indexes using a
linear grammar GA. Its productions are A → xiAi,A → xi#i, i = 1, . . . n. The
language generated is xi1xi2 . . . xim#im . . . i2i1, 1 ≤ i1, i2, . . . , im ≤ n, over the
alphabet Σ ∪ {1, 2, . . . , n} ∪ {#}.

Given two lists A,B obviously L(GA) ∩L(GB) codes solutions of the corre-
sponding pcp. Hence we have.

Theorem 6. It is undecidable whether L(G1) ∩ L(G2) = ∅ for two linear
grammars G1, G2.

Alternatively, we can restrict ourselves to linear grammars in Theorem 1 if
we change the representation for a computation w0, w1, . . . , wn to
w0#w1#w2# . . .#wn#wR

n# . . .#wR
2 #wR

1 #. This representation can be ob-
tained as the intersection of two linear languages, one which checks the steps,
and one which checks the mirror image between the two copies, see figure below.

w0 w1 w2 wn−1 wn wR
n wR

2 wR
1

⊢

=

This coding was used in [BB74] to obtain a characterization for recursively
enumerable languages. Just code the first string w0 in a different alphabet from
the other strings.

Theorem 7. Every recursively enumerable language can be expressed as the
homomorphic image of the intersection of two linear context-free languages.

3

The same technique can be used to obtain recursively enumerable languages
as the quotient of two linear languages.

A context-free grammar G is ambiguous if there exists a string x such that
there are two different derivation trees for x in G. For a list of words A the
grammarGA as given above is unambiguous: each string has a unique derivation
(tree). Given two lists we may assume that the grammars GA and GB have
different nonterminals. In particular that means they have no derivations in
common. Thus the grammar with productions S → A,S → B together with
the productions for GA and GB is unambiguous, unless there is a string that is
in both L(GA) and L(GB). The latter is undecidable. Hence

Theorem 8 ([Ca62, Fl62, CS63]). It is undecidable whether G is ambiguous
for linear grammar G.

By the way, note that it is very easy to code solutions of pcp directly as palin-
dromes. Consider the linear grammar GA,B with productions are A → xiAy

R
i ,

S → xi#yRi , i = 1, . . . n. Then its language contains a palindrome iff the origi-
nal pcp has a solution. Thus we directly see that it is undecidable whether L(G)
contains a palindrome (see Theorem 4), even for linear grammars. To show that
the same for containing a square use productions S → A#, A → xiAi | xiBi,
B → jByj | j#yj . A string of the form xi1 . . . xikjℓ . . . j1#yj1 . . . yjℓik . . . i1# is
a square iff it codes a solution for pcp.

3 Coding Invalid Computations

We can obtain an even more striking result by focussing on the strings that do
code invalid computations (which include both non-accepting computations and
strings that do not code a computation at all).

Thus we define invalid(M) = (Γ ∪ Q ∪ {#})∗ − valid(M). It is easy to
see that a string of the form x1#x2# . . . xm# is invalid if one or more of the
following cases hold.

• xi not a configuration
• x1 not initial
• xn not final
• not xi ⊢ xR

i+1 for even i
• not xR

i ⊢ xi+1 for odd i

Hence we have the following result.

Theorem 9. Given a tm M one effectively constructs a cfg G such that
invalid(M) = L(G).

In fact the grammar G can be taken to be linear [reference?]

Proof. Configurations (and initial or final configurations) form a regular lan-
guage, so also their complements are regular, and hence the strings described
by the first three cases.

4

Recall from Theorem 1 and its proof that tm steps ony locally rewrite
part of the tape. Pairs of configurations xi#xi+1 such that xi ⊢ xR

i+1 are of
one (or more) of the three forms xZpX y#yR Y Zq xR, x pX y#yR qY xR, or
x pX y#yR Y q xR (x, y ∈ Γ∗, p, q ∈ Q, X,Y ∈ Γ) depending on the instructions
of the tm.

It is a little tedious, but the language for the fourth case can be seen to be
linear in the same way as the language {x#yR | x, y ∈ Σ∗, x 6= y}. The fifth
and last case is symmetric.

A tm accepts the empty language iff all its computations are invalid. Conse-
quently for context-free grammars we have the following undecidability results
(which also hold when restricted to linear grammars, as proved in [BB74] using
pcp).

Theorem 10 ([B-HPS61, Thm 6.2 ab, Thm 6.3 d] [BB74, Lemma 1]).

1. It is undecidable whether L(G) = Σ∗ for a cfg G over Σ.

2. It is undecidable whether L(G) = R for cfg G and regular language R.

3. It is undecidable whether L(G1) ⊆ L(G2) for cfg’s G1, G2.

4. It is undecidable whether L(G1) = L(G2) for cfg’s G1, G2.

Proof. Undicidability of (1) by the coding result above and the undecidability
of the emptiness of tm languages. Then (2) follows by taking R = Σ∗, and (3,4)
by choosing G1 such that L(G1) = Σ∗.

In the second item we assume both G and R are part of the input of the
problem. For fixed R the problem may be undecidable (as for R = Σ∗) or
decidable (as for R = ∅).

Note that R ⊆ L(G) is undecidable, by having R = Σ∗. The question
L(G) ⊆ R on the other hand is decidable, it holds iff L(G) ∩ (Σ∗ \ R) = ∅.
This is decidable as emptiness of context-free languages is decidable (and cfl

are effectively closed under intersection with regular languages).
Note that for any family of languages effectively closed under union the last

two items are equivalent. On the one hand K ⊆ L iff K ∪ L = L, while on the
other K = L iff both K ⊆ L and L ⊆ K.

Not only we cannot decide whether L(G) = R for a given regular R, but we
cannot decide whether L(G) is regular at all.

Theorem 11 ([B-HPS61, Thm 6.3 c]). It is undecidable whether L(G) is regular
for cfg G.

Proof. Start with a fixed nonregular context-free language L0 ⊆ Σ∗. Let # be
a symbol not in Σ.

Now for given G consider L1 = L0#Σ∗ ∪ Σ∗#L(G). L1 is context-free. We
argue that L1 is regular iff L(G) = Σ∗.

5

Assume we find a string w /∈ L(G) then L1 ∩ (Σ∗#w) = L0#w. As L0 is
nonregular, also L0#w is nonregular. Context-free languages are closed under
intersection with regular languages so L1 cannot be regular.

On the other hand, when L(G) = Σ∗ then L1 = Σ∗#Σ∗, which is regular.
So deciding regularity of L1 would be equivalent to deciding whether L(G) =

Σ∗, which is impossible.

The above proof technique works for larger classes of grammars, and is called
Greibach’s Theorem [Gr68].

Theorem 12. Let C be a family of languages effectively closed under union and
concatenation with regular sets, and for which equality to Σ∗ is undecidable (for
sufficiently large Σ). Let P be a proper subset of C, which contains all regular
languages, and is closed under /a (single letter quotient). Then membership of
P is undecidable for C.

Even when it is known that L(G) regular, finding a fsa A with L(A) = L(G)
is not effective. This is seen as follows. Let ∆ = Γ ∪ Q ∪ {#}, and consider
L0 = invalid(M) ∪ q0 Σ

+ #∆∗. Apart from all invalid computations, L0 also
contains all computations on non-empty words. L0 is effectively context-free.

We consider two cases. If λ ∈ L(M), then L0 = ∆∗ − {w}, where w codes
the accepting computation for λ. Otherwise, if λ /∈ L(M), then L0 = ∆∗.

The language L0 is regular in both cases, but because of the empty tape
halting problem it is impossible to decide which of the two forms it has.

Acknowledgements

Parts of this overview were inspired by answers on stackexchange, like for in-
stance by users reinierpost and Sylvain.

References

[BB74] B.S. Baker, R.V. Book: Reversal-bounded multipushdown machines.
Journal of Computer and System Sciences 8 (1974) 315–332. doi

10.1016/S0022-0000(74)80027-9

[B-HPS61] Y. Bar-Hillel, M. Perles, E. Shamir: On formal properties of
simple phrase structure grammars. Zeitschrift für Phonetik, Sprach-
wissenschaft und Kommunikationsforschung 14 (1961) 143–172. doi

10.1524/stuf.1961.14.14.143

[Ca62] D.G. Cantor: On The Ambiguity Problem of Backus Systems. Journal
of the ACM 9 (Oct. 1962) 477–479. doi 10.1145/321138.321145

[CS63] N. Chomsky, M.P. Schützenberger: The Algebraic Theory of Context-
Free Languages. Computer Programming and Formal Systems (P. Braf-
fort and D. Hirschberg, eds.) Studies in Logic and the Foundations of
Mathematics 35 (1963) 118–161. doi 10.1016/S0049-237X(08)72023-8

6

http://cs.stackexchange.com/a/57382
http://cstheory.stackexchange.com/a/19116
http://dx.doi.org/10.1016/S0022-0000(74)80027-9
http://dx.doi.org/10.1524/stuf.1961.14.14.143
http://dx.doi.org/10.1145/321138.321145
http://dx.doi.org/10.1016/S0049-237X(08)72023-8

[Fl62] R.W. Floyd: On ambiguity in phrase structure languages. Communica-
tions of the ACM 5 (Oct. 1962) 526. doi 10.1145/368959.368993

[Gr68] S.A. Greibach: A Note on Undecidable Properties of Formal Languages.
Mathematical Systems Theory 2 (1968) 1–6. doi 10.1007/BF01691341

[GR63] S. Ginsburg, G.F. Rose: Some Recursively Unsolvable Problems in
ALGOL-Like Languages. Journal of the ACM 10 (January 1963) 29–47.
doi 10.1145/321150.321153

[Ha67] J. Hartmanis: Context-free Languages and Turing Machine Computa-
tions. Mathematical Aspects of Computer Science, Proceedings of Sym-
posia in Applied Mathematics, vol. 19, American Mathematical Society,
1967, pages 42–51.

[HU79] J.E. Hopcroft, J.D. Ullman: Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, 1979.

[Po46] E. L. Post: A variant of a recursively unsolvable problem.
Bulletin American Mathematical Society 52 (1946) 264–268. doi

10.1090/S0002-9904-1946-08555-9

May 2015 (updated February 2, 2017)

7

http://dx.doi.org/10.1145/368959.368993
http://dx.doi.org/10.1007/BF01691341
http://dx.doi.org/10.1145/321150.321153
http://dx.doi.org/10.1090/S0002-9904-1946-08555-9

	Coding Turing Machine Computations
	Post Correspondence Problem
	Coding Invalid Computations

