DNA Computing*— molecular computation
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Introduction. Within Computer Science the field of Natural Computation
studies computational techniques inspired by natural phenomena. A well-
known example of such a technique is evolutionary computation (genetic
algorithms) where properties of objects are coded using a sequence of bits
(their ‘genetic information’), and the most suitable object emerges from a
pool of candidates by a process similar to natural selection. Note that evo-
lutionary computation is usually performed on classical ‘silicon’ computers.
With DNA computing one intends to turn the table by proposing strands of
DNA as hardware, and not only as a programming paradigm. These strands
are to be manipulated by biological and biotechnological methods. On the
one hand nature has provided us with a large box of enzymes designed to per-
form specific operations on DNA, on the other hand biotechnological research
leads to new and powerful lab techniques useful for genetic manipulations.

The potential of molecular computation is quite impressive. A simple test
tube of DNA may easily contain 10*® strands of DNA, all of which can be
operated in a massively parallel fashion, leading to “the ultimate computer:
a trillion calculations in parallel” [8]. The scale of DNA is so small that it
provides a very dense storage medium which, under favourable conditions,
can be kept over a long time. Finally, biotechnological research is constantly
improving on the tools that are available for synthesising, manipulating and
analysing DNA.

In 1994 Leonard Adleman reported his initial and exciting experiments in
Science [1]. He solved a very simple instance of the Hamiltonian path problem
using DNA, providing the first laboratory sample of molecular computation.

The biochemical tool box. A single strand of DNA (deoxyribonucleic
acid) consists of a sequence of nucleotides linked together by a strong back-
bone. These nucleotides may differ by their attached ‘bases’ only, four of
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which occur in ordinary DNA: Adenine, Thymine, Guanine, and Cytosine.
Two single strands of DNA can zip together into a stable double stranded
molecule, provided the base pairs in the two strands are complementary:
Adenine only matches to Thymine, Guanine to Cytosine. This phenomenon
is called Watson-Crick complementarity, after its discoverers. For our pur-
poses DNA can be conveniently represented by (double) strings over the base
alphabet {A,T,C,G}.

There are several basic techniques that are used to compute with DNA:

denaturing double stranded DNA; splitting it into single strands, for in-
stance by increasing the temperature.

annealing ‘sticky ends’; pieces of double stranded DNA with single stranded
overhang can be recombined into a double strand if the extending pieces
match through complementarity; an enzyme called ligase repairs the
phosphor-ribose backbones.

TATA GCACT N TATAGCACT
ATATCGT GA ATATCGTGA

separation of strands of DNA by their length; usually exploiting the fact
that the travelling speed through a gel is dependent on the size of the
molecule.

selecting single stranded sequences that match specific patterns; by binding
them to a surface that carries the complement of the pattern.

multiplying a specific (double) strand of DNA, ‘amplification’; perhaps
most efficient amplification technique is by a process called PCR, poly-
merase chain reaction. In this reaction double strands are repeatedly
split into single strands which are grown into full double strands by an
enzyme called polymerase (with a sufficient supply of nucleotides).

Adleman’s experiment. Adleman proposed the following ‘abstract’ non-
deterministic algorithm for solving the directed Hamiltonian path problem
(find a path with given initial and final nodes that passes through each vertex
in the graph exactly once) on a graph with n nodes. He then implemented
this algorithm on the new hardware: DNA.

1. generate random paths through the graph
2. keep only paths from the initial to the final node

3. keep only paths that enter exactly n vertices



4. keep only paths that enter all of the vertices (at least once)

5. if any paths remain, the graph contains a Hamiltonian path

The input graph is coded into DNA as follows. Start by synthesising
different base sequences for each of the vertices in the graph. The edges in
the graph are represented by base sequences that will anneal to each of their
adjacent vertices. When these short sequences are mixed together in large
quantities arbitrary large double stranded molecules will form, representing
paths in the graph.

Consider for example the vertex sequences GTAGACCT and GCGTTCAC, that
GTAGACCTGCGTTCAC

TGGACGCA

Paths from the initial to the final vertex are selected by special tuned
forms of PCR, amplifying only segments that start and end with specific
patterns. As we know the number of bases used to code each vertex, the paths
that enter precisely n vertices can be recovered by selection on molecular
length.

Selecting on the base sequences for each of the vertices successively, we
keep only those paths that enter each of the vertices (exactly) once. As very
small amounts of DNA can’t be detected, the remaining residue is amplified
by PCR to see whether any path has survived the selection.

can be joined by the edge sequence TGGACGCA, to form

Comments. Adleman is well aware that his experiment was only an initial
step towards real applications. We summarise his own comments on the
feasibility of his technique.

He states that his methods could be scaled up to accommodate larger
graphs. Critics have computed that this inevitably will mean bath-tubs full
of DNA to code problems of a more realistic size. Adleman argues that his
algorithm may be a poor implementation, and that suitable codings must
be searched for. Not only space, but also time requirements are problem-
atic. The original experiment took approximately seven days of lab work.
Automation and alternative molecular algorithms may help to overcome this
slow performance.

There are several details of the implementation that may result in pos-
sible errors. The main biochemical techniques used, PCR and separation
procedures, are extremely error prone. Moreover, DNA may form non ex-
isting pseudo-paths by accidental ligation between similarly coded nodes.
Additionally, DNA may form into hairpin loops.

A large part of present research is dealing with these sources of errors.
New, refined implementations have been proposed to minimise faulty results



[2].

A comment on the power of the method is in order here. Adleman has
computed that there are about 10'* strands of DNA in his test tubes, and
he believes that 10%° is a plausible number to deal with. Even if we take
into account the large reaction times, this number of parallel operations
outperforms the present supercomputers by several thousand-folds.

The potential of the method lies in massively parallel searches. It is
however not clear at this moment whether the techniques can be used to solve
real computational problems, like the multiplication of 100-digit numbers.

Further Models. Adleman’s seminal experiment initiated a lot of new
research, answering Adleman’s question for alternative models and better
tuned DNA implementations of algorithms. We will have now a short look
at some of these (which were selected according to personal taste).

Lipton [5] attacked another problem known to be NP-complete, the satis-
fiability problem. He proposed a method to code truth assignments as strands
of DNA, and to select one strand by manipulating test tubes of DNA. The
type of problem is, like Adleman’s, again a combinatorial search. The novelty
of Lipton’s approach is that the problem defines the order in which several
tubes are manipulated, not the initial coding (as in Adleman’s approach).

Lipton also stressed that the operations on DNA should be classified, in
order to facilitate a more ‘abstract’ way of modelling the implementations.

In his original paper, Adleman posed the question whether DNA compu-
tations could be ‘programmed’, as a further step towards DNA computers.
Recall that his own experiment was special purpose. Several implementations
of a Turing machine were proposed, but perhaps the most detailed descrip-
tion is given by Rothemund [9], who lists all the enzymes needed to perform
the specific operations on his DNA Turing tapes. His intricate model does
not indicate the power of molecular computation. Making no use of the inher-
ent parallellism of DNA, a single step of his Turing machine is estimated to
take four hours, slower than Turing’s own pencil and paper implementation
I guess.

Note that the question whether molecular computation is Turing complete
is also answered by work on the splicing system model, proposed by Head
[3], as early as 1987 (!) see for instance [4], or the work of Paun [7].

The model of Roweis et al. [10] views a single strand of DNA as address-
able memory, initially set to zero. A particular memory address can be set
to one, by synthesising the strand of DNA complementary to the specific
address, and annealing this to the original strand. Strands with specific bits



set can be selected by the usual selection on DNA patterns. A robotic ma-
chinery to handle tubes of memory strands is proposed. They conclude that
some challenging problems (breaking the Data Encryption Standard) need
only modest volumes of DNA.

The initial contents of Adleman’s test tubes are self-assembling: after syn-
thesising only a small number of relatively short segments of DNA (in large
amounts) the paths form themselves. Winfree et al. [11] investigate how
this principle can be used to self-assemble computations of a programmable
computer. (The models for simulating Turing machines that have been pro-
posed all involve several laboratory steps for one cycle of the Turing machine
computation.) One can argue that in Adleman’s case the self-assembly is of a
regular (finite automaton) type. Winfree shows that, using two-dimensional
properties of DNA, this can be improved to self-assembly of context-free type:
DNA fragments literally grow into derivation trees of context-free grammars.
A more speculative proposal is to assemble intricately twisted pieces of DNA
into computations of cellular automata (having Turing power).

Concerns. During the second Workshop on DNA Based Computers [2]
people active in the ‘conceptual’ field of DNA computing met with people
familiar with biotechnological manipulation with DNA. They expressed great
optimism towards the final goal, the construction of a desk-top DNA com-
puter, and pictures of robots manipulating large racks of tubes were sketched.
Of course some realistic concerns were expressed related to the development
of such hardware.
We summarize the main points that came up in the discussions.

- Almost no lab work has been done on the computational models, so far
most of them have been conceptual models only. It is a common feeling that
these concepts need some initial test for feasibility.

- Real-life DNA properties must be taken into account. Although DNA
is a very versatile and stable molecular structure, it is not the linear one-
dimensional string we like to think it is. It may engage into non-complementary
binding and form into hairpin loops.

- We need a more robust complexity analysis, involving reaction rates. Just
claiming that “Adleman efficiently solved an NP-complete problem” by at-
tacking a specific seven city instance does not increase a possible acceptance
of DNA computing by other computer scientists.

- Ordinary parallel computers allow at least basic communication between
processors. In the DNA model no realistic ways of achieving this have been
proposed yet.



- A common current intuition says that molecular computation will not out-
perform silicon computers on every type of problem. So far, DNA models
have proved to be strong in massively parallel searches, but even a two bit
adder turns out to be a major technological problem. The field definitely
needs a ‘killer application’ to prove its strength.

Conclusion. The consensus of the second Workshop on DNA Based Com-
puters was that one should try to build a DNA computer now, by attempting
to use the tremendous resources available for biochemical research (as some-
one said: “if you need something, just ask the chemists”). The final question
is of course how far we are from the desktop DNA computer. On the one
hand, we have to be patient: one was using the vacuum tube first, before
moving to the transistor. On the other hand, progress in biotechnology
(driven by commercial motivations other than DNA computing) has been
tremendous, surely contributing to great expectations for the feasibility of
DNA computing.

Thank you. Papers in the field were studied in an informal Leiden sem-
inar, together with Grzegorz Rozenberg, Nike van Vugt, and Ray Dassen.
Ray maintains an extensive annotated bibliography on molecular comput-
ing, available at http://www.wi.leidenuniv.nl/home/jdassen/dna.html.
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