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B-Trees

balanced trees: AVL-tree, B-tree
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B-Trees

multiway search tree
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B-tree (Bayer & McCreight, 1972)

Definition

A B-tree of order m is a multi-way search tree such that

every node has at most m children
(contains at most m− 1 keys),
every node (other than the root) has at least ⌈m2 ⌉ children
(contains at least ⌈m2 ⌉− 1 keys),
the root contains at least one key, and
all leaves are on the same level of the tree.
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B-tree of order 5

m = 5
⌈52⌉ = 3 ⩽ children ⩽ 5

2 ⩽ keys ⩽ 4
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B-Trees

adding keys

Add the new key to a leaf.
When over maximal capacity, split leaf, move middle key up.
Recurse.
Splits can reach the root.
We then obtain a new root with a single key.
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B-Trees

adding keys
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adding keys

10 20 25 32 34 40 41 44 46
50

52 54 58 60

30 38 42 56

10 20 25 32 34 40 41 44 46 52 54 58 60

30 38
42

50 56

10 20 25 32 34 40 41 44 46 52 54 58 60

30 38 50 56

42



Datastructuren

B-Trees

Deleting Keys

Contents

6 B-Trees
B-Trees
Deleting Keys
Red-Black Trees



Datastructuren

B-Trees

Deleting Keys

deleting keys

For non-leaves: swap key with predecessor (key moves to a
leaf)

If below minimal capacity, get key from sibling with surplus,
via parent.

If no siblings with surplus: merge with sibling and get
separating key from parent. Recurse with parent.

Due to recursion, deletion may reach the root, and can
collapse a level.
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Deleting Keys

deleting keys (order 5)
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Deleting Keys

deleting keys (order 5)
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Deleting Keys

deleting keys (order 5)
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Deleting Keys

deleting, ctd (order 5)
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Red-Black Trees

2-4-tree to red-black tree
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Red-Black Trees

correspondence
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Red-Black Trees

Definition

A red-black tree is a

binary search tree

such that each node is either black or red, where

the root is black,
no red node is the child of another red node,
the number of black nodes on each path from root to
extended leaf (NIL-pointers) is the same.
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Red-Black Trees

examples
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Red-Black Trees

fun fact ⊠
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every AVL-tree can be red-black coloured
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Red-Black Trees

restructuring red-red nodes
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Red-Black Trees

insertion in red-black tree

Insert as red leaf. problem: red node with red parent, then:

if uncle is red: flag-flip. continue at grandparent.

if uncle is black: rotate (see AVL-trees), repaint and stop.
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if the root has been coloured red, make it black.
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Red-Black Trees

just classical single/double rotation
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Red-Black Trees

adding 35
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red black trees are popular

GNU C++ stl tree.h

“Red-black tree class, designed for use in implementing STL
associative containers (set, multiset, map, and multimap). The
insertion and deletion algorithms are based on those in Cormen,
Leiserson, and Rivest, Introduction to Algorithms (MIT Press,
1990), except that . . . ”

Linux kernel

“There are a number of red-black trees in use in the kernel. The
anticipatory, deadline, and CFQ I/O schedulers all employ rbtrees to
track requests; the packet CD/DVD driver does the same. The
high-resolution timer code uses an rbtree to organize outstanding timer
requests. The ext3 filesystem tracks directory entries in a red-black tree.
Virtual memory areas (VMAs) are tracked with red-black trees, as are
epoll file descriptors, cryptographic keys, and network packets in the
‘hierarchical token bucket’ scheduler.” lwn.net/Articles/184495/

http://lwn.net/Articles/184495/
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Red-Black Trees

end.
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