
Datastructuren

Datastructuren
Data Structures

Hendrik Jan Hoogeboom
Mark van den Bergh

Informatica – LIACS
Universiteit Leiden

najaar 2024



Datastructuren

Table of Contents I

1 Basic Data Structures

2 Tree Traversal

3 Binary Search Trees

4 Balancing Binary Trees

5 Priority Queues

6 B-Trees

7 Graphs

8 Hash Tables

9 Data Compression

10 Pattern Matching



Datastructuren

B-Trees

Contents

6 B-Trees
B-Trees
Deleting Keys
Red-Black Trees



Datastructuren

B-Trees

balanced trees: AVL-tree, B-tree

6
+1

3
0

9
+1

2
-1

5
-1

8
-1

11
+1

1 4 7 10 12
+1

13

10 20 25 32 34 40 41 44 46 52 54 58 60

30 38 50 56

42



Datastructuren

B-Trees

multiway search tree

K

T0 T1
T0 T1 T2 Tℓ

K1 K2
. . . Kℓ

T0 < K1 < T1 < · · · < Kℓ < Tℓ



Datastructuren

B-Trees

B-Trees

Contents

6 B-Trees
B-Trees
Deleting Keys
Red-Black Trees



Datastructuren

B-Trees

B-Trees

B-tree (Bayer & McCreight, 1972)

Definition

A B-tree of order m is a multi-way search tree such that

every node has at most m children
(contains at most m− 1 keys),
every node (other than the root) has at least ⌈m2 ⌉ children
(contains at least ⌈m2 ⌉− 1 keys),
the root contains at least one key, and
all leaves are on the same level of the tree.



Datastructuren

B-Trees

B-Trees

B-tree of order 5

m = 5
⌈52⌉ = 3 ⩽ children ⩽ 5

2 ⩽ keys ⩽ 4

3 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 67 71 75 79 83

13 29 41 49 69 77

61



Datastructuren

B-Trees

B-Trees

adding keys

Add the new key to a leaf.
When over maximal capacity, split leaf, move middle key up.
Recurse.
Splits can reach the root.
We then obtain a new root with a single key.



Datastructuren

B-Trees

B-Trees

adding keys

10 20 30 40

+50
10 20

30
40 50

max 4 keys

10 20 40 50

30



adding keys

10 20 25 32 38 40 41 44 50 56

30 42

+34

10 20 25 32 34
38

40 41

max 4 keys

44 50 56

30 42

10 20 25 32 34 40 41 44 50 56

30 38 42



adding keys

10 20 25 32 34 40 41 44 46
50

52 54 58 60

30 38 42 56

10 20 25 32 34 40 41 44 46 52 54 58 60

30 38
42

50 56

10 20 25 32 34 40 41 44 46 52 54 58 60

30 38 50 56

42



Datastructuren

B-Trees

Deleting Keys

Contents

6 B-Trees
B-Trees
Deleting Keys
Red-Black Trees



Datastructuren

B-Trees

Deleting Keys

deleting keys

For non-leaves: swap key with predecessor (key moves to a
leaf)

If below minimal capacity, get key from sibling with surplus,
via parent.

If no siblings with surplus: merge with sibling and get
separating key from parent. Recurse with parent.

Due to recursion, deletion may reach the root, and can
collapse a level.



Datastructuren

B-Trees

Deleting Keys

deleting keys (order 5)

OK

10 20 25 32 34 40 41 42

30 38

45



Datastructuren

B-Trees

Deleting Keys

deleting keys (order 5)

10 20 25 32 34 40 41 42

30 38

45

swap predecessor

40 41 ×

30 38

42



Datastructuren

B-Trees

Deleting Keys

deleting keys (order 5)

10 20 25 32

get from sibling
(‘via’ parent)

34 40 41 42

30 38

45

10 20 × 30 34 40 41 42

25 38

45



Datastructuren

B-Trees

Deleting Keys

deleting, ctd (order 5)

10 20 25 32 34 40

underfull:
brother has no surplus
merge with brother

41

×

30 38

42

10 20 25 32 34 38 40

30

underfull:
merge with brother

× 50 56

42

new root 30 42 50 56



Datastructuren

B-Trees

Red-Black Trees

Contents

6 B-Trees
B-Trees
Deleting Keys
Red-Black Trees



Datastructuren

B-Trees

Red-Black Trees

2-4-tree to red-black tree

20 37 40 41 44 50

30 42 4230

20 4037 41 44 50

42

30

20 40

37 41

44

50



Datastructuren

B-Trees

Red-Black Trees

correspondence

a b c

b

a c

a b

b

a

or

a

b

a

a



Datastructuren

B-Trees

Red-Black Trees

Definition

A red-black tree is a

binary search tree

such that each node is either black or red, where

the root is black,
no red node is the child of another red node,
the number of black nodes on each path from root to
extended leaf (NIL-pointers) is the same.



Datastructuren

B-Trees

Red-Black Trees

examples

42

30

20 40

37 41

44

50

40

30 42

20 37 41 44

35 50
not this one

42

30

20 40

37 41

44

50



Datastructuren

B-Trees

Red-Black Trees

fun fact ⊠

1

3

2

1

5

2

1

4

1

3

2

1

every AVL-tree can be red-black coloured



Datastructuren

B-Trees

Red-Black Trees

restructuring red-red nodes

red uncle

g

p u

x

flag flip
=⇒

g

p u

x

black uncle

g

p u

x

rotation
=⇒

p

x g

u



Datastructuren

B-Trees

Red-Black Trees

insertion in red-black tree

Insert as red leaf. problem: red node with red parent, then:

if uncle is red: flag-flip. continue at grandparent.

if uncle is black: rotate (see AVL-trees), repaint and stop.

g

p u

x

flag flip
=⇒

g

p u

x

g

p u

x

rotation
=⇒

p

x g

u

if the root has been coloured red, make it black.



Datastructuren

B-Trees

Red-Black Trees

just classical single/double rotation

42

30

20

rotation
=⇒ 30

20 42

42

30

40

rotation
=⇒ 40

30 42



Datastructuren

B-Trees

Red-Black Trees

adding 35

42

30

20 40
∗

37 41

44

50

35
new

42
∗

30

20 40

37 41

44

50

35

40

30 42

20 37 41 44

35 50

wat gebeurt hier?



red black trees are popular

GNU C++ stl tree.h

“Red-black tree class, designed for use in implementing STL
associative containers (set, multiset, map, and multimap). The
insertion and deletion algorithms are based on those in Cormen,
Leiserson, and Rivest, Introduction to Algorithms (MIT Press,
1990), except that . . . ”

Linux kernel

“There are a number of red-black trees in use in the kernel. The
anticipatory, deadline, and CFQ I/O schedulers all employ rbtrees to
track requests; the packet CD/DVD driver does the same. The
high-resolution timer code uses an rbtree to organize outstanding timer
requests. The ext3 filesystem tracks directory entries in a red-black tree.
Virtual memory areas (VMAs) are tracked with red-black trees, as are
epoll file descriptors, cryptographic keys, and network packets in the
‘hierarchical token bucket’ scheduler.” lwn.net/Articles/184495/

http://lwn.net/Articles/184495/


Datastructuren

B-Trees

Red-Black Trees

end.

2024-10-15


	B-Trees
	B-Trees
	Deleting Keys
	Red-Black Trees


