Datastructuren

Datastructuren

Data Structures

Hendrik Jan Hoogeboom
Mark van den Bergh

Informatica — LIACS
Universiteit Leiden

najaar 2024

Datastructuren

Table of Contents |

Basic Data Structures
Tree Traversal

Binary Search Trees
Balancing Binary Trees

Priority Queues

@ B-Trees

Graphs

Bl Hash Tables

El Data Compression

Pattern Matching

Datastructuren

L Priority Queues

Contents

Priority Queues
m ADT Priority Queue
m Binary Heaps
m Leftist heaps
m Double-ended Priority Queues

Datastructuren

L Priority Queues

abstract data structure

Definition

An abstract data structure (ADT) is a specification of the values
stored in the data structure as well as a description (and
signatures) of the operations that can be performed.

B no representation or implementation in ADT

m “mathematical model”

Datastructuren

L Priority Queues

seen: ADT dictionary = map = associative array

Stores a set of (key,value) pairs

INITIALIZE, ISEMPTY, SIZE
INSERT: add (key,value) pair, provided key is not yet present
DELETE: deletes (key,value) pair, given the key

FIND: returns the value associated to a given key

SET: reassigns a new value to a (existing) given key

implementations: list, (balanced) binary search tree,
or hash table “unordered”

Datastructuren
L Priority Queues
LAD'I' Priority Queue

Contents

Priority Queues
m ADT Priority Queue

Datastructuren
L Priority Queues
LAD'I' Priority Queue

ADT priority queue

INITIALIZE: construct an empty queue.

IsEMPTY: check whether there are any elements in the queue.

SIZE: returns the number of elements.

INSERT: given a data element with its priority, it is added to

the queue

m DELETEMAX: returns a data element with maximal priority,
and deletes it.

m GETMAX: returns a data element with maximal priority.

additionally
m INCREASEKEY: given an element with its position in the
queue it is assigned a higher priority.
m MELD, or Union: takes two priority queues and returns a new
priority queue containing the data elements from both.

Datastructuren
L Priority Queues
LAD'I' Priority Queue

dictionary vs. priority queue

set of (key,value) pairs

{ (‘Detra’,17), (‘Nova',84), (‘Charlie’,22), (‘Henry',75), (‘Elsa’,29) }

based on key based on value

map/dictionary: priority queue:
Insert(‘Roxanne’,92) Insert(‘Roxanne’,92)
Delete(‘'Detra’) DeleteMax()

Find(‘Elsa’) returns 29 GetMax() returns (‘Nova’,84)

Set(‘Henry',76)

example from wikibooks

https://en.wikibooks.org/wiki/A-level_Computing/AQA/Paper_1/Fundamentals_of_data_structures/Dictionaries

Datastructuren

L Priority Queues

LAD'I' Priority Queue

min & max queues

max-queue >

INITIALIZE, ISEMPTY, S1ZE, INSERT, DELETEMAX, GETMAX,
INCREASEKEY, MELD

min-queue <

DE

m even opletten welke ordening

m tekenen alleen prioriteit (vergeten de data)

Datastructuren
L Priority Queues
LAD'I' Priority Queue

priority queue - use cases

sorting (heapsort)

graph algorithms (Dijkstra shortest path, Prim's algorithm)
compression (Huffman)

operating systems: task queue, print job queue

discrete event simulation

Datastructuren
L Priority Queues
LAD'I' Priority Queue

keys and values stored in tree

[Charlie[22] [Noval84] [Henry[75] [Elsa]29)

’Henryl75‘ ’Detrall?‘ Charlie

search tree/dictionary heap order/priority queue
ordered on key ordered on priority
examples: only keys given examples: only priorities given

(usually numbers)

Datastructuren

search tree heap order

Datastructuren
L Priority Queues
LAD'I' Priority Queue

implementations

worst case complexity

Binary Leftist Pairing Fibonacci Brodal
GETMAX 0(1) 0(1) 0(1) 0(1) 0(1)
INSERT O(logm)) O(1) O(1) O(1)
DELETEMAX | O(logn) () O(logn)t O(logn)t O(logn)
(logn) O(logn)t ©MT o)
(logn) ©O(1) o(1) o(1)

C)
C)
INCREASEKEY | O(logn) ©
C)

MELD O(n)
1 amortized complexity

also: Binomial, Weak heap, soft heap, rank-pairing, strict
Fibonacci, 2-3-heap, ...

Datastructuren
L Priority Queues
LAD'I' Priority Queue

two prio-queue implementations

binary heap leftist heap

structure binary tree
restriction complete leftist
keys heap ordered
representation array pointers
internal trickledown Zip
bubbleup

advantage heapsort efficient meld

Datastructuren
L Priority Queues

LBinary Heaps

Contents

Priority Queues

m Binary Heaps

Datastructuren
L Priority Queues

LBinary Heaps

STL container classes

helper:

sequences:

adaptors:

associative:

unordered:

pair

contiguous: array (fixed length),

vector (flexible length),

deque (double ended),

linked: forward_list (single), 1ist (double)
based on one of the sequences:

stack (LIFO), queue (FIFO),

based on binary heap: priority_queue
based on balanced trees:

set, map, multiset, multimap

based on hash table:
unordered_set, unordered_map,
unordered_multiset,
unordered multimap

Datastructuren

L Priority Queues

LBinary Heaps

binary heap

Definition
A binary heap is a complete binary tree with elements from a
partially ordered set, such that the element at every node is less

than (or equal to) the element at its left child and the element at
its right child (heap order).

m (structure) complete binary tree
m (placement keys) heap order

Datastructuren
L Priority Queues

LBinary Heaps

representing binary tree with an array

root at index 1, left/right child 1 at index 2i/2i+1.

AT @@Pk@

10011011 (8) 33) 10 17)

[98]5557]42[24]17] 3] 8 [33[10[17] 5

1234567 89101112
works well for complete binary trees
waste of space when ‘missing’ nodes

Datastructuren
L Priority Queues

LBinary Heaps

binary heap: three levels

functioning: abstract (priority queue)
understanding: binary tree

implementation: array

internal operations (change key at position) as binary tree:

m BUBBLEUP: Swap an element (given by its position in the heap)
with its father until it has a priority that is less than that of its
father (or is at the root).

m TRICKLEDOWN: Swap an element (given by its position in the
heap) with the largest of its children, until it has a priority that is
larger than that of both children.

“To add an element to a heap we must perform an up-heap operation (also known as
bubble-up, percolate-up, sift-up, trickle-up, swim-up, heapify-up, or cascade-up), ..."
What's in a name? [Wikipedia]

https://en.wikipedia.org/wiki/Binary_heap#Heap_operations

Datastructuren
L Priority Queues

LBinary Heaps

bubble up

swap with parent until heap-ordered
:
57 55 57 D
@ @ 0 & @ & O O
®ROOVOO) OISIOIOIOLE)

[9857]55[42]24]17] 3| 8 [33[10[19]71[13] [08]57[71]42[24]55] 3 | 8 [33[10[19]17[13]
1 23456 7 8 910111213 1 2 3 45 6 7 8 910111213

Datastructuren

L Priority Queues

LBinary Heaps

trickle down

swap with largest child until heap-ordered

x@@@ OISIVIOIOI®

[37|57]5542124]17] 3 [8 [33[10[19] 5 [13] [57]42]55]37]24]17] 3| 8 [33]10]19] 5 [13]
1 23456 7 8 910111213 1 2 3 45 6 7 8 910111213

Datastructuren
L Priority Queues

LBinary Heaps

heap: implementing priority queue operations

m INSERT: add the new element at the next available position
at the complete tree, then BUBBLEUP.

m GETMAX: the maximal element is present at the root of the
tree.

m DELETEMAX: replace the root of the tree by the last element
(in level order) of the tree. That element can be moved to its
proper position using TRICKLEDOWN.

m INCREASEKEY: use BUBBLEUP.

Datastructuren
L Priority Queues

LBinary Heaps

insert 29

) D
@ @9 9% @ @
OISIOIOIOIBID OISIVIOIOIBIO,

29
[8]57[55(42]24]17] 3] 8 [33[10]19] 5 [13] | [98]57[55l42[24]17]29] 8 [33]10[19] 5 [13] 3 |
1234567 8 91011121314 1 2 3 4 5 6 7 8 9 1011121314

insert: add as last element, then BubbleUp

Datastructuren
L Priority Queues

LBinary Heaps

delete max

X
[98]57[55(42124]17] 3| 8 [33[10]19] 5 [13] [57]42[55[33]24]17] 3] 8 [13[10]19] 5 |
1 234567 8 910111213 1 2 3 45 6 7 8 9 101112

1@@@" BOOOE

DeleteMax: move last element to first/root, TrickleDown

Datastructuren
L Priority Queues

LBinary Heaps

heapsort

array: heap + partially sorted

— move max heap to sorted part

[57]42]55]33]24{17]58]60/67[84]92[97] [17]42]55]33]24]57]58]60[67[84]92[97]
1 23 456 7 8 9101112 1 23 456 7 8 9101112
max heap sorted trickle down sorted

— first step: build the heap (linear time)

m MAKEHEAP: Given an array, reorder its elements so that the
array is a binary heap. aka HEAPIFY

Datastructuren

L Priority Queues

LBinary Heaps

heapify (1)

[33]22]17] 8 [24]13] 3 [98]57[10[19] 5 |55| [33]42]17]98]24]55] 3| 8 [57]10[19] 5 [13]
1 234567 8 910111213 1 2 3 45 6 7 8 910111213

TrickleDown new key: swap with parent until heap-ordered

Datastructuren

L Priority Queues

LBinary Heaps

heapify (2)

ffffff ANy

@ (17
@
POOBE O olelololele

[33]42[17]98]24]55] 3| 8 [57[10[19] 5]13] [33]08]55]57]24]17] 3] 8 [42]10]19] 5 [13]
1 23456 7 8 910111213 1 2 3 4 5 6 7 8 910111213

Datastructuren

L Priority Queues

LBinary Heaps

heapify (3)

[33[o8]55]5712417] 3| 8 [42[10[19] 5]13] [98]57]55[42]24]17] 3] 8 [33[10]19] 5 [13]
1 23456 7 8 910111213 1 2 3 4 5 6 7 8 910111213

Datastructuren
L Priority Queues

LBinary Heaps

complexiteit

topdn botup | sum
¢ 2t 2ty 2t h h_3s
0 1|10 1.5 15 &)
1 221 24|25
2 4| 4.2 4.3 | 4.5
3 8|83 8285
4 16| 16-4 16-1|16-5 A g% .’b
h=5 32[32.5 32.0[32.5 Es
S 63 258 57 |35 GO@OQOOOGO®
63-5

Datastructuren
L Priority Queues

LBinary Heaps

complexity heapify

ZH:O 2d — 2h—|—1 -1
> h ,d2d = (h—1)2"+1 42

L levels, each level 2¢ keys, total n = 2% —1 keys

top-down (fout)
a2 =(L—2)2" +2=nlgn (ongeveer)

bottom-up (goed)
(o2 (L—1-0 =3 g2 L—1) Y g2e=2"~1-1
which is ©(n)

Datastructuren
L Priority Queues

LBinary Heaps

visueel bewijs

Datastructuren
L Priority Queues
L Leftist heaps

Contents

Priority Queues

m Leftist heaps

Datastructuren

L Priority Queues

L Leftist heaps

leftist heaps

npl(x) nil path length, shortest distance to external leaf

npl(x) = 1 + min{ npl(left(x)), npl(right(x)) }

Definition

A leftist tree is an (extended) binary tree where for each internal
node x, npl(left(x)) > npl(right(x)).

A leftist heap is a leftist tree where the priorities satisfy the heap
order.

structure vs. node order

Datastructuren
L Priority Queues
L Leftist heaps

leftist tree (structure)

Datastructuren
L Priority Queues
L Leftist heaps

basic operation: Zip

Z1p a=>b

bdéaf,

1. combine leftist heaps recursively as shown above

2. swap children at nodes where npl(left(x)) < npl(right(x))

Datastructuren
L Priority Queues
L Leftist heaps

example: (1) zipping trees recursively

Z1p
® & ® ®
dHDO & @O @&
@@@@@@@@
® @ @

L Leftist heaps

(2) restructuring leftist property (bottom-up)

Datastructuren
L Priority Queues
L Leftist heaps

short rightmost path ...

Lemma

Let T be a leftist tree with root v such that npl(v) =k, then
(1) T contains at least 2% — 1 (internal) nodes, and
(2) the rightmost path in T has exactly k (internal) nodes.

Datastructuren
L Priority Queues
L Leftist heaps

... but no bound other paths

Datastructuren
L Priority Queues
L Leftist heaps

priority queue operations

m INSERT: construct a single node tree and ZiP with the
original tree.

m GETMAX: the maximal element is present at the root of the
tree.

m DELETEMAX: delete the node at the root, ZIP the two
subtrees of the root into a new tree.

m MELD: is performed by a Zip.

m INCREASEKEY: cut the node with its subtree, repair npl
remaining tree, ZIP the two trees. (tricky)

example heap operations

A

& H "&(’

Datastructuren
L Priority Queues
L Leftist heaps

skew heap X

self-adjusting heap. skew merge: always swap left and right.

/@/.\f% /@\/.\f?

Mzﬁ(x ARM

Datastructuren
L Priority Queues
LD(:»uble—ended Priority Queues

Contents

Priority Queues

m Double-ended Priority Queues

Datastructuren
L Priority Queues
LDc»uble—ended Priority Queues

dual structure

4242

maxpos 4 5 6 2 1 3 546123 minpos
[3[11]514f15[9]- | [15l14] 9] 3[11[5]-] val
pos 1234567 1234567 pos

m pointer from min-heap item to same item in max-heap
m Insertion: as in ordinary heap, but twice: once in each heap

m Deletion: find item to delete in other heap using pointer, move last
element to that position and do BubbleUp

Datastructuren

[Priority Queues

L Double-ended Priority Queues

456 213 546123

[311]514]15]9]- | [15[14]9[3[11][5] -]
1 23 4567 1 23 45617

4 5 6 21 5 4 31 2
[5]11] 91415 - [- | [15[14] 9]5[11] - |- |

1 929 2 A E A 7 1 9 2 A BE A 7

Datastructuren
L Priority Queues
LD(:»uble—ended Priority Queues

interval heap

(24-33) (23-51) (55-60) (44-50) (54-57)

m nodes contain two items (minVal, maxVal) “intervals”

m child interval is subset of parent interval [8,80] C [2,92]

Datastructuren
L Priority Queues
LD(:»uble—ended Priority Queues

embedded min&max heap

Datastructuren
L Priority Queues
LD(:»uble—ended Priority Queues

interval heap: insert

2-92 2-92 2-92

(44-73) (1439) (44-73) (1439) (44-75) (14-39)

m Insert: add key in next position, (if needed) swap to ensure interval.
Bubble up in min-heap if key smaller than parent's min-key, or in max-heap if
key larger than parent’s max-key

JaN

Datastructuren
L Priority Queues
LD(:»uble—ended Priority Queues

interval heap: deleteMin

2-92 8-92 8-92 8-92

(8-80) (11-75) (17-80) (11-75) (17-80)

(17-59) (42-70) (61-59) (42-70) (59-61) (42-70) (23-61) (42-70)

wh G @ 5 e
(24:33) (2351 (24-33) (51-59)

m DeleteMIN: move last element to min-position in root node.
Trickle down in min-heap and (if needed) swap elements to ensure at each node:
node.minVal < node.maxVal

Datastructuren

L Priority Queues

- Double-ended Priority Queues

Double ended priority queue - use case

wikipedia
One example application of the double-ended priority queue is

external sorting. In an external sort, there are more elements
than can be held in the computer’'s memory.

https://en.wikipedia.org/wiki/Double-ended_priority_queue#Applications

Datastructuren
L Priority Queues
LD(:»uble—ended Priority Queues

end.

2024-10-01

	Priority Queues
	ADT Priority Queue
	Binary Heaps
	Leftist heaps
	Double-ended Priority Queues

