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binary trees

accessing average node
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STL container classes

helper:

sequences:

adaptors:

associative:

unordered:

pair

contiguous: array (fixed length),

vector (flexible length),

deque (double ended),

linked: forward_list (single), 1ist (double)
based on one of the sequences:

stack (LIFO), queue (FIFO),

based on binary heap: priority_queue
based on balanced trees:

set, map, multiset, multimap

based on hash table:
unordered_set, unordered_map,
unordered_multiset,
unordered multimap



Datastructuren
LBalamcing Binary Trees
L'I'ree rotation

Contents

Balancing Binary Trees
m Tree rotation



Datastructuren
LBalamcing Binary Trees
L'I'ree rotation

single rotation
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L AVL Trees

balance factor

height
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AVL trees

Features:

m height balanced binary search tree, logarithmic height and
logarithmic search time.

m rebalancing after inserting a key using (at most) one
single/double rotation at the lowest unbalanced node on the
search path to the new key.

m rebalancing after deletion might need a rotation at every level
of the search path (bottom-up).
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Definition

An AVL-tree is a binary search tree in which for each node the
heights of both its subtrees differ by at most one.

The difference in height at a node in a binary tree (right minus
left) is called the balance factor of that node.

m BST
m balance {-1,0,4+1} each node
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example
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Fibonacci tree  ‘worst’ AVL tree
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Fibonacci tree  easy complexity
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adding a key
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LAdding a Key to an AVL Tree

adding in left subtree, bottom-up view

W0y 128 od

b) c)

new node

ok, go up ok, sTOP rebalance, STOP
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example: adding 11

0/+1

@f@
new(1)

inbalance at 4, RR-case, single rotation at 4, left
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LAdding a Key to an AVL Tree

double rotation

at p, left at v, right
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LAdding a Key to an AVL Tree

double rotation (in one step)

double at 1, right
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example




Datastructuren
LBalamcing Binary Trees
LAdding a Key to an AVL Tree

rebalance

bottom up
O— +1 (go up)
+1+— 0 (done)

+1+ +2  (lowest position of unbalance)

B LL RR single rotation
B LR RL double rotation

(then done)
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LAdding a Key to an AVL Tree

adding in left subtree, bottom-up view

W0y 128 od

b) c)

new node

ok, go up ok, sTOP rebalance, STOP
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rebalance LL-case
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rebalance LR-cases
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special LR-case

0/+1

L -1/2

new




Datastructuren
LBalamcing Binary Trees
LAdding a Key to an AVL Tree

example: adding 5

inbalance at 4, RL-case, double rotation at 4, left
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example: adding 6

lowest inbalance at 4, RR-case, single rotation at 4, left
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deletion (cascade)
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LSelf—Organizing Trees

move to front heuristics

unordered list: often-searched items move to front for faster access

e :
o (P) . (D)

(9D (P)
EEEEEE [\ AN
1 J

To N T3V T1 \( Tz




Datastructuren
LBalamcing Binary Trees

LSelf—Organizing Trees

splay trees

m Simple implementation, no bookkeeping.
self organizing

m Any sequence of K operations (insert, find) has an amortized
complexity of O(Klogn)
®m move item to root two levels at a time

m zig-zig step differs from bottom-up rotation
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splay zig-zag
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LSelf—Organizing Trees

splay zig-zig

ﬁ

different order than bottom-up rotations
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example splay linear tree
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LSelf—Organizing Trees

end.
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