Datastructuren

Datastructuren

Data Structures

Hendrik Jan Hoogeboom
Mark van den Bergh

Informatica — LIACS
Universiteit Leiden

najaar 2024



Datastructuren

Table of Contents |

Basic Data Structures
Tree Traversal

Binary Search Trees
Balancing Binary Trees

Priority Queues

@ B-Trees

Graphs

Bl Hash Tables

El Data Compression

Pattern Matching



Datastructuren

LBalamcing Binary Trees

Contents

Balancing Binary Trees
m Tree rotation
m AVL Trees
m Adding a Key to an AVL Tree
m Deletion in an AVL Tree

m Self-Organizing Trees
= Splay Trees



Datastructuren
LBalamcing Binary Trees

binary trees

accessing average node

RRP’}\)

© 66 00 Rb®

O(lgn) O(lgn) O(n)

average tree



Datastructuren

LBalamcing Binary Trees

STL container classes

helper:

sequences:

adaptors:

associative:

unordered:

pair

contiguous: array (fixed length),

vector (flexible length),

deque (double ended),

linked: forward_list (single), 1ist (double)
based on one of the sequences:

stack (LIFO), queue (FIFO),

based on binary heap: priority_queue
based on balanced trees:

set, map, multiset, multimap

based on hash table:
unordered_set, unordered_map,
unordered_multiset,
unordered multimap



Datastructuren
LBalamcing Binary Trees
L'I'ree rotation

Contents

Balancing Binary Trees
m Tree rotation



Datastructuren
LBalamcing Binary Trees
L'I'ree rotation

single rotation

@ @

(T2 @Ts =(T @ To) @T3

note: implementation needs parent (for pointer to root p vs q)



:
poe

@@@@
@



Datastructuren
LBalamcing Binary Trees
L AVL Trees

Contents

Balancing Binary Trees

m AVL Trees



Datastructuren

LBalamcing Binary Trees

L AVL Trees

balance factor

height




Datastructuren
LBalamcing Binary Trees
L AVL Trees

AVL trees

Features:

m height balanced binary search tree, logarithmic height and
logarithmic search time.

m rebalancing after inserting a key using (at most) one
single/double rotation at the lowest unbalanced node on the
search path to the new key.

m rebalancing after deletion might need a rotation at every level
of the search path (bottom-up).



Datastructuren
LBalancing Binary Trees
L AVL Trees

Definition

An AVL-tree is a binary search tree in which for each node the
heights of both its subtrees differ by at most one.

The difference in height at a node in a binary tree (right minus
left) is called the balance factor of that node.

m BST
m balance {-1,0,4+1} each node



Datastructuren
LBalamcing Binary Trees
L AVL Trees

example




Datastructuren

LBalamcing Binary Trees

L AVL Trees

Fibonacci tree  ‘worst’ AVL tree

(DQ‘

®© © O (%@
1+¢§)h

aantal knopen: f, =fp_o+fh_1+ 1= ( >




Datastructuren

LBalamcing Binary Trees

L AVL Trees

Fibonacci tree  easy complexity

(3) (4) (4) (5)
L @ @ 6 @ ® 6

aantal knopen Foi :m > 2k/2

complexiteit : k < 2Ilgn



Datastructuren
LBalamcing Binary Trees
LAdding a Key to an AVL Tree

Contents

Balancing Binary Trees

m Adding a Key to an AVL Tree



Datastructuren
LBalamcing Binary Trees
LAdding a Key to an AVL Tree

adding a key




Datastructuren

LBalamcing Binary Trees

LAdding a Key to an AVL Tree

adding in left subtree, bottom-up view

W0y 128 od

b) c)

new node

ok, go up ok, sTOP rebalance, STOP



Datastructuren

LBalamcing Binary Trees

LAdding a Key to an AVL Tree

example: adding 11

0/+1

@f@
new(1)

inbalance at 4, RR-case, single rotation at 4, left




Datastructuren

LBalamcing Binary Trees

LAdding a Key to an AVL Tree

double rotation

at p, left at v, right




Datastructuren

LBalamcing Binary Trees

LAdding a Key to an AVL Tree

double rotation (in one step)

double at 1, right




Datastructuren
LBalamcing Binary Trees
LAdding a Key to an AVL Tree

example




Datastructuren
LBalamcing Binary Trees
LAdding a Key to an AVL Tree

rebalance

bottom up
O— +1 (go up)
+1+— 0 (done)

+1+ +2  (lowest position of unbalance)

B LL RR single rotation
B LR RL double rotation

(then done)



Datastructuren

LBalamcing Binary Trees

LAdding a Key to an AVL Tree

adding in left subtree, bottom-up view

W0y 128 od

b) c)

new node

ok, go up ok, sTOP rebalance, STOP



Datastructuren
LBalamcing Binary Trees
LAdding a Key to an AVL Tree

rebalance LL-case




Datastructuren
LBalamcing Binary Trees
LAdding a Key to an AVL Tree

rebalance LR-cases




Datastructuren
LBalamcing Binary Trees
LAdding a Key to an AVL Tree

special LR-case

0/+1

L -1/2

new




Datastructuren
LBalamcing Binary Trees
LAdding a Key to an AVL Tree

example: adding 5

inbalance at 4, RL-case, double rotation at 4, left



Datastructuren
LBalamcing Binary Trees
LAdding a Key to an AVL Tree

example: adding 6

lowest inbalance at 4, RR-case, single rotation at 4, left



Datastructuren
LBalamcing Binary Trees
L Deletion in an AVL Tree

Contents

Balancing Binary Trees

m Deletion in an AVL Tree



deletion (cascade)




e

W []

ﬂ& ’AD HDD

T L
/5«

mm




Datastructuren
LBalamcing Binary Trees

LSelf—Organizing Trees

Contents

Balancing Binary Trees

m Self-Organizing Trees
= Splay Trees



Datastructuren
LBalamcing Binary Trees

LSelf—Organizing Trees

move to front heuristics

unordered list: often-searched items move to front for faster access

e :
o (P) . (D)

(9D (P)
EEEEEE [\ AN
1 J

To N T3V T1 \( Tz




Datastructuren
LBalamcing Binary Trees

LSelf—Organizing Trees

splay trees

m Simple implementation, no bookkeeping.
self organizing

m Any sequence of K operations (insert, find) has an amortized
complexity of O(Klogn)
®m move item to root two levels at a time

m zig-zig step differs from bottom-up rotation



Datastructuren
LBalamcing Binary Trees

LSelf—Organizing Trees

splay zig-zag




Datastructuren
LBalamcing Binary Trees

LSelf—Organizing Trees

splay zig-zig

ﬁ

different order than bottom-up rotations



Datastructuren
LBalamcing Binary Trees
LSelf—Organizing Trees

example splay linear tree




Datastructuren
LBalamcing Binary Trees

LSelf—Organizing Trees

end.




	Balancing Binary Trees
	Tree rotation
	AVL Trees
	Adding a Key to an AVL Tree
	Deletion in an AVL Tree
	Self-Organizing Trees


