Datastructuren

Data Structures

Hendrik Jan Hoogeboom Mark van den Bergh

Informatica – LIACS Universiteit Leiden

najaar 2024

Table of Contents I

- 1 Basic Data Structures
- 2 Tree Traversal
- 3 Binary Search Trees
- 4 Balancing Binary Trees
- 5 Priority Queues

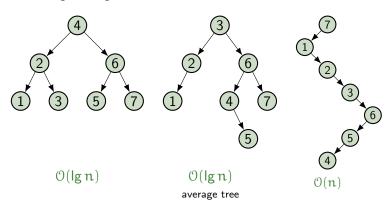
- 6 B-Trees
- 7 Graphs
- 8 Hash Tables
- 9 Data Compression
- 10 Pattern Matching

Contents

- 4 Balancing Binary Trees
 - Tree rotation
 - AVL Trees
 - Adding a Key to an AVL Tree
 - Deletion in an AVL Tree
 - Self-Organizing Trees
 - Splay Trees

binary trees

accessing average node



STL container classes

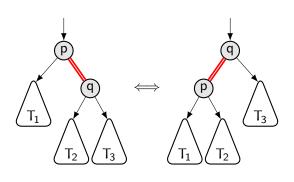
```
helper: pair
sequences: contiguous: array (fixed length),
           vector (flexible length),
           deque (double ended),
           linked: forward_list (single), list (double)
 adaptors: based on one of the sequences:
           stack (LIFO), queue (FIFO),
           based on binary heap: priority_queue
associative: based on balanced trees:
           set, map, multiset, multimap
unordered: based on hash table:
           unordered_set, unordered_map,
           unordered_multiset.
           unordered_multimap
```

Contents

- 4 Balancing Binary Trees
 - Tree rotation
 - AVL Trees
 - Adding a Key to an AVL Tree
 - Deletion in an AVL Tree
 - Self-Organizing Trees
 - Splay Trees

☐Tree rotation

single rotation

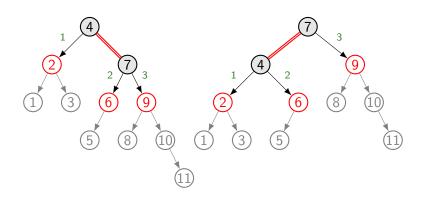


$$T_{1} \stackrel{\textstyle \frown}{\mathbb{D}} \left(\ T_{2} \stackrel{\textstyle \frown}{\mathbb{Q}} T_{3} \ \right) = \left(\ T_{1} \stackrel{\textstyle \frown}{\mathbb{D}} \ T_{2} \ \right) \stackrel{\textstyle \frown}{\mathbb{Q}} T_{3}$$

note: implementation needs parent (for pointer to root p vs q)

☐Tree rotation

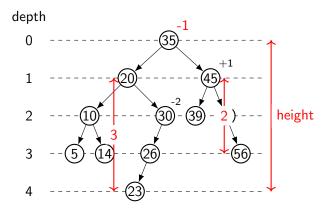
example



Contents

- 4 Balancing Binary Trees
 - Tree rotation
 - AVL Trees
 - Adding a Key to an AVL Tree
 - Deletion in an AVL Tree
 - Self-Organizing Trees
 - Splay Trees

balance factor



AVL trees

Features:

- height balanced binary search tree, logarithmic height and logarithmic search time.
- rebalancing after inserting a key using (at most) one single/double rotation at the lowest unbalanced node on the search path to the new key.
- rebalancing after deletion might need a rotation at every level of the search path (bottom-up).

Definition

An AVL-tree is a binary search tree in which for each node the heights of both its subtrees differ by at most one.

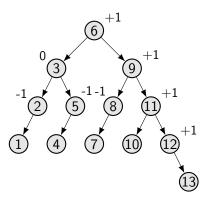
The difference in height at a node in a binary tree (right minus left) is called the *balance factor* of that node.

- BST
- balance $\{-1,0,+1\}$ each node

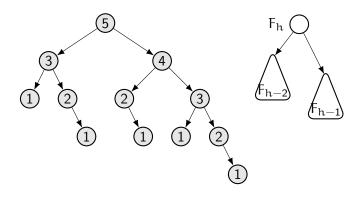
Datastructuren

Balancing Binary Trees

example



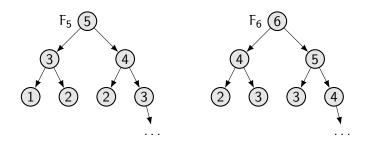
Fibonacci tree 'worst' AVL tree



aantal knopen:
$$f_h = f_{h-2} + f_{h-1} + 1 \approx \left(\frac{1+\sqrt{5}}{2}\right)^h$$

LAVL Trees

Fibonacci tree easy complexity



aantal knopen $F_{2k}: n \geqslant 2^{k/2}$

 $\mathsf{complexiteit} : \, k \leqslant 2 \, \mathsf{lg} \, \mathfrak{n}$

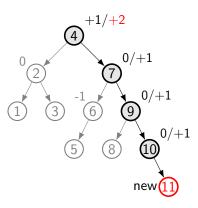
Contents

- 4 Balancing Binary Trees
 - Tree rotation
 - AVL Trees
 - Adding a Key to an AVL Tree
 - Deletion in an AVL Tree
 - Self-Organizing Trees
 - Splay Trees

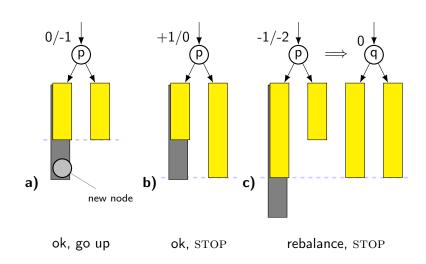
Balancing Binary Trees

Adding a Key to an AVL Tree

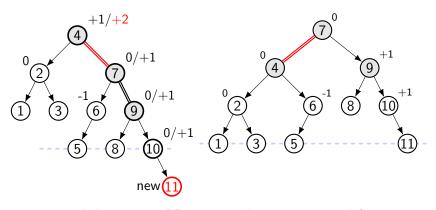
adding a key



adding in left subtree, bottom-up view



example: adding 11

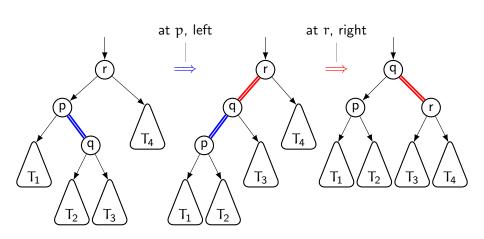


inbalance at 4, RR-case, single rotation at 4, left

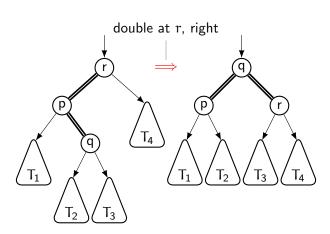
Balancing Binary Trees

Adding a Key to an AVL Tree

double rotation



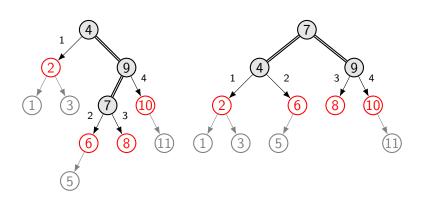
double rotation (in one step)



Balancing Binary Trees

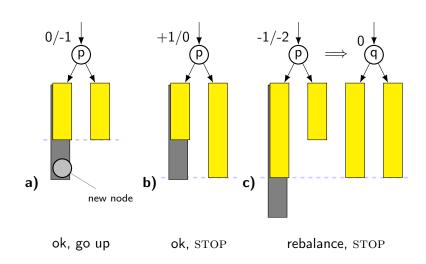
Adding a Key to an AVL Tree

example



rebalance

adding in left subtree, bottom-up view

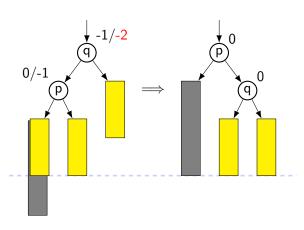


Datastructuren

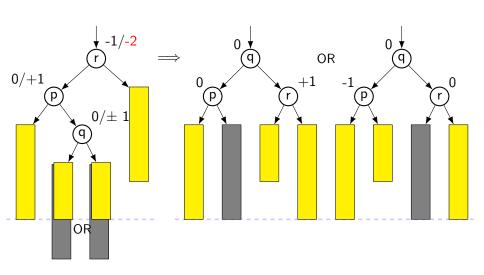
Balancing Binary Trees

└─Adding a Key to an AVL Tree

rebalance LL-case

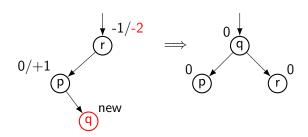


rebalance LR-cases



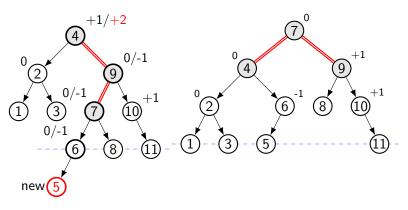
Adding a Key to an AVL Tree

special LR-case



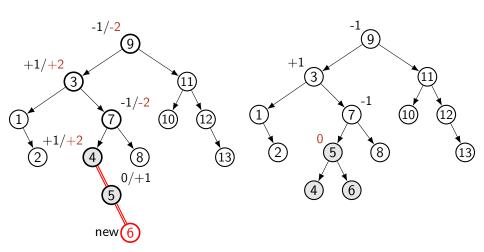
Adding a Key to an AVL Tree

example: adding 5



inbalance at 4, RL-case, double rotation at 4, left

example: adding 6

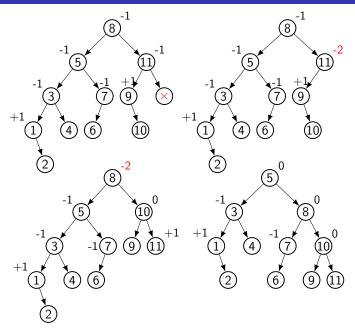


lowest inbalance at 4, RR-case, single rotation at 4, left

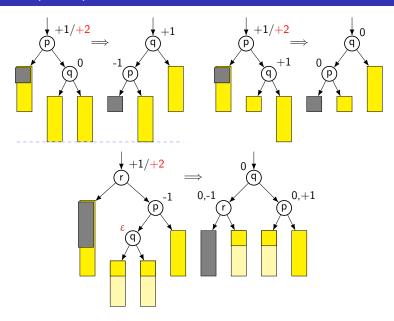
Contents

- 4 Balancing Binary Trees
 - Tree rotation
 - AVL Trees
 - Adding a Key to an AVL Tree
 - Deletion in an AVL Tree
 - Self-Organizing Trees
 - Splay Trees

deletion (cascade)



deletion (cases)

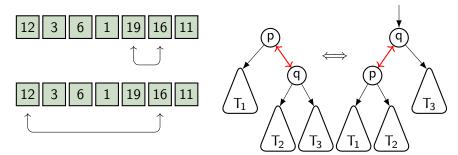


Contents

- 4 Balancing Binary Trees
 - Tree rotation
 - AVL Trees
 - Adding a Key to an AVL Tree
 - Deletion in an AVL Tree
 - Self-Organizing Trees
 - Splay Trees

move to front heuristics

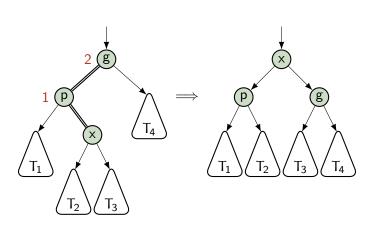
unordered list: often-searched items move to front for faster access



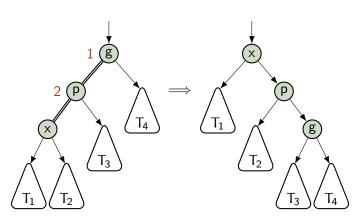
splay trees

- Simple implementation, no bookkeeping. self organizing
- Any sequence of K operations (insert, find) has an amortized complexity of $\mathfrak{O}(K \log n)$
- move item to root two levels at a time
- zig-zig step differs from bottom-up rotation

splay zig-zag



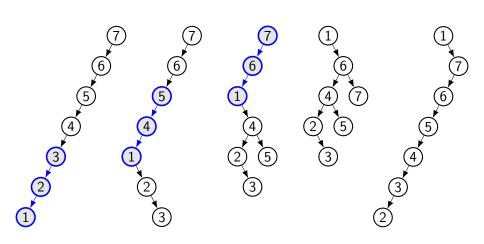
splay zig-zig



different order than bottom-up rotations

Self-Organizing Trees

example splay linear tree



Datastructuren

Balancing Binary Trees
Self-Organizing Trees

end.