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1 Basic Data Structures
We start with some preliminary notions on pseudocode and complexity.

Pseudocode. For the algorithms in this text we mostly prefer to use pseudocode,
to stress the programs work independently of the chosen programming language.
There is no real language-independent form of pseudocode: even for assignment
one has various choices (for instance x:=5 or x=5 or x←5).

We will explicitly delimit blocks using keywords, like in if. . . then. . . else. . . fi,
while. . . do. . . od (both legal ALGOL68), or repeat. . . until. . . . Additionally
we try to adhere to indentation.

Don’t worry: you do not have to learn this particular pseudocode. The com-
piler checking your exam is human, and tries hard to understand variants with
indentation, or block structure using curly brackets (like in C++).

Often the notation nil is used to indicate a null-pointer (probably taken from
the programming language Pascal). In pictures the symbol Λ might be used, but in
many case we just draw a dot without outgoing arcs. In C++ originally the value
0 or the macro NULL was used as null-pointer (inherited from C), but in modern
C++11 an explicit constant nullptr is provided to avoid unwanted conversions
in the context of function overloading.

Complexity: O is for Ordnung. [Zie Algoritmiek] Usually we consider worst-
case complexity of operations in data structures. The operation has worst case
complexity f (n) if at most f (n) steps are needed to compute the operation when-
ever the input structure contains n items. In some cases the computation might
be faster (the object we search for is at the top of the list, or the tree is nicely
balanced) but we can always achieve the f (n) steps.

The notion of ‘steps’ is rather imprecise and depends on the detail in which
we look into the implementation. To avoid long discussions we use the big-O
notation. This notation only looks at aymptotic behaviour (for large input n) and
ignores constant factors.

We write f ∈ O(g) if f is bounded above by g (asymptotically and up to con-
stant factor) which more formally means that there exist constants c> 0 and n0≥ 0
such that f (n)≤ c ·g(n) for n > n0. Sometimes a variable is added in the notation
and we write f (n) ∈ O(g(n)).
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When we can bound the function f both from above and below by g we
write f ∈ Θ(g). Assuming f and g are well-behaved functions this is the case
iff limn→∞

f (n)
g(n) is finite and non-zero.

Then we say the operation has complexity O(g) if its actual complexity f (n)
satisfies f ∈ O(g). The complexity is logarithmic, linear or quadratic when g(n)
equals lgn, n or n2, respectively. We will also encounter g(n) = n lgn, for which
Wikipedia suggests ‘linearithmic’, but I prefer n-log-n.

To analyse some simple repeating tasks we use some closed form expressions
for summations. Well-known are ∑

n
i=0 i = n(n+1)

2 ∈ Θ(n2) and ∑
n
i=0 ai = an+1−1

a−1 .
In particular ∑

n
i=0 2i = 2n+1−1 ∈ Θ(2n). In Lemma 3.8 we will encounter the

summation ∑
n
i=0 i ·2i = (n−1) ·2n+1 +2.

We will also use ∑
n
i=1 lg i ∈ O(n lgn) because ∑

n
i=1 lg i ≤ ∑

n
i=1 lgn ≤ n lgn.

Actually ∑
n
i=1 lg i ∈ Θ(n lgn) because also ∑

n
i=1 lg i ≥ ∑

n
i= n

2
lgn ≥ n

2 lg n
2 ≥

n
4 lgn

(for the last step n
2 ≥
√

n and thus lg(n
2) ≥

n
2 lgn ). This also follows fom Stir-

ling’s approximation for factorials: ∑
n
i=1 lg i= lg(n!)= n lgn−n lge+ε(n), where

ε(n) ∈Θ(lgn).
The constant lge≈ 1.44 is the binary logarithm of base e of the natural logarithm, a conversion between logarithms.
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1.1 Abstract Data Structures
Intro. The notion of a stack or a queue can be defined independently of its im-
plementation (using array or pointer.) The data structure stack for example repre-
sents a linear sequence of data elements, from where we can add new elements or
remove existing ones, but only at a specific end of the sequence, called the top.

Stack Stapel LIFO

top

bottom

push
po

p

isEmpty

top

Queue Rij FIFO

back front

enqueue
de

qu
eu

e

Definition 1.1. An abstract data structure (ADT) is a specification of the values
stored in the data structure as well as a description (and signatures) of the opera-
tions that can be performed.

Thus an ADT is fixed by its domain which describes the values stored, the data
elements and their structure (like set or linear list), and the operations performed
on the data.

In present day C++ the most common abstract data structures are implemented
as template containers with specific member functions. In general if we want to
code a given ADT, the specification fixes the ‘interface’, i.e., the functions and
their types, the representation fixes the constructs used to store the data (arrays,
pointers), while implementation means writing the actual code for the functions
[picture after Stubbs and Webre 1985].
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The structure of the elements in the domain can be unordered (like in a set),
linear (as in a list), hierarchical (as in a tree) or more complicated like a network
or graph.

The structure in the ADT itself and that in its implementations can be different:
– The SET is unordered, while an implementation might be as tree, using linear

key-order.
– The PRIORITYQUEUE is linear with values form small to large, but we im-

plement it as Heap, which is a (hierarchical) tree stored in a linear array.

Stack. The Stack keeps a linear sequence of objects. This sequence can be ac-
cessed from one side only, which is called the top of the stack. The behaviour is
called LIFO for last-in-first-out, as the last element added is the first that can be
removed.

The ADT STACK has the following operations:

• INITIALIZE: void→ stack<T>. construct an empty sequence ().
• ISEMPTY: void→ Boolean. check whether there the stack is empty, i.e.,

contains no elements).
• SIZE: void → Integer. return the number n of elements, the length of the

sequence (x1, . . . ,xn).
• TOP: void→ T. returns the top xn of the list (x1, . . . ,xn). Undefined on the

empty sequence.
• PUSH(x): T → void. add the given element x to the top of the sequence
(x1, . . . ,xn), so afterwards the sequence is (x1, . . . ,xn,x).

• POP: void → void. removes the topmost xn element of the sequence
(x1, . . . ,xn), so afterwards the sequence is (x1, . . . ,xn−1). Undefined on the
empty sequence.

Stacks are commonly implemented using an array/vector or a (singly) linked
list. In the array the topmost symbol is stored as an index ‘top’ to the array,
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whereas in the linked list there is a pointer to the topmost element. There is no
need to maintain a pointer to the bottom element.

x x x x x x x

top Λ x1 x2 xn

top

Specification. ⊠ There are several possible notations for pushing x to the stack
S. In classical imperative programming style we write push(S,x), where the stack
S is changed as result of the operation. In object oriented style we tend to write
S.push(x). In functional style we also may write push(S,x), but here S itself is
not changed, instead push(S,x) denotes the resulting stack. We have to make a
distiction between the concept of the stack versus its instantiation in our preferred
programming language.

Languages have been developed to specify the syntax and semantics of ADT’s.
One (rather old) example is the VDM. Here the specification for the Stack of N:

signatures

init: → Stack
push: N × Stack → Stack
top: Stack → ( N ∪ ERROR )
pop: Stack → Stack
isempty: Stack → Boolean

semantics

top(init()) = ERROR
top(push(i,s)) = i
pop(init()) = init()
pop(push(i, s)) = s
isempty(init()) = true
isempty(push(i, s)) = false

Queue. The Queue keeps a linear sequence of objects. Elements can be re-
trieved from one end (front), and added to the other end (back). The behaviour is
called FIFO for first-in-first-out, as the elements are removed in the same order as
they have been added.

The ADT QUEUE has the following operations:

• INITIALIZE: construct an empty sequence ().
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• ISEMPTY: check whether there the queue is empty, i.e., contains no ele-
ments).

• SIZE: return the number n of elements, the length of the sequence (x1, . . . ,xn).
• FRONT: returns the first element x1 of the sequence (x1, . . . ,xn). Undefined

on the empty sequence.
• ENQUEUE(x): add the given element x to the end/back of the sequence
(x1, . . . ,xn), so afterwards the sequence is (x1, . . . ,xn,x).

• DEQUEUE: removes the first element of the sequence (x1, . . . ,xn), so after-
wards the sequence is (x2, . . . ,xn). Undefined on the empty sequence.

Queues are implemented using a circular array or a (singly) linked list. In
a circular array we keep track of the first and last elements of the queue within
the array. The last element of the array is considered to be followed by the first
array element when used by the queue; hence circular. Be careful: it is hard to
distinguish a ‘full’ queue from an empty one.

x x x x x x
front back

first last

x x xx x x x
frontback

last first

Λxn

last

x2x1

first

backfront

A Deque (‘deck’) or double-ended-queue is a linear sequence where only oper-
ations are allowed on either end of the list, thus generalizing both stack and queue.
Usually implemented as circular array or doubly linked list (see also below).

There is no common naming convention for the operations in various program-
ming languages.

insert remove inspect
back front back front back front

C++ push_back push_front pop_back pop_front back front
Perl push unshift pop shift [-1] [0]
Python append appendleft pop popleft [-1] [0]

The most general from of linear list is where we have access to all positions in
the list. Thus we have the following hierarchical picture.
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linear list

⇌ ⇌deque ‘deck’

stack stapel LIFO⇌
queue rij →FIFO→

List. A Linear List is an ADT that stores (linear) sequences of data elements.
The operations include Initialization, EmptyTest, Retrieval, Change and Deletion
of the value stored at a certain position, Addition of a new value "in between" two
existing values, as well as before the first or after the last position.

first last[6]position

inspect
change

at position

insert

×

delete

Hence, in order to specify the linear list we also require the notion of a po-
sition in the list, to indicate where operations should take place. We also need
instructions that move the position one forward or backward if we want to be able
to traverse the list for inspection. (Such a traversal is not considered necessary for
stacks and queues, where we can only inspect the topmost/front element.)

It is rather tedious to give a good description of a general list and its opera-
tions. We could start with the mathematical concept of a tuple and consider a list
(x1,x2, . . . ,xn), with positions 1,2, . . . ,n. If we now add a new value at the start of
the list it means all other values also have changed position. Not a natural choice
for a programmer who might like to see positions as pointers.

The most common implementation of the linear list is a doubly linked list, with
pointers to the first and last element of the list, and for each element a pointer to
its predecessor and successor (if it exists).

Sometimes it is more convenient to treat the first and last pointers as special
elements of the list. Such a special link that marks the ends of the list is called a
sentinel. Using a sentinal might avoid distinguishing special cases for the empty
list.
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prev
-2

next
6 4 Λ

last

The version with a sentinel:

Λ ⊥
first

6

Problem. Find an efficient way of generating the Hamming numbers 2i3 j5k,
i, j,k ≥ 0 in sorted order: 1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,25, . . . .

Hybrid representations. It is a little deceptive to distinguish strictly between
array and linked representations. It is sometimes useful to consider hybrid repre-
sentations, where an array is used to store the links. Then the links are not pointers
into memory, but indices referring to array positions.

Example 1.2. We can represent the partition of a finite domain into disjoint sub-
sets by putting the elements of each of the partition classes of the domain into a
single cyclic list, connected by references to the next element in the list. In this
example the references are indices to array elements. (This is a possible represen-
tation of the UNIONFIND ADT.)

The partition is {A,B,E,G,H}, {C}, {D,F, I}. We indicate the list represent-
ing the first set.

A
1

2
B
2

5
C
3

3
D
4

6
E
5

7
F
6

9
G
7

8
H
8

1
I
9

4

index
element

next

Recall that cyclic lists can be efficiently joined by swapping a pair of pointers:

A B E G H

D F I

♢
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Set and Dictionary. A Set is the ADT that matches the mathematical set. So a
Set represents a (finite) collection in a fixed domain (or universe in mathemati-
cal terminology). Basic operations are EmptyTest (S ?

= ∅), reporting Size (|S|),
Adding and Deleting elements (S∪{x}, S\{x}), and a Membership test to check
whether an object belongs to the set (x ∈ S).

Note this definition is a rather restricted view of sets. We can only handle
single elements, and do not have set-union A∪B and set-intersection A∩B as
‘native’ operations.

A Dictionary (or Associative Array, Map) is a Set that stores (key,value) pairs,
for each key at most one value, so the relation is functional. We may retrieve the
value for a key in the Dictionary, and also delete the pair by specifying the key
(and not its value).

In Chapter 3 we will study the Set and its basic implementation, the binary
search tree. In later chapters we will see many (better) alternatives: in particular
balanced binary trees (AVL-trees), B-trees, red-black trees, and hash tables.

But already with linear lists we can implement Set in a simple way. This
might be sufficient for sets that are rather small. With lists we already have four
choices. The list can be implemented with array or linked. Then the items can
be stored either sorted or unsorted. This has implications for the efficiency of the
operations. (See below for a little complexity recapitulation.)

x ∈ S S∪{x} S\{x}
array unsorted O(n) O(n)+O(1) O(n)+O(1)

sorted O(lgn) O(lgn)+O(n) O(n)
linked unsorted O(n) O(n)+O(1) O(n)+O(1)

sorted O(n) O(n)+O(1) O(n)+O(1)
locate+adapt

Priority queue. A Priority Queue contains a set of items with their priority.
Different from the Set we can not check whether an arbitrary item is present, we
can only retrieve the largest (or smallest) item. See Chapter 5 for its definition,
and implementations like binary heap or leftist heap. It is also part of the STL, see
below.
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1.2 C++ programming
This is not a course in C++.

Take some time to review the Leiden course Programmeertechnieken consid-
ering Advanced C++ programming and Modern C++ programming. In particu-
lar we are reminded that C++ is to be considered a federation of programming
languages. This means it still inherits features of good old C, but also includes
(1) modern object-oriented constructs, (2) templates, and (3) the Standard Tem-
plate Library (see next section). These latter three concepts are essential for pro-
gramming data structures. And, the other way around, choosing the right types in
the STL assumes some knowledge of basic implementations of data structures.

Object orientation teaches us to model a data structure as an object, storing
data which can be accessed using specific functions or operators. This has several
advantages. The OOP code is more intuitive to read; compare both code fragments
below: one easily recognizes the ‘pop’ instruction. Nicer code means less errors.
Also the implementation of the operations is localized to a specific module or file.
Thus error checking that implementation, or changing the implementation (from
array to linked list for example) is done at a specific location, rather than all over
the program. A third advantage is the information hiding principle. The user (of
the implemented structure) does not know its details and cannot access the data
other than with approved methods. This avoids data inconsistency.

pop-all

while ( S.boven >= 0 )
do a = S.vakje[S.boven] ;

S.boven-- ;
. . .

od

pop-all

while ( not S.isleeg() )
do S.pop( a ) ;

. . .
od

Object Oriented Programming. Get acquainted with important OOP features:
Classes, objects = data + methods. Inheritance. Virtual functions, dynamic bind-
ing, polymorphism. Operator overloading. Friend functions.

Use accessor methods (‘getter’) and mutator methods (‘setter’) to interface
the data in your objects whenever possible. Distinguish them using const at
appropriate places.

Prefer vector and string above the C-style array with its pointer arith-
metic. They are ‘first-class objects’ meaning that they come with copy and as-
signment operators, and comparing them with == will give the expected result
(i.e., it checks whether the strings are equal rather than their addresses).
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Templates. Rather than implementing various variants of the same data type for
different data items (stack of integers, stack of strings) modern C++ introduces a
form of generic programming by way of templates. A template is a type parameter
T that is used to define a family of data structures: stack of T .

One distinguishes templated functions and templated data types (classes). A
function max that is defined for every type (as long as it allows comparison of
elements by < ) can be defined as in Slide 1, top.

When we use max(3,7) in our program, the compiler will generate code
for function max(int,int) , when we use max(3.0,7.0) we get code for the
function max(float,float) . When the parameters are mixed and need a type
conversion, which otherwise is applied automatically, here the compiler might
need some help, and we explicitly write max<float>(3,7.0) .

In a similar way one defines and instantiates templated classes, see Slide 1,
bottom.

Standard Template Library
The Standard Template Library STL for C++ gives its users some ready-to-use
data structures matching the ADT’s we have seen in the previous section. The
technical details differ at some points though. For example, the STL set is as-
sumed to be over an ordered universe and a simple membership a ∈ A is not pro-
vided. The concepts used in defining the STL include that of container, iterator,
and algorithm.

• container: holds the data

• iterator: walks over the container

• algorithms: sorting, counting, reversing
34

42

61

12

-3c.begin()

–
c.end()

The container is like an ADT. It specifies the domain of the data structure,
the data elements and the internal structure of the data (e.g., it may be linear,
linked, ordered, etc.). Like its name promises, the STL is implemented using tem-
plates, making the library very flexible. With each container comes a collection of
member functions to manipulate and access the data. Naming of the functions is
consistent, so that the equivalent functions on different containers have the same
name. As an example all (but one?) containers have size and empty member
functions.
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Slide 1 Templates.
• templated function

template <typename T>
T max(T a, T b) { return a>b ? a : b ; }

• templated class

template <typename Typ>
class Stack {

...
private:

vector<Typ> storage;
}

Stack<int> intStack;
Stack<string> stringStack;

Slide 2 STL containers
helper: pair

sequences:
contiguous: array (fixed length),
vector (flexible length),
deque (double ended),
linked: forward_list (single), list (double)

adaptors: based on one of the sequences:
stack (LIFO), queue (FIFO),
based on binary heap: priority_queue

associative: based on balanced trees:
set , map , multiset , multimap

unordered: based on hash table:
unordered_set , unordered_map , unordered_multiset ,
unordered_multimap
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An iterator provides access to the separate elements in a container. Although
internally the iterator may be implemented as either an index to an array or as
a pointer to a linked structure this is not visible in the definitions. This makes
changing internal implementation feasible.

The container class templates can be divided into several categories.

Sequences. The array<T, N> is fixed size, ‘contiguous’ sequence (of N el-
ements of type T ), while vector<T> is flexible sequence, efficiently resizing
when needed. The underlying implementation is a classical array. It is possible
to insert elements at an arbitrary position but this will not be efficient since all
successive ellements have to be moved. The at(·) operator references an ele-
ment with bound check and may signal out of range. The classic operator [·]
still works, but does not care about bounds.

The double ended queue deque<T> in the STL is a little bit peculiar. It
promises to behave like a vector that also efficiently allows adding elements in
front, but these elements are not guaranteed to be stored consecutively. Different
from the ADT we have seen in the previous section, each element of the deque can
be accessed by [·] and we may insert and delete at any position (this may be
inefficient though).

Linked implementations of sequences are provided by the singly linked forward
_list<T> , and the doubly linked list<T> .

Adaptors. These provide a new interface to an existing class. For instance a
stack<T> provides functions empty , size , top , push , and pop based on a
deque<T> , while hiding the old functionality of the vector. In particular, except
for the top element we cannot access any of the elements. This mechanism is
called encapsulation. It is possible to build the stack on top of a vector or
list .

In a similar way queue<T> and priority_queue<T> are provided. Note
encapsulation is particularly important for the priority queue. In order to operate
efficiently the data structure is implemented as binary heap, see Section 5.2, and
it is essential that the user will not distroy that ordering.

Associative. These containers are called associative as they store data items that
are retrieved by the value of that element, not by its position in the container.

The set<T> implements the mathematical set, containing unique ‘keys’. Un-
like the mathematical concept it is assumed that the set is from an ordered uni-
verse. The elements stored in ordered fashion, typically implemented as balanced
search tree, like the AVL tree or red-black tree.

The ordering of the elements ensures that iterating over a set will visit its
elements in order. A multiset<T> allows multiple occurrences of a single key.
For (key,value) pairs we have map<Key, T> . The operator [·] returns the value

13



Slide 3 STL example with pair , vector , and priority_queue of pair ’s,
where the second component gives the priority. Also note the cool C++11 features
highlighted in the comments.

STL vector of pair
#include <iostream>
#include <string>
#include <queue>
using namespace std;

using paar = pair<string, unsigned int>; // replacing typedef

int main() {
vector <paar> club // 'modern' initialization
{ {"Jan", 1}, {"Piet", 6}, {"Katrien", 5}, {"Ramon", 2}, {"Mo", 4} };

for (auto& mem: club) { // range based for-loop
cout << mem.first << " " ;

}
cout << endl;
return 0;

}

Jan Piet Katrien Ramon Mo
STL priority_queue

class Comp {
public:

int operator() ( const paar& p1, const paar& p2 ) {
return p1.second < p2.second;

}
};

int main() {
vector <paar> club // 'modern' initialization
{ {"Jan", 1}, {"Piet", 6}, {"Katrien", 5}, {"Ramon", 2}, {"Mo", 4} };

using pqtype = priority_queue< paar, vector <paar>, Comp > ;

pqtype pq (club.begin(), club.end() ); // wow! converts into
// priority_queue

while ( !pq. empty() ) {
cout << pq.top().first << " (" << pq.top().second << ") ";
pq.pop();

}
return 0;

}

Piet (6) Katrien (5) Mo (4) Ramon (2) Jan (1)
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for a given key. (Curiously it also adds that key to the map when it is not present!
To test whether the key is present one seems to use find or count . Strange.)

Also available multimap<Key, T> .

Unordered. If one does not need to access elements in an ordered fashion imple-
mentations based on hash tables are provided, like unordered_set<T> , unordered

_multiset<T> (hash table with buckets), unordered_map<Key, T> and unordered

_multimap .
In the unordered associative containers the user can provide a specific hash-

function, like in the ordered containers one may provide a key comparison opera-
tor < .

Note this is the C++11 version of the STL: array , forward_list and un-
ordered containers where added in that edition.

Collections Framework. ⊠ A similar approach is taken in Java, in the Collec-
tions Framework. Here an overview table of data structures and their implemen-
tations. Quite similar.

Interface Hash Table Resizable Array Balanced Tree Linked List Hash + Linked
Set HashSet TreeSet LinkedHashSet
List ArrayList LinkedList
Deque ArrayDeque LinkedList
Map HashMap TreeMap LinkedHashMap

1.3 Trees and their Representations
Trees are graphs with a hierarchical structure used to represent data structures. In
the following chapters we will see many of these types of trees.

Some trees have structural restrictions:

• on the number of children in each node (binary tree, B-trees)
• on the number of keys in each node (B-trees)
• on the number of nodes in each subtree (balanced trees: AVL-tree, B-tree)
• complete trees (binary heap)

Some structural restrictions are designed to make access of keys fast, but we
have to take care that updating the data structure after insertion of deletion is not
too complicated as we have to adhere to the restrictions.

Also trees usually have restrictions on the placement of data in the nodes.

• In a binary search tree the keys in the left subtree are smaller than the key
at the root of the subtree, and the keys in the right subtree are larger than the
key at the root. This is a good organization to find arbitrary keys in the tree.
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• In a tree with max-heap ordering [not necessarily complete] the keys at the
children of a node are smaller than the key at the node. There is no left-
right ordering. This is geared towards finding the maximal element, not for
finding arbitrary keys.

35

20
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5 14

30

26

23

45

39 51

56

83

70

10

5 7

30

26

23

45

39 37

3

Full binary trees. A binary tree is full if each node is either a leaf (has no
children) or has two children. (This is sometimes called a 2-tree.) Every binary
tree can be made into a full tree in a systematic way by adding leaves below the
current nodes (at every position where a child is missing). Sometimes these new
leaves are depicted in a different way to show they are special “external” nodes.
In general non-leaf nodes are called internal.

It is a mathematical fact that if the tree has n nodes, its extended tree has n+1
leaves.

Lemma 1.3. Let T be a full binary tree. If T has n internal nodes with at least
one child, then T has n+1 leaves.

Proof. By induction, either top-down or bottom-up. Top-down: the root has right
and left subtrees that satisfy the property. We may assume the left subtree has

16



Slide 4 Various trees: (1) height-balanced AVL-tree and B-tree, used to represent
sets; (2) trees for text compression: Huffman and ZLW algorithms; (3) expression
tree.
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n1 internal nodes and n1 + 1 leaves, and similarly n2 internal nodes and n2 + 1
leaves for the right subtree. The total number of internal nodes is n1 + n2 + 1 as
we add the root. The total number of leaves is n1 +1+n2 +1. This is indeed one
more than the number of internal nodes. Bottom-up: the tree has a node with two
children both of which are leaves. When replacing this node with its children by a
leaf we obtain a smaller tree that has one node and one leaf less than the original
tree.

Complete binary trees. Binary trees can be represented in an array (of nodes)
using a numbering known from genealogy1.

1

2 3

4 5 6 7

8 9 10 11 12

33

42 17

8 24 3 3

98 55 10 19 5

33
1

42
2

17
3

8
4

24
5

3
6

3
7

98
8

55
9

10
10

19
11

5
12

In this way the children of node i are 2i and 2i+1, the parent of node i equals
⌊i/2⌋. (Yes, some people start numbering the root with 0: the changes are simple.
Writing the indexes in binary shows why choosing 1 here makes sense.) In this
way we can store the information of the each node in the corresponding position
of an array, without providing explicit links between parents and children. This
approach will waste a lot of space when the tree has relatively many missing
children. It will work well for a complete binary tree, which is a binary tree where
each level has all its nodes, except perhaps the last level, which is filled from left
to right. The representation is used in the binary heap, Section 5.2.

Binary tree representation. The ‘common’ tree in computer science is the bi-
nary tree as represented by nodes with left and right links to children.

template <class T>
class BinKnp {

\\ CONSTRUCTOR
BinKnp ( const T& i,

BinKnp<T> *l = nullptr, \\ default

1Wiki knowledge: It seems the first Ahnentafel using this numbering system was published in
1590 by Michael Eytzinger in Thesaurus principum hac aetate in Europa viventium Cologne/Köln
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BinKnp<T> *r = nullptr )
: info(i) \\ constructor type T
{ links = l; rechts = r;
}

private: \\ DATA
T info;
BinKnp<T> *links, *rechts;

};

Left-child right-sibling binary tree. A trick to represent trees with no bound
on the number of children as binary trees. Following links to the left we find the
list of siblings, the children of a node. The link to the left points to the list of
children of that node. Although this looks like a binary tree, the meaning of left
and right are replaced by a new interpretation. [zie Algoritmiek]

a

b

c

d

e

f

g h

i k m

a

b

c

d

e

f

g h

i k m

a

b

c d

e f

g

h

i

k m

Trie. A trie, pronounced like tree as in retrieval, is a tree structure to store a set
of strings. The edges of the tree are labelled by letters, and the words that can
be read from root to leaf belong to the stored set of strings. The problem with
efficiently implementing a trie is that some nodes have only a single successor,
while others have many, so it is not wise to reserve a pointer for every possible
child (letter). A compact trie compresses the labels of paths that do not bifurcate
into a single edge; the label of that edge will be a string.

Not all strings that belong to the set of strings will end in a leaf when the
set contains prefixes, like ban and banana. In that case we either label the ‘end’
nodes, or we attach a special symbol $ to all strings.

In the area of computational molecular biology a set of algorithms was devel-
oped based on an efficient representation of the set all suffixes of a given string,
the suffix tree.
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Example 1.4. Representations for the set { pot, potato, pottery, tattoo, tempo }.
Left a trie (with nodes that correspond to the set of strings marked) and right a
compact trie, with $ end markers.

tp
o

t
a

t

o

t

e

r

y

a

t

t

o

o

e m p
o

t
pot

ato$
tery$

attoo$

empo$$

♢

References. See PROGRAMMEERMETHODEN Week 12: Datastructuren: stapels, rijen
en binaire bomen

See PROGRAMMEERTECHNIEKEN Week 4, 5: Advanced C++ programming; Week 6:
Modern C++ programming

See C++ REFERENCE http://www.cplusplus.com/reference/stl/
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Opgaven
1.a) Wat is een abstracte datastructuur (ADT) ?

b) Beschrijf de ADT stapel (=stack) en schets twee geschikte implementaties.

c) Beschrijf de ADT union-find (=disjoint sets) en geef een passende imple-
mentatie. Bij welk algoritme heeft union-find een belangrijke toepassing?

Jan 2015

2.a) (i) Beschrijf de abstracte datastructuur Rij (=Queue): wat wordt opgeslagen,
wat zijn de standaard operaties (en wat doen ze)?
(ii) Schets twee bekende implementaties.

b) (i) Beschrijf de abstracte datastructuur Priority Queue: wat wordt opgesla-
gen, wat zijn de standaard operaties (en wat doen ze)?
(ii) Leg uit hoe een binaire zoekboom gebruikt kan worden om de Priority
Queue te implementeren. Mrt 2015

3. Schrijf (in pseudocode) een functie die de volgorde van de objecten in een
gegeven stapel omdraait . . .
(i) . . . gebruikmakend van twee andere stapels;
(ii) . . . gebruikmakend van een rij;
(iii) . . . gebruikmakend van één andere stapel en een of meer niet-array vari-
abele(n). Drozdek 4.9.1

4. Gegeven een rij met gehele getallen als objecten. Schrijf (in pseudocode)
een functie die de objecten oplopend sorteert. Je mag gebruikmaken van
een of meer niet-array variabele(n), alsook...
(i) . . . twee andere rijen;
(ii) . . . één andere rij. Drozdek 4.9.5

21



Uitwerking
1. Het historische tentamen van Januari 2015 heeft een summiere uitwerking

op de ‘oude’ site.

c) De ADT union-find werd behandeld in het college ALGORITMIEK, bij het
algoritme van Kruskal, als efficiënte manier om te ontdekken of het toevoe-
gen van een tak een cykel in de graaf geeft. De datastructuur houdt dis-
juncte verzamelingen bij, de essentiële operaties zijn –inderdaad– Union
(voeg twee verzamelingen samen) en Find (in welke verzameling zit een
element).

Algoritmiek: College 11, Gretige algoritmen, Dijkstra; Werkcollege 12,
Opgave 2/ Levitin 9.2.1. Twee gesuggereerde implementaties daar zijn met
gelinkte lijsten, en met rooted trees.

Mocht u dit gemist hebben, we komen daar op terug in het college over
Grafen.
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2 Tree Traversal
A tree traversal is a systematic way to visit all nodes of a tree. In this way we

– can obtain information about the values stored in the tree,
– can verify or update the structure of the tree,

but most of all, we learn techniques that can be extended to general graphs.

2.1 Recursion
For binary trees there are three natural, recursive, orders to visit the nodes in the
tree. For preorder we start by visiting the node, then recursively we visit the left
and right subtrees of the node, or NLR. Similarly for inorder LNR and postorder
LRN.

These order have different applications. Preorder corresponds to depth-first
search DFS in graphs, inorder lists the nodes from left to right (from small to large
in a binary search tree), while postorder is useful in a bottom-to-top evaluation of
the tree.

• preorder ( NLR, node-left-right )

• inorder, or symmetric order ( LNR )

• postorder ( LRN )

N

L R

In this section we consider binary trees only, that is trees in which each node has a left
and a right subtree, where each of these can be empty. Preorder and postorder can easily
be defined for non-binary trees, where the number of subtrees is not fixed or where that
number is larger than two. For preorder we visit the node N followed by their subtrees
from left to right. Similarly for postorder. There is no obvious definition for inorder for
general trees.
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Example 2.1. Preorder, inorder, and postorder numbers for the nodes of a bi-
nary tree. Below the diagrams the nodes are listed in the respectice orders. (The
alphabetical order of the nodes corresponds to the level-order.)

b2

d3

a1

g6

i7

e5

j9

h8

k10

c4

f11

NLR = preorder
a b d c e g i h j k f

b
1

d
2

a
3

g
4

i
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e
6

j
7

h
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9
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f11

LNR = inorder
b d a g i e j h k c f

b 2

d 1

a 11

g 4

i 3

e 8

j 5

h 7

k 6

c 10

f 9

LRN = postorder
d b i g j k h e f c a

♢

The recursive definitions immediately translate into recursive algorithms for
the three methods. By inspecting nodes at the first, second or third visit we obtain
preorder, inorder and postorder evaluations.

recursive

traversal( node )
if (node != nil)
then

pre-visit( node ) // first
traversal( node.left )
in-visit( node ) // second
traversal( node.right )
post-visit( node ) // third

fi
end // traversal

In the next sections we will give nonrecursive algorithms to traverse trees.
First with the help of an additional data structure, the stack. Then without stack,
by (temporarily) storing traversal information inside the tree.
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Slide 5 Euler traversal. Top: Euler traversal in example tree, following the ‘out-
line’. Middle: Table of the cases moving from current node to the next position.
Bottom: ⊠ Translating the table into a while-structured pseudo-program.
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g
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f

xpre

in

post

x
1:pre

2:in

3:post

visit test direction next
1 has left-child down-left 1

(stay) 2
2 has right-child down-right 1

(stay) 3
3 at left-child up 2

at right-child up 3
at root (exit) –

1
node

1
next

2
node

1
next

3
next

3
node

2
next

3
node

1

2

3

go left

go right

has left
YN

has right
Y N

go up

was left

Y

N

Euler traversal

start at root
while (node not nil)
do pre-visit (1)

while (has left child)
do go left "push"

pre-visit (1)
od
in-visit (2)
while (not has right)
do repeat

post-visit (3)
go up "pop"
if nil then exit fi

until (was left)
in-visit (2)

od
go right "push"

od
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2.2 Euler traversal
An iterative algorithm walks over the tree, stepping from node to node, inspecting
(“visiting”) the node at the proper moment. The Euler traversal is a generic tree-
walk for binary trees that visits each node three times, scanning the ‘boundary’ of
the tree. At each of the visits we move to the next node in a fixed order. See for
an example Slide 5(top).

We list these steps in a table as in Slide 5(middle). For example, if we visit a
node for the first time, we go to the left child and visit that node, also for the first
time. If the current node has no left child, we stay and visit the current node for
the second time. When the node is visited for the third and last time we move up
in the tree. The parent is then visited for the second or third time, depending on
whether we came from a left or a right child.

We can make this into a traversal algorithm suitable for each of the three re-
cursively defined orders, by adding a while loop. In Slide 5(bottom) the old fash-
ioned flowchart for such an algorithm is given, which we then can reframe using
common control-structures.

If we have a tree representation where each node has three pointers, to children
ánd parent, this already is a technique to walk over trees: just follow the pointers
up and down the tree.

In the standard representation of binary trees going down to either of the chil-
dren is not a problem. However we cannot directly move up to the parent of a
node. The favourite solution for this is to use a stack. We show specific traversal
algorithms with a stack in the next paragraph. The postorder traversal will use
ideas of the Euler traversal.

2.3 Using a Stack
To be able to return to nodes in higher levels of the tree we use a stack that stores a
selection of the nodes we have seen before during traversal. In the small diagram
below all nodes on the path from root a to leaf k are pushed on the stack. The
choice of which nodes that we store depends on the traversal method, as we will
explain below.

b

d

a

g

i

e

j

h

k

c

f

bottom
a
c
e
h
k

top
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Slide 6 Preorder traversal using a stack. Top: recursive algorithm. Middle:
Straightforward translation pushing children onto a stack. Bottom: wrapped ver-
sion, with diagram indicating when the right children that are popped from the
stack.

recursive

traversal( node )
if (node != nil)
then

pre-visit( node )
traversal( node.left )
traversal( node.right )

fi
end // traversal

pre-order

iterative-preorder( root )
S : Stack
S.push( root )
while ( not S.isEmpty() )
do node = S.pop()

if (node != nil)
thenvisit( node ) // pre-order

S.push( node.right )
S.push( node.left )

fi
od

end // iterative-preorder

pre-order (wrapped)

iterative-preorder( root )
S : Stack
S.create()
S.push( root )
while ( not S.isEmpty() )
do node = S.pop()

while (node != nil)
do visit( node ) // pre-order

S.push( node.right )
node = node.left

od
od

end // iterative-preorder
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Preorder. For a preorder walk we may treat the stack as if it is a stack of recur-
sive function calls. Preorder means visit a node, then visit its two subtrees. This is
implemented in a staightforward way with a stack: Pop a node, visit it, and push
both its children. Repeat. See Slide 6(Middle).

Alternatively we may unroll the tail recursion: the last (left) node pushed is
immediately popped, so it seems more efficient to move directly to the next left
child. In that way we push the right children of the visited nodes onto a stack,
while continuing to the left. When a leftmost branch ends we pop the last node
from the stack (which will be the right child of the last node where we went left).
Slide 6(Bottom).

In general this will also push nil-pointers for missing right children, but these
are ignored when popped. Of course if you want, this can be “optimized” by not
pushing nil-pointers onto the stack.

Inorder. For inorder (=symmetric) traversal we have to (re)visit a node when
the last (rightmost) node of its left subtree has been visited. Thus we construct a
stack, containing the predecessors of the currently visited node at the points where
the path moves to the left. See Slide 7 for the pseudo code.

* curr

–
pop

pred

push

+
Λ

succ

Example 2.2. Traversal in a binary tree using a stack, comparing preorder (left)
and inorder (right). When moving left into a new subtree the algorithm pushes the
right child of the node (preorder) or the node itself (inorder).

Dashed arrows indicate nodes that are popped from the stack when the node
has no right child. For the preorder we move from visit 7 (node i) to visit 8 (node
h). Also the right child from g is pushed onto the stack (when moving left to i) but
this nil-node is ignored, and we pop a new node from stack.
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Slide 7 Inorder traversal using a stack. The stack contains the nodes where the
path moves left. In that way we can pop and return to the root of a completely
traversed left subtree for its inorder visit. Bottom: cleaner version with function
to walk to along the left path to first node in subtree. Also: the Wikipedia version,
which is very compact and symmetric (5.2’22). Be careful, both left and right
nil-pointers signal popping.

in-order

iterative-inorder( root )
S : Stack
S.create()
node = root
// move to first node (left-most)
while (node != nil)
do S.push( node )

node = node.left
od
while ( not S.isEmpty() )
do node = S.pop()

visit( node ) // inorder
node = node.right
while (node != nil)
do S.push( node )

node = node.left
od

od
end // iterative-inorder

in-order (netter)

iterative-inorder( root )
S : Stack
S.create()
// move to first=left-most
node = root;
walkLeft( node, S )
while ( not S.isEmpty() )
do node = S.pop()

visit( node )
node = node.right
walkLeft( node, S )

od
end // iterative-inorder

walkLeft( node:Node, S:Stack)
while (node != nil)
do S.push( node )

node = node.left
od

end // walkLeft

in-order (wikipedia)

iterative-inorder( root )
S : Stack
S.create()
node = root;

while ( not S.isEmpty()
or node != nil )

do if (node != nil)
S.push( node )
node = node.left

else
node = S.pop()
visit( node )
node = node.right

fi
od

end // iterative-inorder
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Postorder. This seems to be the most complicated traversal when programmed
iteratively. We basically follow the generic Euler traversal as described above.
The stack contains the complete path to the present node. We push the new node
when we go down (i.e., left or right, first visit) and we pop the node when we go
up to the parent (which is always stored on top of the stack, third visit).

When we go up, we need to distingish whether we start from a left child or a
right child. To do this, we may “peek” at the top of the stack (with the father of
the current node) to see at which side the current node is with respect to its father.
This determines whether we have visited the current node for the second or for
the third time. In these cases we either go right, or visit the current node, and go
up in the tree (last three diagrams below).

1
node

1
next

1
Λ

2∗

1
next︸ ︷︷ ︸

1-loop

1
Λ Λ

3 3
next

3
node

2
Λ

3
next

3
node︸ ︷︷ ︸

3-loop

2∗

3
node

1
next

Two implementations of this algorithm are presented.
First the version of Drozdek, as in Slide 8. The parent of the current node

is popped from the stack. Here two consecutive loops are repeated: one while-
loop going down to a left child, first visit. The other while-loop goes up and
checks this is from the right parent. Otherwise we end in the last situation, when
node.right==last-visited, where we move from left to right subtree. If you com-
pare this to the Euler traversal (omitting first and second visits) you will see a
striking resemblance.

30



Slide 8 Postorder traversal from Drozdek. Bottom: pseudocode.
postorder (Drozdek)

template<class T>
void BST<T>::iterativePostorder() {

Stack<BSTNode<T>*> travStack;
BSTNode<T>* p = root, *q = root;
while (p != 0) {

for ( ; p->left != 0; p = p->left)
travStack.push(p);

while (p->right == 0 || p->right == q) {
visit(p);
q = p;
if (travStack.empty())

return;
p = travStack.pop();

}
travStack.push(p);
p = p->right;

}
}

postorder (pseudo Drozdek)

iterativePostorder
S : Stack
node = root, last = root
while (node != nil)
do // go down left, 1st visit

while (node.left != nil)
do S.push(node)

node = node.left
od

// go up, 3rd visit
while (node.right == nil or node.right == last)
do visit(node);

last = node;
if (S.isEmpty() ) then return fi // exit
node = S.pop()

od
// (2nd visit) go right via parent

S.push(node)
node = node.right

od
end // iterativePostorder
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The other implementation is from Wikipedia, see Slide 9. The algorithm
distinguishes going down (visit 1) from going up (visit 3) by checking whether
node==nil. As long as we are in the upward mode node is kept nil and we visit
the node peek instead. This peek is the parent node, presently the top of the
stack. (Nasty trick, it took me quite some time to realize why going up we were
not updating node.)

What’s on the stack. Each of the three traversal algorithms can be better mem-
orized by noting which nodes are on the stack during traversal. In the diagrams
below we depict the path to the current node * from the root, for preorder, in-
order and postorder, respectively. nodes that are already visited are marked by a
checkmark✓, those that are on the stack are marked by an X.

Understanding which nodes are kept on the stack is understanding the algo-
rithm.

pre-order

✓

✓ X

✓ ✓

✓ ✓

✓ X

✓ X

✓ *

in-order

X

✓

✓ ✓

✓ X

X

✓

✓ *

✓

post-order

X

X

✓ X

✓ X

X

X

✓ *

✓ ✓

2.4 Using Link-Inversion
Link-inversion is a binary tree-traversal technique where no additional stack is
used. Instead, the stack is threaded through the tree by temporarily inverting the
links.

Link-Inversion in linear lists. We first illustrate the technique using a linear
list. During traversal the links form two paths, one back to the initial node, one
forward to the last node. Using this method we can only perform one traversal
at a time in the list. Note we need two pointers to the list: to keep track of the
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Slide 9 Postorder traversal using stack, as in Wikipedia. Bottom: pseudo-code
post-order (wikipedia 20.9’21)

procedure iterativePostorder( node )
stack ← empty stack
lastNodeVisited ← null
while not stack.isEmpty() or node ̸= null
do if node ̸= null

stack.push(node)
node ← node.left

else peekNode = stack.peek()
// if right child exists and traversing node
// from left child, then move right
if peekNode.right ̸= null

and lastNodeVisited ̸= peekNode.right
node ← peekNode.right

else visit(peekNode)
lastNodeVisited ← stack.pop()

post-order (pseudo-wikipedia)

iterative-postorder( root )
S : Stack // contains path from root
S.create()
last = nil
node = root
while (not S.isEmpty() or node != nil)
do if (node != nil)

thenS.push(node)
node = node.left

else // if right child exists and traversing node
// from left child, then move right
peek = S.top() // peek = parent
if (peek.right != nil and last != peek.right)
then

node = peek.right
else visit(peek)

last = S.pop()
// node == nil nog steeds!

fi
fi

od
end // iterative-postorder
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Slide 10 Link-inversion. Top: In a linear list. Bottom: In a tree. (1) Fragment of
binary tree. (2) Three visits at coloured node ∗. (3) After first visit: move down
left. (4) After third visit: move up.

x x x x x x

first curr last

x x x x x x

first prev curr last

x x x x x x

first prev curr last

*

parenttag=1

+ curr

tag=0

three visits

tag=1

parent
tag=0

+curr

tag=0

after 1st visit

+ curr

tag=0

parent

after 3rd visit
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visited node curr and its predecessor prev. We can move up and down the list, the
situation is symmetrical. See Slide 10(Top)

Link-Inversion in Binary Trees
Features:

• Euler style: global visit counter 1,2,3.
can be used in pre-order, in-order or post-order fashion.

• no external stack
• path to visited node link-inverted, to function as stack
• tag: one bit per node (along the inverted path) to distinguish

left/right children
• keep pointer to parent (gap)
• structure is disturbed: only a single traversal at a time

We perform the Eulerian iterative traversal for binary trees where each node is
visited three times, see Section 2.2. At each moment we know the visit number at
the current node, and we act accordingly, moving left, right or up.

Along the path from the root to the currently visited node curr the links are
inverted. This means the pointer no longer indicates its child along the path but
rather points to its parent. When we back-up to the root we need to be able to
distinguish which of the children pointers is inverted, and we use one bit of infor-
mation at each node, called the tag. The tag has value 0 if the path to the current
node continues with the left child, and has value 1 otherwise. Tags not on the path
from the root to the current node are undefined.

Like the linear list case, we cannot reach the current node from the root (and
vice-versa) and we keep an additional pointer to the parent of the visited node.

When going left-down, the next node is the left child of the current node,
and we cyclicly swap curr.left, curr and parent pointers. When going up, we
determine the direction using the tag-field of the parent. If that tag is 0 we move
up from left, and we cyclicly swap parent.left, curr and parent pointers. See
Slide 10(Bottom).

Exercise. The algorithm uses the tag at the parent pointer to distinguish whether
to return from a left or right child. Now imagine the tree is a binary search tree,
that is, the keys are ordered consistent with the inorder, see Section 3. The ques-
tion is now: can we avoid the tag when doing link-inversion?

35



2.5 Using Inorder Threads
Features:

• threads:
replace nil-pointers to indicate inorder successors

• can be used to perform stack-less traversal
• need one bit [boolean] per node to mark thread

• Morris-variant: temporary threads, no extra bit

From basic tree combinatorics we know that a tree with n nodes has n−1 edges.
Now, a binary tree with n nodes has 2n pointers, of which n−1 are used as edges.
That means that half of the pointers in a binary tree implementation are nil, and
have no direct use.

We enrich the standard representation by adding threads pointing to inorder
successors. So, in each node that has no right child we replace the right nil-pointer
by a reference to the inorder successor of the node. Additionally we introduce a
new field for nodes, a boolean, to distinguish threads from edges. For consistency
the successor of the last node (in inorder) is taken to be nil. It is marked as thread.
Here we consider right (forward) threads only; there is the possibility to consider
also left threads to inorder predecessors.

left right

F

isThread left right

T

isThread

In Slide 11 we show an example of a binary tree where right threads have been
inserted at nodes without right child. Threads are represented by dashed lines (and
point upwards). Recall that they are stored in the right pointer field of the binary
node. (Again: there is no ‘physical’ difference between child-pointer or thread,
both are located at the same memory position. A Boolean isThread indicates that
the right pointer is indeed a thread and not an edge of the tree. In diagrams threads
are red, dashed, and go up.)

The inorder successor succ for node curr when that node has a right child is
the leftmost node in the right subtree of curr. Otherwise, when curr has a right
thread, we directly follow the thread to find the successor. In that case curr itself
is the rightmost node in the left subtree of succ. Note the symmetry.

Traversal. The additional information stored in threaded trees makes tree traver-
sal possible without recursion or external stack. To find the inorder successor of
a node we consider two cases. When the node has a right child the successor of

36



that node is the leftmost node of the right subtree; this is not necessarily a leaf, the
leftmost node may have itself a right subtree. When the node has no right child
the successor is directly stored as thread. See the diagram below. In Slide 12 one
finds the traversal algorithm using (inorder) threads.

* curr

–pred

thread

+
Λ

succ

Dynamic trees. Usually trees are dynamic: nodes are added and deleted. When
a tree is stored using threads we have to update the threads when the trees is
changed. This does not only mean we have to add threads when a node is added,
but also, e.g., that we have to think what happens to a thread that points to a node
that is deleted.

Exercises. How to locate the parent of a node in a threaded tree? Can we per-
form other traversals (preorder, postorder) using inorder threads? Can we add
preorder threads, and do preorder traversals? Same question with postorder.

Morris traversal. Using the thread technology it is possible to traverse the tree
in inorder by temporarily adding threads to the tree (different from the threaded
tree representation, where the threads are marked ánd remain in the tree). Each
time we step downwards into a left subtree we add a thread from the rightmost
node in the subtree back to the current node. This thread will enable us to exit
from the subtree when it has been visited. The moment the thread is followed it
is removed. Of course we constantly have to check whether right links are either
tree edge or thread as this is not indicated at the node.

Features (Morris):

• do not know threads: move right and check afterwards
• (pre-order visit) arrive from parent via child-link;

add thread to current node
• (inorder) leave subtree, via thread; remove thread
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Slide 11 Left: Binary tree with forward inorder threads (dashed) Right: From
current node to inorder successor: via edges, or via thread
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11

nil
*

+

curr

succ

+

*

succ

curr

Slide 12 Binary tree traversal using inorder threads.

inorder threads

// assuming root != nil
curr = root;
walkLeft( root ); // to first in inorder
while (curr != nil)
do inOrderVisit( curr );

if (curr.isThread)
then // follow thread

curr = curr.right;
else // down to first in subtree

curr = curr.right;
walkLeft (curr)

fi
od

walkLeft( node : Node)
while (node.left != nil)
do node = node.left
od

end // walkLeft
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There is a very clever implementation of this idea2, see Slide 14. Observe
that when we reach a node from above from the parent, or from below from the
successor via a thread, this will always be the first or second visit to this node. So
we want to distinguish between these two, see Slide 13. (a) When the node has
no left child, we cannot return to it from the left subtree, so we have consecutive
first and second visits: do the inorder visit, and go right (we do not know whether
that follows an edge or a thread, but we will find out).

Otherwise, from the current node, look for the predecessor (the rightmost node
in the left subtree, which exists as the left child is present). (b) In case this right-
most node, the predecessor, has a right nil-pointer, we have never been in the left
subtree and we add a thread from predecessor to current node, and continue with
the left child (in its first visit). (c) Alternatively, the predecessor has a right link
to the current node, a thread. Thus we have completed that left subtree. hence we
remove the thread, visit the current node, and move right from the current node.

Example 2.3. The traversal of a binary tree and the configuration with temporary
threads when visiting successive nodes in the tree. When the node (∗ in the dia-
grams) has a left child, we determine the predecessor (†) of that node (left, then
repeatedly move right until the right link is either nil, or leads to the current node.)
1. At (6), no link from predecessor (5), first visit, add link, move left.

2. At (2), no link from predecessor (1), first visit, add link, move left.
3. At (1), no left child, first and second visit, move right. (We follow a thread,

but we can’t see this.)
4. At (2), has link from predecessor (1), second visit, remove link, move right.

6
*

2

1 4

3 5
†

8

7 9

nil 6

2
*

1
†

4

3 5

6

2

1
*

4

3 5

6

2
*

1
†

4

3 5

5. At (4), no link from predecessor (3), first visit, add link, move left.
6. At (3), no left child, first and second visit, move right.
7. At (4), has link from predecessor (3), second visit, remove link, move right.
8. At (5), no left child, first and second visit, move right.
9. At (6), has link from predecessor (5), second visit, remove link, move right

(to node (8) not shown here).
2To be honest, I got this from YouTube.
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6

2

4

3 5
*

6
*

2

4

3 5
†

At this point all threads in the left subtree of the root have been removed, and
we continue our traversal in the right subtree of the root.

♢
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Slide 13 Morris tree traversal. After moving to node curr via a right link, we
need to check whether this was via a child-link (first visit) or via a thread (second
visit).

no left subtree:
1st ánd 2nd visit

go right
(by edge or by thread?)

+
Λ

curr

new subtree: 1st visit
construct thread
go left (at curr)

*

+

Λ

curr

pred

been there: 2nd visit
delete thread

go right (at curr)

+

*

curr

pred

Slide 14 ALGORITHM: Morris tree traversal using temporary threads
Morris traversal

curr = root;
while (curr != nil)
do if (curr.left = nil)

theninOrderVisit( curr )
curr = curr.right

else // find predecessor
pred = curr.left
while (pred.right != curr and pred.right != nil)
do pred = pred.right
od
if (pred->right=nil)
then// no thread: subtree not yet visited

pred.right = curr
curr = curr.left

else // been there, remove thread
pred.right = nil
inOrderVisit( curr )
curr = curr.right

fi
fi

od
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Slide 15 Morris tree traversal. ⊠ As tree transformation (top, Drozdek) and as
temporary threads (bottom).
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Opgaven
Inderdaad, de nummering lijkt nergens op. Maar voor dit moment wil ik de num-
mers van de opgaven gelijk houden aan zoals ze in de werkcollege sommenverza-
melingen genoemd zijn.

0. Beschouw onderstaande twee bomen.

+

−

2 ∗

3 4

5

∗

−

2 3

+

4 5

a) Ga na dat een inorde wandeling voor beide bomen hetzelfde resultaat geeft.

b) Bestaat er ook een paar verschillende bomen waarvoor een preorde wandel-
ing hetzelfde resultaat geeft? En voor een postorde wandeling?

Drozdek 6.14.7

1. Beredeneer dat in een binaire boom met knoop node en inorde opvolger
succ precies één van de knopen node.right en succ.left bestaat.

2. (i) Leg uit welke knopen van de boom er op de stapel staan gedurende de
iteratieve pre-orde wandeling die gebruik maakt van een stapel.

(ii) Idem voor de iteratieve in-orde (symmetrische) wandeling.

2A. Met een slim truukje kan de inorde wandeling nog compacter opgeschreven.
Hoewel? Wat kan hier mis gaan?

in-order (?)

iterative-inorder( root )
S : Stack
S.create()
S.push( root )
while ( not S.isEmpty() )
do while (node != nil)

do S.push( node )
node = node.left

od
visit( node ) // inorder
node = S.pop()
node = node.right

od
end // iterative-inorder
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3. Bekijk het generieke Euler boom-wandel algoritme waarin elke knoop driemaal
wordt bezocht (zoals we uitgewerkt hebben bij link-omkering). Maak daar-
voor de volgende tabel af, waarbij visit het bezoek aan de huidige knoop
telt.

visit node-test direction new visit
1 . . . . . . . . .

. . . . . . . . . . . .

(Alleen de tabel is voldoende, met enige uitleg.) Jan 2017

4. Geef een boomwandelalgoritme voor een binaire boomimplementatie waar
elke knoop ook een parent-pointer heeft. Dit kan zonder gebruik te maken
van recursie of stapel. Kijk naar pre-, in- en postorde varianten van de
wandeling.

5. Link-inversie, zie p. 35. Als de boom een binaire zoekboom is, kunnen we
dan de waarden in de knopen gebruiken om zonder tag door de boom te
wandelen met link-inversie?

6. We kijken naar een symmetrisch(=inorde) bedrade boom (inorder threads)
met alleen draden naar rechts.

a) Neem onderstaande binaire boom over en voeg passende draden toe.

1

2

3

4 5

6

7

8

9

10

11

12

b) Geef een algoritme dat een symmetrische wandeling uitvoert op een bedrade
boom, zonder stapel of recursie te gebruiken.

c) Neem aan dat de boom een binaire zoekboom is. Laat zien hoe we een
waarde aan de boom toevoegen. Zorg ervoor dat de bedrading van de boom
correct blijft. Jan 2015

7. Vragen over wandelen in bomen met vaste draden. Zie eerder in de tekst.

a) How to locate the parent of a node in a threaded tree? (Neem hier standaard
draden, dus inorder.)
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b) Can we perform other traversals (preorder, postorder) using inorder threads?

c) (i) Can we add preorder threads, and do preorder traversals?

(ii) Same question with postorder.
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Uitwerking
1. Zie Inorder met stack. en vooral het plaatje daar. Er zijn twee gevallen. Als

node.right bestaat, is de opvolger succ de eerste, dus meest linker, knoop
in de rechter subboom. Dus succ kan zelf geen linker kind hebben. Als
node.right niet bestaat, is de situatie symmetrisch. De opvolger succ kan
zich nu niet in de rechter subboom van node bevinden. En node bevindt
zich als voorganger van succ in de linker subboom van succ. Daarom moet
succ een linker kind hebben.

2. Zie What’s on the stack. (i) Pre-orde. Op de stapel staan de rechter kinderen
van de voorouders van de knoop die op dit moment bezocht wordt. In-
formeel: Waar we linksaf gaan, zetten we het rechter kind op de stapel, om
daar terug te kunnen keren. (ii) In-orde. Op stapel staan de voorouders
waarvan de huidige knoop zich in de linker subboom bevindt. Informeel:
Als we linksaf gaan zetten we de knoop op de stapel.

7.a) De ouder van een knoop kunnen we via draden vinden door herhaald naar
rechts te gaan, totdat we een draad volgen. Daarna één keer naar links.
Daarna herhaald weer naar rechts. We vinden dan de huidige knoop curr
weer, en een stap daarvoor de ouder par. Zie plaatjes onder. Eventueel kan
x = nil en dan y = root.

x

y

3suc par

curr

par

curr

Λ

Λ
3suc

b) Om een ‘geordende’ wandeling te kunnen uitvoeren, zijn er twee basis-
vragen: (1) Kunnen we de eerste-in-ordening vinden, (2) kunnen we vanuit
een knoop de opvolger vinden. Voor inorder wandeling in een boom met
inorder draden is de oplossing gegeven in Sectie 2.5.

46



Voor de andere twee wandelingen (nog steeds in inorder bedrade boom) is
de vraag behandeld in het tentamen van januari 2021. Zie de uitwerkingen
daar. Voor de postoder was de vraag voorzichtig gesteld.

Postorder met inorde draden is mogelijk, maar lijkt niet al te elegant.

Vind eerst de ouder par van de knoop curr via draden. Als hierboven. (a)
Als curr rechterkind blijkt te zijn, dan is de postorder opvolger 3suc gelijk
aan ouder par. (b) Als curr linkerkind is, en ouder par geen rechterkind
heeft, dan is ouder par de opvolger 3suc. (c) Als curr linkerkind is, en
ouder par heeft een rechterkind, dan is de postorder eerste knoop in die
rechter subboom de opvolger 3suc. Plaatje rechts.
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3 Binary Search Trees

Sets and data
In this section we consider binary search trees, a convenient way to store sets.
A classical view of a (relational) data base consists of tables. Each of the rows
indentifies a record with its fields (or attributes).

code vak docent
CMPA6 Computerarchitectuur Rietveld
CNPRE Concepts of Programming Languages Hiep
DATAS Datastructuren Hoogeboom
AUTTH Automata Theory van Vliet
SECU6 Security Gadyatskaya

This table stores a relation, mathematically that is a set consisting of tuples,
{ (CMPA6,Computerarchitectuur,Rietveld), (CNPRE,Concepts,Hiep), . . .}.

In this lecture we will consider that each record has a key, for example the
code of a course, and we will store records by their keys. The other fields will be
called the value of the key.

If we are only interested in the set of keys, then the abstract data type is called
the SET. If we are interested in the key-value pairs then the ADT is called a MAP

or DICTIONARY. Given the key, we are able to locate it in the set and we can
retrieve the corresponding value.

In the examples the keys will be simply numbers, but they can come from any
domain that can be ordered, like strings or calendar dates.

3.1 Representing sets
A binary search tree (BST) is a binary tree (with keys in a totally ordered domain)
such that if a node holds key K, then all descendants to the left hold a value less
than K, and all descendants to the right a value larger than K.

K

< K > K

8
1

11
2

15
3

20
4

26
5

33
6

34
7

42
8

51
9

57
10

61
11
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Lemma 3.1. Let T be a binary search tree. Then the inorder traversal of T visits
all the nodes in increasing order.

Proof. By induction on the structure of T . If T has root K, and subtrees T1 and
T2 then the inorder traversal visits T1, K, T2. By induction we may assume the
inorder traversals of T1 and T2 are increasing. Since all keys in T1 are smaller than
K, and those in T2 are larger, we obtain an increasing order.

Binary search trees have a simple algorithm to search for keys, or for the
position to add new keys. For fun we give the diagram from TAoCP by Knuth
(see the ‘Standard Reference Works’ on Page 185).

T1: Initialize

T2: Compare

T3: Move left T4: Move right

T5: Insert into tree

< >

LLINK= Λ RLINK= Λ

SUCCESS
=

Note that a successful search ends in one of the internal nodes of the BST,
whereas an unsuccessful search (failure to find the key) leads to an external leaf
in the tree. That external leaf corresponds to an interval between the keys.
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33

34

42

51

57

61
-:8

8:11

15:20

20:26 33:34 42:51

57:6111:15

26:33 34:42 51:57

61:-

ADT Set and Dictionary. Binary search trees are the basis for many implemen-
tations for the abstract data structure SET. Such a set represents a [finite] subset of
a totally ordered domain D: for each pair u,v ∈ D we have either u < v, u = v or
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u > v. (This is not an obscure requirement: both numbers and strings are totally
ordered. It allows us to go left/right at each vertex depending on the value of the
key compared to the value stored at the vertex.)

The ADT SET has the following operations:

• INITIALIZE: construct an empty set: A =∅.
• ISEMPTY: check whether there the set is empty (contains no elements):

A ?
=∅.

• SIZE: return the number of elements, the cardinality of the set.
• ISELEMENT: returns whether a given object from the domain belongs to

the set: a ∈ A.
• INSERT: add an element to the set (if it is not present): A∪{a}
• DELETE: removes an element from the set (if it is present): A\{a}.

When SET is implemented using a binary search tree traversal algorithms can
be used to iterate over the elements of a set. We can define an abstract kind of
iterator to the set by adding the operation SUCCESSOR, which gives the next
element in the set order (of course we also need constants for the ‘first’ and ‘last’
element of the set to start and stop the traversal).

Node

left right key value

DICTIONARY / MAPSET

left right key value

The ADT DICTIONARY (or Map, or Associative Array) stores a set of (key,value)
pairs. For each key in the dictionary there is only one value stored (so it is a func-
tional relation). The generalization is called a MultiMap, where several pairs with
the same key can be stored.

The operation RETRIEVE returns the value for a given key in de dictionary
(and a proper error when it does not exist). Likewise, the operations ISELEMENT

and DELETE work as in a SET and need only the key as input. Of course, for
INSERT we need both key and value to add the (key,value) pair to the set, provided
no pair with the given key is already in the dictionary. (Otherwise, depending on
the particular details, we may either overwrite the existing key, of return an error.)

In the next section, Chapter 4, we improve the efficiency of BST implementa-
tion for SET by considering balanced trees. For other possible implementations of
SET and DICTIONARY, see Chapter 6 on B-trees and Chapter 8 on Hash Tables.
Of course, even a basic implementation using linear lists is possible.
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Deletion. The task is to delete a key x while preserving the inorder of the re-
maining keys in the tree. The method depends on the number of children of x.
(0) Of course a leaf can be safely removed. (1) Also, for a node with a single
child the process is simple: the subtree of the child is linked to the parent f of x,
replacing x. Note that in both cases we need not only need the node x, but also its
parent f , to adjust one of its children.

(2) The last case, deleting node x with two children can be handled in two
different ways, by merging, or by copying. In both cases we locate the inorder
predecessor p of x. This node is the right-most node in the left subtree T1 of x. As
p is rightmost, it does not have a right child, marked with Λ in the diagrams. We
don’t know whether p has a left child, but that is not important.

Deletion by merging. (2a) This solution merges the two subtrees T1 and T2. T2
becomes the right subtree of p. Now x has only a single child, and T1 becomes the
right subtree of parent f , like in case (1) above.

f

×

T1

Λ

=⇒

f

T1

f

×

T1 T2

=

f

×

T1

ℓ

p

Λ?

T2

=⇒ T1

f

ℓ

p

?

T2

Deletion by copying. (2b) Again x has two children, and we locate its inorder
predecessor p. Now copy p into x. We now can remove the original node p
[marked x in the diagram below, for deletion], which has at most one child, using
the previous cases. Note that only temporarily p and x are in the wrong order
in the BST, but since x is deleted afterwards, this does not harm the search tree
property.

×

T1 T2

=

×

ℓ

p

Λ

T2

=⇒

p

ℓ

×

Λ

T2
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Example 3.2. We want to delete key 57 from the tree below. Node 57 has two
children. Its predecessor is 42.

Deletion by merging moves the right subtree of 57 to become the right subtree
of 42. Now 57 has only a left child, and can be removed while linking its only
child 33 in its place.
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In deletion by copying the key 42 is moved to the node 57. The old 42 has only
a left child, and can be removed while linking its only child 34 in its place to
become a child of 33.
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♢
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3.2 Augmented trees
Binary search trees are a classic way to store a set of keys, using an ordering on
those keys. As we have such an ordering it might be logical to ask for the kth key
in the ordered set, like we can ask for the kth element in an array (k is variable
here, not fixed). [Of course, storing the set in an ordered array would make this a
constant-time operation, unfortunately, updates to the set would then cost linear-
time.] Note that in a binary tree we can efficiently search for a given key, but we
do not know what is the inorder number of each key in the tree.

An elegant solution is to augment the binary tree with additional information.
With each node we store its size, the number of nodes in its subtree (including the
node itself). An empty subtree has size 0.

Now the kth key can be located based on this information. At the node we
determine the number r, the size of its left subtree plus one.

• if k = r we have located the key,
• if k < r, locate kth element in left subtree, and
• if k > r, locate (k− r)-th element in right subtree.

This concludes the algorithm, except that we have to stop with an error mes-
sage at empty trees.

Updating sizes when adding a key to the tree is easy and can be done while
inserting (if we know in advance that the key is not already in the tree). At each
node on the path to the leaf where the new key is inserted we add one to the rank.
A new leaf gets rank 1.

Example 3.3. Binary tree, nodes marked with their rank. Same tree, with updated
ranks, after inserting 23.

5
1

10
3

14
1

20
6

26
1

30
2

35
11

39
1

45
4

51
2

56
1

5
1
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3

14
1

20
7

26
2

30
3

35
12

39
1

45
4

51
2

56
1

23
1

♢
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Range Query. Binary trees can be used to perform range queries, answering
the question which keys in the tree fall in a given interval [ℓ,r]. A related task is
to report only the number of these keys, not the actual keys. To find the keys in
the interval (or their number) search in the tree for both ℓ and r. The last node
where the paths to ℓ and r are the same is interesting, it is the split node (which
must belong to the interval). We start reporting/counting from there. All branches
that point ‘inside’ the right and left paths are included, thus counted or reported,
as well as the nodes on the paths that are in the interval. In essence we either
report full subtrees, and single nodes on the boundary paths. The implementa-
tion has to distinguish whether a key has actually been found or not. In the first
case the search does not reach a leaf. For frequent counting tasks we store rank
information, see above.

Example 3.4. We want to count the number of nodes in the interval [12,52]. The
split node is 27. On the boundary paths we count six nodes, marked ✓. Apart
from these we have subtrees with 1+ 2+ 4+ 1 nodes, for a total of 14 in the
interval.

3

6

9

12
✓

15
1

18
✓

21

24
2

27
✓ 60

30

33
4

36

39

42
✓

45
1

48
✓

51
✓

54

57

♢

Range Query. k-d-tree. Storing multidimensional data in a BST by alternatingly
sorting on one of the coordinates.

A
B

C D

E
F

G

H

A(40,60)

B(80,40)

C(60,80)

D(80,90)

E(80,20)

F(60,20)

G(20,80)

H(30,60)
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Slide 16 Knuth (Section 6.2.2) constructs BST’s with 31 most common words in
English. (1) Adding the words in decreasing order of frequency, average number
of comparisons of 4.042. (2) A perfectly balanced search tree, 4.393 compar-
isons. (3) Using dynamic programming 3.437 in the optimal tree. In green, the
frequenceis of the five most occurring words.
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3.3 Comparing trees
In this section we develop a measure for (binary search) trees. It indicates the
efficiency of the tree and is related to the number of steps (key comparisons)
needed to locate a key in the tree.

An extended binary tree is a binary tree where the empty left and right subtrees
of nodes missing one or more children are replaced by specially marked leaves.
Such an extended tree is full (every node is either a leaf or has two children).

Definition 3.5. The internal path length I of a binary tree is the sum of the path-
lengths (number of edges from the root) to each of the nodes in the tree.
The external path length E is the total pathlength to each of the leaves in the
extended binary tree.

Example 3.6. Left: A binary tree T with n = 12 nodes. Its internal path length
equals I = 3+4+2+3+1+3+2+0+2+3+1+2 = 26. Middle: Its extended
binary tree. The external path length of T equals E = 4+5+5+4+4+4+4+
3+3+4+4+3+3 = 50.

0

1 1

2 2 2 2

3 3 3 3

4

5

4 4

3 3

4

5

4 4 4

3 3

4

0 0

1 1 1 1

2 2 2 2

3

Right: the two subtrees of T . Their internal path lenghts are I1 = 2+3+1+
2+0+2+1 = 11 and I2 = 1+2+0+1 = 4, respectively.

♢

Lemma 3.7. Let T be a binary tree with n nodes, with internal path length I and
external path length E. Then E = I +2n.

Proof. By induction on the structure of the tree.
Basis. Start with the empty binary tree, with 0 nodes. Its extended version has

a single leaf (as root!). For this tree we have n = I = E = 0, as the distance is
measured in edges, so the level of the root is 0.
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Induction. Assume T is a binary tree with root and subtrees T1,T2. We assume

as hypothesis that for both subtrees the equation Ei
(H)
= Ii+2ni holds (with obvious

meaning of the variables; ‘(H)’ is the ‘name’ of the equation we use below).

We observe that n
(N)
= n1 +n2 +1. All nodes in the subtrees of T are one level

deeper than in their original position (as separate trees). Thus we have to add 1 for
each node to move from I1 and I2 for the subtrees to I for T , hence in total n1+n2.
The new root has zero path length, so has no contribution. (See Example 3.6, left

and right diagrams.) So I
(I)
= I1 + I2 +n1 +n2.

Similarly E
(E)
= (E1 + n1 + 1)+ (E2 + n2 + 1), each extended leaf is one level

deeper in the combined tree; recall that the (extended) binary tree with ni nodes
has ni +1 external leaves.

We combine these formulas: E
(E)
= E1 +E2 +n1 +n2 +2

(H)
= (I1 +2n1)+(I2 +

2n2)+ n1 + n2 + 2 = (I1 + I2 + n1 + n2)+ 2n1 + 2n2 + 2
(I)
= I+ 2n1 + 2n2 + 2

(N)
=

I+2n.

The path length to a certain node on a tree is one less than the number of nodes
visited, or the number of key comparisons to find that key in the tree. So, the
average number of key comparisons for a successful search in a given binary tree
equals I

n +1, where n is the number of nodes (keys) and I the internal path length.
Here we assume that every node has the same probability of being searched for.

In the same way the average number of key comparisons in the case of failure
(key not in the tree) equals E

n+1 , assuming each interval between keys has the same
probability.

Extremal trees. The worst tree in terms of path length is linear. The keys are
on successive levels. With n keys the internal path length of a linear tree equals
In = ∑

n−1
i=0 i = n(n−1)

2 .
Thus the average search time for keys in a linear tree with n keys equals In

n +

1 = n+1
2 .

0

1

2

n-1

0

1 1

2 2 2 2

At the other end is the perfectly balanced tree, with completely filled levels.
Say the tree has height h, counting the number of edges, then it has n = ∑

h
i=0 2i =
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2h+1−1 nodes. Thus conversely, its height in terms of the number of nodes equals
h = lg(n+1)−1.

If we sum the height of all the nodes by level, we find one (20) node on level
0, two (21) nodes on level 1, four (22) nodes on level 2, and in general 2i nodes
on level i. Thus the internal path length of the perfect binary tree of height h
corresponds to the following formula.

Lemma 3.8. ∑
h
i=0 i ·2i = (h−1) ·2h+1 +2.

Proof. By induction on h. Basis for h = 0: 0 ·21 = (−1) ·21 +2.
Induction step. Assume the formula holds for h. We show the formula for h+1.
∑

h+1
i=0 i · 2i = ∑

h
i=0 i · 2i +(h+ 1) · 2h+1. We can use the induction hypothesis for

the summation. We get
(
(h−1) ·2h+1 +2

)
+(h+ 1) · 2h+1 = 2h · 2h+1 + 2 = h ·

2h+2 +2.

In terms of the number of nodes, n=∑
h
i=0 2i = 2h+1−1, we obtain the internal

path length In = (h− 1) · 2h+1 + 2 = [lg(n+ 1)− 2]·(n+ 1)+ 2 = (n+ 1) lg(n+
1)−2n.

A simpler way to obtain the internal path length is via the external path length,
and the correspondence between the two values. The perfect tree has n+1 = 2h+1

leaves, each at depth h+1, so En = 2h+1 · (h+1) = (n+1) lg(n+1). Then In =
En−2n = (n+1) lg(n+1)−2n. Same result.

We obtain an avarage search time for a key in the perfect binary tree of In
n +1=

n+1
n lg(n+1)−1∼ lgn (for large n).

Example 3.9. Five binary trees with 3 internal nodes and 4 leaves.

♢

Number of binary trees. We count the number of possible binary trees with n
(internal) nodes and n+1 (external) leaves. Let Bn be this number. The example
above shows the five possible binary trees with three nodes. Thus B3 = 5.
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i+1

Bi Bn−i

There is an elegant recursive formula for the numbers. Any tree with n+ 1
nodes splits in a root, and two subtrees with i and n− i children. Hence we have
the recursion

Bn+1 =
n

∑
i=0

(Bi ·Bn−i) ,

with B0 = 1.
The sequence starts with 1,1,2,5,14,42,132,429,1430,4862,16796,58786, . . . .
And indeed we can verify one step in the recursion B5 = ∑

4
i=0(Bi ·Bn−i) =

B0 ·B4+B1 ·B3+B2 ·B2+B3 ·B1+B4 ·B0 = 1 ·14+1 ·5+2 ·2+5 ·1+14 ·1= 42.
This sequence of numbers is named after Eugène Catalan, a Belgian mathe-

matician. The closed formula for the numbers is

Bn =
1

n+1

(
2n
n

)
=

(2n)!
(n+1)!n!

∼ 4n

n3/2√π

The last approximation of this number is based on Stirling’s approximation for
factorial numbers. It is very good: the symbol ∼ here indicates that the fraction
of the two numbers approaches 1 (as n goes to infinity).

There is a huge number of objects that when counted result in the same se-
quence. See Wikipedia for many examples. Also: OEIS/A000108.

Example 3.10. The BST’s resulting from adding a permutation of 1,2,3,4; re-
maining trees are the mirror image of these. There are 4! = 24 permutations and
14 binary trees with 4 nodes. This illustrates (for a very small tree size only!)
that the number of permutations that lead to bad linear trees (4 permutations with
ipl=6) is less than the better ones with ipl=4 (6 permutations).

1

2

3

4

1234
ipl=6

1

2

4

3

1243
ipl=6

1

3

2 4

1324
1342
ipl=5

1

4

2

3

1423
ipl=6

1

4

3

2

1432
ipl=6

2

1 3

4

2134
2314
2341
ipl=4

2

1 4

3

2143
2413
2431
ipl=4

(The numbers in the nodes indicate the values entered into the BST, and follow the
inorder numbering.)
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If we avarage over these trees, taking into account the number of permutations
generating them, the average BST has an ipl of 6·4+2·5+4·6

12 = 4.83.
♢

Average tree. Binary search trees are generally built by inserting keys in some
random order. The permutation of keys determines the structure of the tree. There
are more permutations than possible keys. Linear trees can only be obtained with
one permutation, while there are many permutations for more balanced trees, see
the above example.

When we consider average trees we mean the average over all possible per-
mutations. It turns out that the average tree has logaritmic search time, close to
the optimum. In this paragraph we try to get an idea why that is.

To investigate the searching time in the ‘average’ binary tree, we get intu-
ition by looking at trees with 24− 1 nodes. With 15 nodes there is exactly one
completely balanced tree (with four levels, the minimum possible) but there are
214 = 16,384 ‘linear’ trees (with 15 levels, the maximum). Searching in such a
linear tree takes around 7 steps, the height of the average node.

If we start with 15 given keys 1,2, . . . ,15 then there is exactly one permuta-
tion that yields each given linear tree structure, if we add the keys in that order
in a standard way to an initially empty binary search tree. There are however
many permutations (21,964,800 to be precise, oeis.org/A076615) that yield the
four level balanced tree, where each of the nodes can be found in at most four
steps.

Example 3.11. Consider the BST defined by the permutation (5246173). The
root 5 determines that numbers less than 5 go into the left subtree, and those larger
go right. That also means that the subpermutations (2413) and (67) determine
the form of the two subtrees. The form of the tree is determined by two permuta-
tions. One of 1,2,3,4 and one of 6,7. If we interleave these two permutations and
start with 5 we always get the same tree, as depicted here. The second permuta-
tion (67) is equivalent to a permutation of (1,2) (simply by renumbering starting
from 1).

5

2

1 4

3

6

7

2 4 1 3
5

6 7

♢
In this way, by splitting at the root, we can reduce a large permutation into

smaller ones, and compute the average IPL for binary trees.
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Telescoping⊠. Let În denote the IPL for a BST of n nodes averaged over all per-
mutations. The example above can be extended into an argument for a recursion
formula for În. Rather than averaging over permutations we average over subper-
mutations after the root k has been fixed. (This is not immediate: we have to check
that all subpermutations of a certain size occur the same number of times.)

În = (n−1)+
1
n

n

∑
k=1

(Îk−1 + În−k)

With this formula a rather precise evaluation of the average tree can be ob-
tained. First we subtract two successive values to obtain a recursive formula.

so In = (n−1)+2(I0 + I1 + · · ·+ In−1)/n
also In−1 = (n−2)+2(I0 + I1 + · · ·+ In−2)/(n−1)
subtract nIn− (n−1)In−1 = 2n−2+2In−1

thus nIn = (n+1)In−1 +2n−2

In

n+1
=

In−1

n
+

2
n+1

− 2
n(n+1)

In−1

n
=

In−2

n−1
+

2
n
− 2

(n−1)n
. . .

I1

2
=

I0

1
+

2
2
− 2

1 ·2
In

n+1
=

I0

1
+O(lnn)− 2n

n+1

Now substitute each time the next value in the previous one, or add all the
successive formulas. We then obtain a telescoping series. One part can be approxi-
mated with a logarithm, the other sequences has a precise value, viz. ∑

n
k=1

1
k(k+1) =

n
n+1 .

Approximation. We explain the logarithm in the above formula. The integral of
a function is defined as the limit of Riemann sums, computing the area under and
above the function. In reverse we can approximate certain summations by their
integral. In the diagram below we have a decreasing function f over the interval
[a,b]. Then

∫ b−1

a
f (x)dx≤

b

∑
k=a

f (k)≤
∫ b

a−1
f (x)dx
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a b

We can apply this to partial sums of the ‘harmonic series’ and obtain for in-
stance

1
1
+

1
2
+ · · ·+ 1

n
= 1+

n

∑
k=2

1
k
≤ 1+

∫ n

1

1
x

dx = 1+ lgn

References. See DROZDEK Appendix. A.4 Average path length in a random binary
tree.
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Opgaven
1. Is de volgende definitie toereikend om een binaire zoekboom te definiëren?

Een binaire zoekboom is een binaire boom waar de waarde van een linker-
kind altijd kleiner, en de waarde van een rechterkind groter is dan de waarde
van de knoop.

2. Bij het verwijderen in een binaire boom hebben de varianten by merging en
by copying gezien. Beschrijf hoe de algoritmes moeten worden aangepast
voor een bedrade binaire boom (als in vorig hoofdstuk). Zorg dus dat na
verwijderen weer een correcte binaire boom ontstaat.

3. Schrijf (in pseudocode) een functie die controleert of een gegeven boom een
binaire zoekboom is. Drozdek 6.14.4

4. Schrijf (in pseudocode) een functie die de mediaan van een binaire zoek-
boom geeft. Herinner: de mediaan van een verzameling data is de “middel-
ste” waarde van de data; de mediaan van de verzamling {3,4,7,11,20,32,33}
is bijvoorbeeld 11.

⊠5. Laat An het aantal manieren zijn om op een legale manier een string van
n paren haakjes te maken. Er geldt bijvoorbeeld A3 = 5, want de legale
manieren om n paren haakjes te plaatsen zijn

()()(), (())(), (()()), ((())) en ()(()).

Toon aan dat An gelijk is aan Bn, het aantal verschillende binaire bomen met
n interne knopen en n+1 externe bladeren.
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4 Balancing Binary Trees
Introduction. From the chapter on binary trees we have learned that perfect
binary trees are much more efficient than linear trees when we use them to store
sets. A perfect tree retrieves a key in logaritmic time, a linear tree in linear time.

It is however complicated to keep the tree perfect when deleting and adding
keys to the trees. This chapter will study height balanced trees: they have both
logarithmic search time and logaritmic update time.

4

2 6

1 3 5 7

3

2 6

1 4 7

5

7

1

2

3

6

5

4

4.1 Tree rotation
Features:

• A tree rotation locally restructures a binary tree, without chang-
ing the inorder of the nodes.

In order to obtain new tree structures for the same set of keys we use a simple
operation which changes the structure of a tree, while keeping the inorder of the
nodes intact. Below we see single rotation at p to the left, or (read in reverse)
a single rotation at q to the right. Note the operation changes the root of the
(sub)tree, a detail which is important when implementing it: we need access to
the parent in order to change the link.

p

q

T1

T2 T3

⇐⇒ p

q

T1 T2

T3

The structure of the trees can be described as T1 p(T2 qT3) and (T1 pT2)qT3,
respectively. Thus tree rotations are a form of associativity. It is a crucial obser-
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vation that the inorder in both trees reads T1 pT2 qT3. Thus, if we start with a BST

the result will again be a BST, but with a slightly changes shape.
Rotations are “universal”, in the sense that every binary tree can be trans-

formed into another binary tree (with the same number of nodes) using rotations.
This is because each binary tree can be transformed into a right-linear one (which
has only descendants to the right) by repeatedly rotating to the right at any node
that has a left child.

Example 4.1. Rotating a tree at the root over the edge (4,7). The three subtrees
of the two nodes 4 and 7 are indicated by their roots 2,6,9. Note that before and
after rotation these subtrees keep their shape and order.
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1 2

♢

Perfect trees. ⊠ A perfect binary tree Tn of height n has n levels, each of which
is completely filled. Such a tree has 2n−1 nodes, we assume here they are num-
bered 1,2, . . . ,2n− 1. Rotating it into a right-linear tree can be done systemati-
cally: First rotate halfway, at the root which has number 2n−1. Then repeat at the
new root and two descendant to the right at k · 2n−2, k = 1,2,3; again at the new
root and six descendants to the right at k ·2n−3, k = 1, . . . ,7; etcetera.

Reversing the process we can make a perfect balanced tree out of a linear one
in a very systematic way, alternatingly rotating nodes on the rightmost “backbone”
of the tree.
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2
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12

2
4

6
8

12

This is the heart of the DSW algorithm presented in Drozdek. Any binary tree
can be rotated into an almost perfect tree, where all levels are completerly filled
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except possibly the last one. First rotate the tree into a linear tree, by rotating all
edges into edges to the right. Then conversely rotate into a tree of optimal form.

References. See DROZDEK 6.7.1 The DSW Algorithm.

T.J. ROLFE. One-Time Binary Search Tree Balancing: The Day/Stout/Warren (DSW)
Algorithm. Inroads (ACM SIGCSE) 34 (2002) 85–88. [Special Interest Group for Com-
puter Science Education]

4.2 AVL Trees
Features:

• Height balanced binary search tree, logarithmic height and log-
arithmic search time.

• Rebalancing after adding a key using (at most) one single/double
rotation at the lowest unbalanced node on the path to the new
key.

• Rebalancing after deleting a might need a rotation at every level
of the search path (bottom-up).

Definition 4.2. An AVL-tree is a binary search tree in which for each node the
heights of both its subtrees differ by at most one. The difference in height at a
node in a binary tree (right minus left) is called the balance factor of that node.

These trees are named after their inventors, Adelson-Velsky and Landis who pre-
sented their idea already in 19623. Enforcing the structure ensures the tree is
balanced, in the sense that the height of the tree is roughly logaritmic in the num-
ber of nodes, guaranteeing logarithmic tree search, while on the other hand the
structure is not too strict, and updates for adding and deleting a node can also be
performed in logarithmic time.

Example 4.3. (Left) Here we illustrate the height of binary trees, measured in
number of edges from root to the deepest leaf. The height of a subtree is measured
from its root.

(Right) An AVL-tree; nodes numbered in inorder. With each node we give its
balance factor (except for the leaves, where it is 0).

3Àäåëüñîí-Âåëüñêèé and Ëàíäèñ – the transcription of the Russian into English may vary
(I can’t type Cyrillic, but copy-paste works fine in modern LATEX).
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♢

Minimal and maximal trees. For a fixed height h, the AVL tree with the max-
imal number of nodes has all its balance factors equal to 0, the tree is perfectly
balanced, and contains 2h−1 nodes.

For a given height h, the AVL tree with the minimal number of nodes has all
its balance factors equal to ±1 (except the leaves). A tree with this shape is called
a Fibonacci tree. It can be defined recursively. The Fibonacci trees F0 and F1
consist of no nodes, and one node, respectively. Fibonacci tree Fh+1 consists of a
root, and two subtrees which are equal to Fh and Fh−1, respectively.

Example 4.4. In the picture below we draw a Fibonacci tree of height 5 – each
node marked h is the root of a Fibonacci tree of height h.
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2

1

5

2

1

4

1
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2

1

Fh

Fh−2
Fh−1

♢

Exact analysis.⊠ If we denote the number of nodes in Fh by fh, then we have
fh+1 = 1+ fn+ fh−1, or ( fh+1+1) = ( fh+1)+( fh−1+1), with ( f0+1) = 1 and
( f1 + 1) = 2: This is the recursion of the well-known Fibonacci numbers! But
starting two positions later.
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Let Φn be the nth Fibonacci number (starting with Φ0 = 0 and Φ1 = 1).
According to Binet’s formula the Φn equals Φn = 1√

5
(ϕn + (1− ϕ)n) , where

ϕ = 1+
√

5
2 ≈ 1.62. Note that (1−ϕ)n ∼ 0.62n → 0 as n→ ∞. So, for large n,

Φn ∼ ϕn
√

5
.

Then fh + 1 = Φh+2 ∼ ϕ2
√

5
ϕh ≈ 1.17 · 1.62h. This is the minimal number of

nodes in an AVL-tree of height h. As we have seen earlier that the maximum
number of nodes is 2n− 1, both bounds grow exponentially with h. Conversely,
this shows the height h of the AVL tree is logarithmic in the number of nodes.

Quick and easy analysis. The above analysis gives a very precise value for
the minimal number of nodes in an AVL tree of height h. A quick and easy
observation shows that in an AVL tree of height 2h− 1 or height 2h the top h
levels are completely filled: if the height at the root is h then at least one of the
children has height h−1, the other has at least height h−2.

So f2h ≥ 2h−1, and we easily obtain a logarithmic bound on the length of the
longest path in the tree given its number of nodes. If an AVL tree has height 2h
(or more) than it has at least n = 2h−1 nodes. Contrapositive: If an AVL tree has
less than n nodes, it must have height less than 2h = 2(lgn−1).
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4.3 Adding a Key to an AVL Tree
As an AVL tree is a binary search tree, adding a key has to take place at a leaf
which is in the proper position of the inorder of keys. After adding the key the
AVL property may no longer hold. We then have to restructure the tree. It turns
out that it suffices to perform an operation at a single node on the path from root
to the fresh leaf. We discuss here how that position can be found.

Bottom-up view. After inserting the new key we follow the path from the new
leaf back to the root, and see how the new balance factors are computed; and in
particular where rebalancing has to take place. For simplicity we assume that the
new key has been inserted into the left subtree, and also that the balance has been
decreased (i.e., the height of left subtree has increased). Note that balance factors
outside the path from the root to the new leaf are not changed.

a)

p
0/-1

new node

ok, go up

b)

p
+1/0

ok, STOP

c)

p
-1/-2

=⇒

rebalance, STOP

q
0

We distinguish three cases:

a) balance old/new 0/−1. Balance OK, the height of this tree increased, CON-
TINUE to father.

b) balance old/new +1/0. Balance OK, the height of this tree did not change:
STOP, the balance factors above this point do not change.

c) balance old/new −1/− 2, then changed to 0. New balance out of bounds.
A rotation will restore balance (explained later) and the new balance at this
point will become 0. Moreover the rebalanced tree at this point has the same
height as the original tree; STOP, the balance factors above this point do not
change.

From this overview we learn an important fact: at most a single rebalance
operation is needed, at the lowest point on the path from the root to the new leaf
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where the original balance was not 0. At this point the orignal balance before
inserting ±1 either improves to 0 after inserting (and we stop) or changes to inad-
missible ±2, where we rebalance (and stop). The new balance factors below this
point become ±1 depending on the side the path continues.

We did not yet explain how to rebalance, which we will do shortly.

Example 4.5. A tree that results from adding a key 11 to an AVL-tree, with before
and after balance factors given. (Changes occur only along the path from the root
to the inserted leaf.) The resulting tree is out of balance at the root. It can be
rebalanced by a single rotation at the root to the left. (This is like Example 4.1,
but in an AVL context.)

1

2
0

3

4
+1/+2

5

6
-1

7
0/+1

8

9
0/+1

10
0/+1

11new

7
0

4
0

2
0

1 3

6
-1

5

9
+1

8 10
+1

11

♢

We give the final details of the algorithm that rebalances the tree after addition
of a key, by specifying the operation performed in case c) above, at the lowest node
that is out of balance. In order to do so, we use the double rotation as described
in the diagram below.

Depicted is a double rotation at r to the right; it is composed of two single
rotations. One at p to the left, followed by one at r to the right.

r

p

q

T1

T2 T3

T4

=⇒

at p, left

r

p

q

T1 T2

T3

T4

=⇒

at r, right

rp

q

T1 T2 T3 T4
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An example of double rotation can be seen in Example 4.6, somewhat below.
(We usually draw the result of a double rotation in one step, omitting the middle
tree diagram above.)

The precise rotation chosen by the insertion algorithm depends not only on
the subtree where the key was added, but also on the subtree another a level below
that. We distinguish the LL and LR cases. Note that the diagrams do not only
specify the rotation chosen, but also the new balance factors. These can be “hard
coded” and do not have to be recomputed in the tree (as they follow from the type
of rotation). The RR and RL cases are not specified here, they are mirror images
of the given two cases.

LL-case. At the lowest non-zero balance, the key moves left-left. We perform a
single rotation to the right, as sketched. Balance OK, the height of this tree did
not change: STOP, the balance factors above this point do not change.

q
-1/-2

p
0/-1

=⇒ q
0

p
0

LR-cases. At the lowest non-zero balance, the key moves left-right. We perform
a double rotation to the right, as sketched. If we want to know the new balance
factors we have to look at the next level, see the diagrams. Balance OK, the
height of this tree did not change: STOP, the balance factors above this point do
not change.
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r
-1/-2

p
0/+1

q
0/±1

OR

=⇒

r
+1

p
0

q
0

OR

r
0

p
-1

q
0

This LR-case includes an additional situation where q itself was inserted, see
next diagram.

r
-1/-2

p
0/+1

q
new

=⇒

r
0

p
0

q
0

Example 4.6. A tree that results from adding a key 5 to an AVL-tree, with before
and after balance factors given. The resulting tree is out of balance. It can be
rebalanced by a double rotation at the root to the left.

1

2
0

3

4
+1/+2

6
0/-1

7
0/-1

9
0/-1

8

10
+1

11

5new

7
0

4
0

2
0

1 3

6
-1

5

9
+1

8 10
+1

11

In the second example we add node 6 to an AVL tree. In the path from root to
new leaf all balance factors change. Moreover at almost all these levels the tree
is out of balance. Following the algorithm, the balance can be restored using one
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rotation, at the lowest level of unbalance, node 4. The subtree at 5 replaces the
old subtree at 4, and these trees have the same height. That means that all balance
factors above this point keep their original values.

10

11

12

13

9
-1/-2

1

2

3
+1/+2

4
+1/+2

7
-1/-2

8

5
0/+1

6new

10

11

12

13

9
-1

1

2

3
+1

7
-1

85
0

64

♢

Overview. Adding a key. Adjusting balance factors and structure bottom up:
1. 0 7→ ±1 (go up)
2. ±1 7→ 0 (done)
3. ±1 7→ ±2 (lowest position of unbalance in tree)

(a) LL RR single rotation
(b) LR RL double rotation

(then done)

Implementation. At each node the balance factor has to be known. It is suffi-
cient to store the values 0,±1 as we have shown here, because the new balance
factors can be predicted from the old ones, as the case analysis above has shown.
However some implementations find it worthwhile to explicitly store the height
at each subtree. Our sketch is close to an iterative implementation, but elegant
recursive solutions are possible.

4.4 Deletion in an AVL Tree
When deleting a node in an AVL tree one usually reduces to the case where the
node has only a single child, like for general BST’s. However apart from maintain-
ing the inorder of keys here we additionally need to restructure the tree when it
has become unbalanced. This can be done by careful case analysis, like in the case
of addition. See Slide 17. Now however it is not enough to rebalance at a single
node. Instead after one rotation the final subtree at that node may be less tall than
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the original subtree. That means that also one level up the balance factors need to
be addressed. Etcetera. Nevertheless, as the height of the tree is logarithmic, also
the number of operations here is logarithmic at most.

Some people prefer lazy deletion, where a key keeps its position in the tree,
but is marked as “deleted”. The drawback of this choice is that the tree will keep
growing when insertions and deletions are used intensively.

Example 4.7. Consider the first AVL tree below. (Note it not-accidentally is ‘min-
imal’, i.e., of Fibonacci proportion, see Section 4.2.) Delete key 12 from the AVL
tree. At its parent, node 11, the tree becomes unbalanced. We are in a LR situa-
tion (which can be seen by the balance factors at 11 and 9), hence we do a double
rotation to the right at 11.

In the resulting tree (third diagram) the height at 11 has decreased by 1. As a
result the balance at parent 8 changes to −2. We now have to rebalance at 8, the
root. If we inspect the balance factors at 8 and 5 we see we are in a LL case: a
single rotation at 8 to the right is applied.

8
-1

5
-1

3
-1

1
+1

2

4

7
-1

6

11
-1

9
+1

10

×

8
-1

5
-1

3
-1

1
+1

2

4

7
-1

6

11
-2

9
+1

10

8
-2

5
-1

3
-1

1
+1

2

4

7-1

6

10
0

9 11
+1

5
0

3
-1

1
+1

2

4

8
0

7
-1

6

10
0

9 11

♢

References. G.M. ADEL’SON-VEL’SKIĬ, E.M. LANDIS: An algorithm for organi-
zation of information (in Russian), Doklady Akademii Nauk SSSR 146 (1962) 263–266.
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Slide 17 Deletion in AVL-trees. Top: two RR-cases, below: three RL-cases (for
ε =−1,0,+1). Yellow = height original subtree, gray = height subtree after dele-
tion of node.

q
0

p
+1/+2

=⇒ q
+1

p
-1

q
+1

p
+1/+2

=⇒ q
0

p
0

p
-1

q
ε

r
+1/+2

=⇒

p
0,+1

q
0

r
0,-1
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(Äîêëàäû Àêàäåìèè Íàóê, hier ook bekend als: Proceedings of the USSR Academy of
Sciences, in vertaling uitgegeven door de American Mathematical Society, Soviet Mathe-
matics 3 (1962) 1259–1263. )
See DROZDEK 6.7 Balancing a tree; 6.7.2 AVL Trees.
See LEVITIN 6.3 Balanced Search Trees: AVL Trees.
See WEISS 4.4 AVL Trees. [Recursive implementation, removal seems easy, but it is not
clear that insertion performs only one rotation?]

4.5 Self-Organizing Trees
For linear lists we have heuristics for self-organization: whenever a key is found
after search it is swapped with its predecessor (or even moved to the first position
at once).

12 3 6 1 19 16 11 12 3 6 1 19 16 11

The same idea can be used as self-organizing trees4. Whenever a key is found
after search we move it upwards either one level or completely to the root, using
rotations. In this section we study the move to front heuristics, when accessing a
key.

Lemma 4.8 (⊠). Let i < j, while j is a descendant of i in the tree. After accessing
k key j is no longer a descendant of i iff i < k ≤ j.

Proof. First note that if k is not a descendant of i then accessing k does not change
the subtree below i. If k > j then it in the right subtree of i. While moving k to the
root it meets i just before their rotation, see figure below. Now j is in either T2 or
in T3. Note that j will cease to be a descendant of i iff it belongs to subtree T3, i.e.
iff it satisfies k < j, or if k = j.

i

k

T1

T2 T3

⇐⇒ i

k

T1 T2

T3

4This means the tree is not enforced with structural restrictions, but in general searches and
insertions are implemented in such a way that the tree (hopefully) will gradually optimize its
structure
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This observation is useful if we want to argue how the subtree relations are
after accessing a series of keys.

We can now point at a worst case scenario for this heuristics. When accessing
the keys repeatedly in order, we obtain a linear time behaviour. Starting with any
tree, accessing the keys 1,2, . . . ,n in that order will lead to a tree of the form in the
first figure below. If we then again access one of these keys, the tree looks like the
second figure when key k has been just accessed. Clearly moving this linear row
of keys up one by one needs a quadratic number of rotations: n+n−1+ · · ·+1.
This is a linear number of rotations per key.

n
n−1

2
1

k

2
1

n

k+1

4.6 Splay Trees
Splay trees are a variant of the move to root technique. Again we move a key to
the front, but this time not always bottom-up with single rotations, but in one case
at the grandparent of the node that is being moved, two levels at a time. This leads
to better balance. The “zig-zag” terminology originates from the original paper.
Features:

• Simple implementation, no bookkeeping. self organizing
• Any sequence of K operations (insert, find) has an amortized

complexity of O(K logn)
• move item to root two levels at a time
• zig-zig step differs from bottom-up rotation

In amortized complexity we do not measure the complexity of a single oper-
ation, but we average over a seuqence of operations. This means that no single
operation is guaranteed to perform in logaritmic time, but averaged over the com-
plete sequence it does.

Below let x be the node that is moved to the root. We distinguish to which
subtree x belongs, as seen from its grandparent g.
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Zig-Zag step. Double rotation to the right at the grandparent, like in AVL-trees.
This is actually the same as two single rotations at the parent and grandparent of
x (first p to the left then g to the right).

g2

p 1

x

T1

T2 T3

T4

=⇒ gp

x

T1 T2 T3 T4

Zig-Zig step. Two rotations to the right: but here top-down! (So, first at g to
the right, then at p to the right.) Here the splay tree differs in the move to root
approach.

g1

p2

x

T1 T2

T3

T4

=⇒

g

p

x

T1

T2

T3 T4

Zig step. When node x is a child of the root we perform a last single rotation.
This is a standard rotation, and we do not repeat the picture here, see Section 4.1.

Example 4.9. As an example consider a seven node “linear” tree, with all descen-
dants to the left. After searching for 1 that value is splayed to the top in four steps.
(Rightmost picture) When we would rotate 1 to the root with ordinary rotations,
the tree would still be linear whereas with splaying the height practically halves
(imagine a larger example).
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♢

Implementation. There are many implementation choices. Most importantly,
when do we splay? Possibilities are at search, unsuccessful search, insertion and
deletion. In deletion splaying can be useful. To delete key x first splay x to the
root, remove x to obtain two subtrees T1 and T2. Then splay the last key y in T1 to
the root (the predecessor of x). Clearly y has no successor in T1, so no right child
in the root of the new tree. At that position we attach the original right subtree T2.

References. D.D. SLEATOR, R.E. TARJAN: Self-Adjusting Binary Search Trees, Jour-
nal of the ACM 32 (1985) 652–686 [ACM = Association for Computing Machinery]
doi:10.1145/3828.3835

B. ALLEN, I. MUNRO: Self-organizing search trees, Journal of the ACM 25 (1978) 526–
535 doi:10.1145/322092.322094

See DROZDEK 6.8 Self-Adjusting Trees.

See WEISS 4.5 Splay Trees.
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Opgaven
1. Deze opgave gaat over AVL-bomen.

a) Waarom zijn AVL-bomen te prefereren boven standaard binaire zoekbomen?

We gaan sleutels toevoegen en verwijderen. Beschouw de volgende boom
B.

71

42

23

14 35

56

67

98

89 110

b) i. Wat is het resultaat van het toevoegen van sleutel 7 aan boom B?

ii. Wat is het resultaat van het toevoegen van achtereenvolgens 70 en 69
aan (de oorspronkelijke) boom B?

Jan 2016

2. Bij de evaluatie van Fibonacci bomen wordt gezegd (pagina 68):

in an AVL tree of height 2h−1 or height 2h the top h levels are
completely filled

Bewijs dat dit klopt.

3. Neem aan dat een AVL-boom duizend sleutels bevat: 1,2, . . . ,1000. Wat is
de kleinste waarde die de wortel kan hebben?

4. In Example 4.9 wordt getoond hoe de structuur van een lineaire boom na
een Splay operatie verandert. Laat zien wat er gebeurt bij een ‘zig-zag’-
boom met 7 knopen, waar steeds één kind per knoop is maar nu afwisselend
rechts en links.
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Uitwerking
4. Hieronder een zig-zag binaire zoekboom. Let op de nummering van de

knopen! Het onderste element 4 wordt omhoog geroteerd.

4

5

3

6

2

7

1

4

53

6

2

7

1

4

53

62

7

1 4

53

62

71
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5 Priority Queues

Ordering items in a set
A database consists of a set of key-value pairs. We can retrieve a record (element)
by its key, and in this way we can update the value, or even delete the record from
the set.

In a priority queue we also consider key-value pairs. The difference is that the
value here has a specific meaning, it is the priority associated with the record. We
add new record-priority pairs to the priority queue, and we can locate and delete
the item with largest priority. There is no (efficient) way to find other items based
on this priority. Also we cannot locate the elements based on their key, unless we
build a separate structure to keep track of that key.

Example 5.1. Consider the following relation of persons with their ages:
{ (‘Detra’,17), (‘Nova’,84), (‘Charlie’,22), (‘Henry’,75), (‘Elsa’,29) }

We can store these key-value pairs according to their names, and we obtain
a dictionary from which we are able to retrieve the age given the name of the
persons. This uses a binary search tree, see the left diagram.

Detra 17

Charlie 22 Nova 84

Henry 75

Elsa 29

84Nova

75Henry 29Elsa

17Detra 22Charlie

Alternatively we can store these items more suitable for a priority queue. This
enables us to retrieve the persons in order based on their age, without actually
completely sorting them. In this chapter we will see two different implementations
of the priority queue. Both of these use a heap-ordered binary tree, see the right
diagram. (The implementations also have an additional structural restriction to
the form of the tree.)

♢

In the toy examples of this lecture usually only the priorities are given in the
diagrams. The associated records are omitted. See for instance in Example 5.2
below, where two binary trees are given, one as a search tree, the other heap-
ordered. These trees consists of numbers only, and have no associated data-values.
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5.1 ADT Priority Queue
In a PRIORITY QUEUE the data elements are assigned with a priority. The

priority values are totally ordered: for each pair we have exactly one of p > q,
p = q or p < q. We can add any element to the queue but we can only retrieve a
maximal one. Elements can have the same priority, a fact that is often ignored for
simplicity.

In practice it may be the case that we want to retrieve the element with lowest
costs, hence priority goes up with lower values. We distinguish max-queues and
min-queues when we want to make that explicit.

• INITIALIZE: construct an empty queue.
• ISEMPTY: check whether there are any elements in the queue.
• SIZE: returns the number of elements.
• INSERT: given a data element with its priority, it is added to the queue
• DELETEMAX: returns a data element with maximal priority, and deletes it.
• GETMAX: returns a data element with maximal priority.

Isempty and Size are mentioned here for convenience only: they are easily
implemented by keeping a counter. Less common operations are:

• INCREASEKEY: given an element with its position in the queue it is as-
signed a higher priority.

• MELD, or Union: takes two priority queues and returns a new priority queue
containing the data elements from both.

The definition of INCREASEKEY is tricky. We assume its position (address
of, pointer to, index in, ...) is known when the operation is applied. The reason
for this is that there is no operation to locate an element in a priority queue. It
is however an important part of Dijkstra’s algorithm for shortest paths to be able
to update priorities when better connections in the graph are discovered. That
means that we keep an inverse data structure that keeps track of the positions of
all elements.

In examples involving priority queues often only the priorities of the elements
is shown, not the associated data. The particular information does not help in
understanding their mechanics.

Many types of priority queues have been developed, with the goal of minimiz-
ing the complexities of the operations. In this text we will discuss the binary heap
and the leftist heap. Both are based on binary trees: one with array representation,
the other with a linked trees. The binary heap is famous for one of its applications,
heapsort.
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We give a list of complexities for various implementations of the priority
queue, from standard to quite involved. In fact the last type mentioned here (Bro-
dal queue) is of theoretical interest only. Its implementation is very involved, and
its complexity bounds have huge constants.

Binary Leftist Pairing Fibonacci Brodal
GETMAX Θ(1) Θ(1) Θ(1) Θ(1) Θ(1)
INSERT O(logn) Θ(logn) Θ(1) Θ(1) Θ(1)
DELETEMAX Θ(logn) Θ(logn) O(logn)† O(logn)† O(logn)

INCREASEKEY Θ(logn) Θ(logn) O(logn)† Θ(1)† Θ(1)
MELD Θ(n) Θ(logn) Θ(1) Θ(1) Θ(1)
† amortized complexity

Fibonacci queues have their complexities as amortized bounds, the other are worst
case.

Use cases. We mention some examples where priority queues are used.

• sorting (heapsort)
• graph algorithms (Dijkstra shortest path, Prim’s algorithm)
• compression (Huffman)
• operating systems: task queue, print job queue
• discrete event simulation

Overview. In the next two sections we present two tree implementations of the
priority queue data structure. Here a short overview of their distinctive features.

binary heap leftist heap
structure binary tree

restriction complete leftist
keys heap ordered

representation array pointers

internal trickledown
bubbleup

zip

advantage heapsort efficient meld

References. G.S. BRODAL: Worst-Case Efficient Priority Queues. In Proc. 7th An-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA), (1996) 52–58.
ACM:10.1145/313852.313883 “. . . is based on heap ordered trees where [. . . ] nodes may
violate heap order.” “The data structure presented is quite complicated.”

G.S. BRODAL, G. LAGOGIANNIS, R.E. TARJAN: Strict Fibonacci heaps. Proceed-
ings of the 44th symposium on Theory of Computing (STOC12), (2012) 1177–1184.
doi:10.1145/2213977.2214082
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5.2 Binary Heaps
Features:

• Implementation of ADT PRIORITYQUEUE

• Uses a complete binary tree, stored as an array/vector.
• Keys are ordered in heap order.
• Internal functions TrickleDown and BubbleUp for restructuring
• Application: Heap sort.

In a binary heap the queue elements with their priorities are represented using
a binary tree. The tree in use has two structural restrictions. First the tree is
complete, second elements are stored in heap order, in decreasing priority when
moving from root to leaf. There is no left-right order between priorities enforced.
Since the tree is complete, it will be stored as array. Assuming the root at position
1, the children of node i are found at positions 2i and 2i+1.

The following example is similar to Example 5.1, but with simple keys. (To
stress, once again, the difference between heap-order and in-ordered search-tree.)

Example 5.2. As seen in Section 1.3, two binary trees. To the left the binary
search tree (ordering from left-to-right) and to the right the heap-order (keys or-
dered from top-to-bottom). Note that in the search tree we can easily locate each
item, going left or right each step, whereas in the heap-ordered tree it is not pos-
sible to decide in which branch a key is stored.

Note the heap-ordered tree is not complete. This extra requirement is needed
to make the tree a binary heap.
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45
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♢

Definition 5.3. A binary heap is a complete binary tree with elements from a
partially ordered set, such that the element at every node is larger than (or equal
to) the element at its left child and the element at its right child.
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As a consequence of the definition, by transitivity, all descendants of a node
have a value less than the node itself.

The priority queue operations are implemented using two basic internal func-
tions:

• TRICKLEDOWN: Swap an element (given by its position in the heap) with
the largest of its children, until it has a priority that is larger than that of
both children.

• BUBBLEUP: Swap an element (given by its position in the heap) with its
father until it has a priority that is less than that of its father (or is at the
root).

The restriction that an element is given by its position is essential: there is no
efficient way to locate an arbitrary element in the heap.

These two names seem appropriate, but Wikipedia lists many more: “To add
an element to a heap we must perform an up-heap operation (also known as
bubble-up, percolate-up, sift-up, trickle-up, swim-up, heapify-up, or cascade-up),
. . . ”

Example 5.4. (1) The leaf 71 is too large for its position (in a max-heap). It moves
up in the tree, using BUBBLEUP.
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(2) Root 37 is too small for its position. Its moves down, using TRICKLE-
DOWN. In each step swap node with its largest child.
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♢

The operations are now carried out as follows.

• INSERT: add the new element at the next available position at the end of the
array/tree, then BUBBLEUP.

• GETMAX: the maximal element is present at the root of the tree.
• DELETEMAX: replace the root of the tree by the last element of the ar-

ray/tree. That element can be moved to its proper position using TRICKLE-
DOWN.

• INCREASEKEY: use BUBBLEUP. (We need the position of the key, as we
cannot efficiently search for it.)

The restriction to consider only complete trees means that the most natural
implementation uses an array (instead of pointers) to store the tree. If the root is
at position 1 then the children of node x are at 2x and 2x+1. Starting at 1 seems
natural if one looks at the regularity of the addresses in binary.

1

10 11

100 101 110 111

1000 1001 1010 1011 1100
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Example 5.5. (1) In the heap below we insert key 29. Place it after the last leaf,
and apply BUBBLEUP.
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(2) Next we delete the maximal element (98) from the original heap. Replace
the root by last element (13) and TRICKLEDOWN.
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♢

Constructing an heap. If we randomly put elements in an array it can be seen
as a complete binary tree, but if we want to use the data as an heap we have to
reorder the keys. This is a useful operation: it can be used in a sorting method,
heapsort, and it can be used to more efficiently merge two heaps.

• MAKEHEAP: Given an array, reorder its elements so that the array is a
binary heap.

This operation is sometimes called HEAPIFY. It can be done in linear time,
when the right approach is taken.

For the precise analysis, recall that ∑
h
i=0 i ·2i =(h−1)·2h+1+2, see Lemma 3.8,

and of course ∑
h
i=0 2i = 2h+1−1.
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First approach, not optimal. We can construct the heap by adding one by one
the elements of the array to the heap. Each element will bubble up in the tree, top-
down. Assuming the heap is complete with the bottom level completely filled, it
contains n = 2L−1 elements, and has levels 0,1, . . . ,L−1, with level k containing
2k elements. The elements at level k will move at most k levels up, so the total
amount of key swaps is ∑

L−1
k=0 k2k = (L−2) ·2L +2; see Lemma 3.8.

Thus expressed in n, the complexity is O(n lgn).
Optimal. We can improve on this, by adding the elements bottom-up to the

heaps, rather than top-down. So, we add each element to the heaps that were
constructed below it. Thus the elements trickle down to their position. Now an
element at level k will move down at most L− k− 1 levels. Note half of the
elements, those in the leaves, will not move down at all. The complexity now is
∑

L−1
k=0 2k(L− k− 1). First split the summation into terms with 2k and those with

k2k. We get (L−1)∑
L−1
k=0 2k−∑

L−1
k=0 k2k. The first summation yields another power

of 2, the second summation is again Lemma 3.8. The important parts cancel:
(L−1)(2L−1)− (L−2) ·2L−2 = 2L−L−1.

Thus expressed in n, the complexity is O(n).

Example 5.6. We construct an heap-structure from an unordered array, working
upwards at level, 2,1,0 and trickling down the nodes at those levels.
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♢

Merging. If we want to merge two heaps, we must move their data into a single
array. The cost of moving is linear in the number of elements of the smallest
heap. When we append the items of one heap after the other heap, the result is not
automatically an heap. The operation Heapify can reorder the items in linear time
to become a merged heap.

Heapsort. The binary heap is the key part of the in situ sorting method heapsort.
This means that no extra space is used, apart from array where the data is stored.
The array will have two functions: during the sorting process part of the array will
be sorted, while the remaining values are stored as a binary max-heap. Each step
the maximal value is removed from the heap (using DeleteMax of course) and
stored at its position in the array.

To start the sorting, the initial array must be changed into an heap, that is, we
apply Heapify, in linear time.

Sorting step. We illustrate a single step in the heapsort of an array. In the exam-
ple diagram below (left) the elements [7 · · ·12] are already at their sorted position
in the array, while the initial elements [1 · · ·6] form a max-heap.

The maximal element of the heap is at position 1, extract it from the heap
while moving it to its sorted position by swapping positions 1 and 6, and then
trickle down the 1st element to its proper position in the heap.
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trickle down sorted
The complexity of heapsort is O(n lgn), where n is the number of elements

that are sorted. This can be seen as follows. We repeatedly apply DeleteMax
(using TrickleDown) on a shrinking heap, each step logaritmic in the size of the
heap. That gives complexity O(∑n

k=1 lgk) = O(lgn!). Then according to the ap-
proximation by Stirling, lg(n!) = n lgn−n+Θ(lgn).

References. J.W.J. WILLIAMS: Algorithm 232: Heapsort. Communications of the
ACM 7 (1964) 347–348. doi:10.1145/512274.512284
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5.3 Leftist heaps
Features:

• Implementation of ADT PRIORITYQUEUE

• Proper binary tree, with structural restriction on path lenghts.
• Keys are ordered in heap order.
• Internal function Zip for restructuring.
• Queues can be efficiently melded (joined).

A leftist heap is a binary tree implementation of the priority queue where the
nodes are heap ordered like in a binary heap (children have a lower priority than
their parent) but does not maintain its complete form. Instead it tries to be out of
balance, paths to the left tend to be longer than those to the right; hence the name.

To define the data structure, we first introduce some concepts. Given a binary
tree its extended binary tree is obtained by adding a special leaf at positions where
a node had no child. The resulting tree is full: every node either has two children,
or is a leaf.

For each node x we define its nil path length, denoted npl(x), as the shortest
distance to an external leaf. Recursively that can be written as npl(x) = 0, when x
is an external leaf, and

npl(x) = 1+min{ npl(left(x)), npl(right(x)) } ,

when x is an internal node.

Definition 5.7. A leftist tree is an (extended) binary tree where for each inter-
nal node x, npl(left(x)) ≥ npl(right(x)). A leftist heap is a leftist tree where the
priorities satisfy the heap order.

Example 5.8. A binary tree with its extended leaves. Numbers indicate npl. All
leaves have npl 0, the other npl’s are indicated inside the nodes. At four nodes the
leftist-tree property is violated. We swap the two subtrees at these positions.
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1 1
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1

♢
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We recursively define an internal function ZIP to this data structure. It takes
two leftist trees Ta,Tb with roots a and b, where we assume the priority(a) is at
least priority(b), swapping the trees otherwise. The result is the tree with root a,
where the right subtree T2 of Ta is replaced the (recursively obtained) ZIP of T2
and Tb. Additionally the children T1 and ZIP(T2,Tb) are swapped when necessary
to maintain the leftist tree property. Perhaps a diagram is helpful.

a b

T1 T2 T3 T4

︷ ︸︸ ︷ZIP
a

b
T1

T2

T3 T4

︷ ︸︸ ︷ZIP

a≥ b

The trees Ti to the left are copied from the old to the new structure, so the
npl in their nodes did not change. For the nodes on the rightmost path the npl do
change. The new values can be computed bottom-up.

The tree constructed this way has the heap-order, but might not be leftist. The
proper structure can be obtained by swapping children at the same rightmost path
when necessary. This can be done at the same time as the new npl are computed.

Example 5.9. We ZIP two leftist trees, data represented in the nodes, by first
joining nodes along the rightmost paths, each time choosing the largest priority.
Then we restore the leftist property, bottom-up, by swapping children along the
path where the two npl are in the wrong order.
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ZIP︷ ︸︸ ︷
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♢

One easily shows by induction that the number of nodes in a leftist tree is
(at least) exponential in the length of the rightmost path. As the ZIP-operation is
performed along that rightmost path of two trees, the number of nodes visited is
logarithmic in the total number of nodes in the trees.

Lemma 5.10. Let T be a leftist tree with root v such that npl(v) = k, then
(1) T contains at least 2k−1 (internal) nodes, and
(2) the rightmost path in T has exactly k (internal) nodes.

Proof. (1) Using induction on k, the npl(x) of the root. If k = 1, then the tree
contains one node, the root itself.

Assume that the npl(x) = k+ 1 for the root x. Then both children must have
npl at least k. Using the inductive hypothesis we know that both subtrees must
contain at least 2k−1 nodes. The total number of nodes is at least 2 ·(2k−1)+1=
2k+1−1.

(2) The npl of the right child is precisely one less than that of its parent. We can
prove this as follows. In general the formula npl(x)= 1+min{ npl(left(x)),npl(right(x)) }
holds. The leftist property requires that npl(left(x)) ≥ npl(right(x)). Thus the
minimum is always the right child, and npl(x) = 1+npl(right(x)).

The time complexity of zipping two trees is proportional to the sum k = k1+k2
of the lengths of both rightmost paths in the trees. By the above lemma these
lengths are equal to the npl at the root of the trees. Again by the lemma, the
total number of nodes in the trees is at least n = 2k1 + 2k2 (minus two). Thus
k = O(lg(n)).
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Example 5.11. In leftist trees the length paths to the left cannot be bounded by a
function of the npl at the root. In the example below the root has npl 3, while the
long path of nodes with npl = 2 can be made into any length. Although in general
paths to the left tend to be longer than those to the right, the longest path is not
necessarily the one to the left starting at the root, see again the example. Numbers
indicate npl.

3

2 2

1 1 2 1

2 1

2 1

. . . . . .

♢

The priority queue operations are now carried out using ZIP, as follows. Since
ZIP is of logarithmic complexity in the number of keys (nodes) also the priority
operations are log-time efficient. For the special operation INCREASEKEY we
have to be careful: as we have seen in the above example, the (leftmost) paths
cannot be bounded as a logarithm of the number of keys.

• INSERT: construct a single node tree and ZIP with the original tree.
• GETMAX: the maximal element is present at the root of the tree.
• DELETEMAX: delete the node at the root, ZIP the two subtrees of the root

into a new tree.
• MELD: is performed by a ZIP.
• INCREASEKEY: Cut the node and its subtree from the tree. Repair the

remaining tree as npl on the path to the root has been changed. Zip the two
trees. (See Example 5.13 for explanations about the complexity.)
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Example 5.12. We insert 27 into a leftist heap with five elements, by zipping the
heap with a single element heap. After the zip we swap children at node 27 to
restore the leftist property.

ZIP︷ ︸︸ ︷
38

37 25

29 10

27

38

27
*

37

29 25

10

38

2737

29 25

10

Then we delete the maximal element from the same (original) five element
leftist heap, by removing the root and zipping its two subtrees.

38

37 25

29 10

38

37 25

29 10

︷ ︸︸ ︷ 37

29 25

10

♢

Example 5.13. The left figure shows a leftist tree with a rather large rightmost
subtree, like in Example 5.11. The numbers indicate the npl at each node, not the
priority of the node. If we want to apply INCREASEKEY to one of the lower nodes
with npl equal to 5, we cannot increase the priority and swap with the parent in
this data structure (like we did for the binary heap) as this does not guarantee a
logarithmic bound. The reason we cannot guarantee this is because we cannot
bound the length of the linear path in the subtree. Instead cut the node with its
subtree at the position where we want to increase. That subtree is an leftist heap
by itself, and the npl at its root is at most the logarithm of the number of its
successors.

The original tree now most probably no longer is leftist, and we have to re-
calculate npl(x) at every node upwards (swapping left and right where necessary).
Again we have to verify that this recalculation can be done in a reasonable number
of steps. At each step we increase this value by one until at some point we reach
the original value. So this has again a logarithmic bound. Now ZIP the two trees
to obtain the new leftist tree.

In the diagram below, a leftist heap before and after cutting a subtree (for
simplicity subtrees indicated by dashed lines were omitted). After recomputing
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the npl the starred nodes need swapping their children to reobtain their leftist
structure.
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♢

References. C.A. CRANE: Linear lists and priority queues as balanced binary trees.
Technical Report STAN-Cs-72-259, Computer Science Dept, Stanford Univ., Stanford,
CA, 1972
See WEISS 6.6 Leftist Heaps

Pairing Heap ⊠
Wishful thinking. Tot nu toe nooit behandeld.

References. M.L. FREDMAN, R. SEDGEWICK, D.D. SLEATOR, R.E. TARJAN: The
pairing heap: a new form of self-adjusting heap. Algorithmica 1 (1986) 111–129. doi:10.1007/BF01840439

5.4 Double-ended Priority Queues
A double-ended priority queue is a data structure extending the priority queue,
in that it can handle request for both minimal and maximal elements of the set
(instead of only one of these).

Many implementations involve two binary heaps (one for min and one for
max) that are cleverly balanced.
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Dual Structure Method. Store keys twice, once in a min-heap and once in a
max-heap. If the minimum is deleted from the min-heap, it has to be deleted from
the max-heap too. Hence for each key in one heap we have to know its position
in the other in order to be able to find and remove it. Similarly, when during
insertion of a key some other keys change position in one heap, we have to update
this information in the other heap. Not very hard to do, but a lot of book-keeping.

Example 5.14. Consider a double ended priority queue with values {3,5,9,11,14,15}
stored both in a min-heap and a max-heap. In each heap we also store the position
of the keys in the other heap, to locate that key when its info has to be updated.
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Delete min 3 from min-heap, move last key 9 to root, then trickle down, and

swap with 5. When moving values the positions of those values in the max-heap
move with them. Also update the min-heap positions of the elements stored in the
max-heap.
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As 3 has been deleted from the set of values its copy in the max-heap has to be
removed too. In the original min-heap the position of 3 in the max-heap was given
as 4, so we can find it. Move the last element 5 of the max-heap to that position
(it fits there as it is smaller than the parent, so no bubble-up needed). Update the
max-heap position of 5 in the min-heap.
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♢

We can also divide the keys over a min-heap and a max-heap. In that case we
have to balance the two heaps, and always make sure that the minimal element is
indeed in the min-heap (and similar for max). We present a structure that ensures
this.

Interval Heaps. An interval heap is like a binary heap except that its nodes
contain two numbers instead of one. The numbers are ordered like intervals. This
when x′,y′ is a child of x,y, then x ≤ x′ ≤ y′ ≤ y, or [x′,y′] ⊆ [x,y]. When the set
stored in the heap contains an odd number of elements, the last node contains only
one element, and is considered a one element interval [x.x].

It is easy to see that the left elements of the nodes form a min-heap. while the
right elements form a max-heap. These two embedded heaps form the heart of the
procedures for adding or deleting keys. A key is added at the proper node at the
end of the tree. When the key is smaller than the min-key of its parent, we insert
the key in the min heap. Similarly, when the key is larger than the max-key of its
parent, we insert the key in the max heap. This is done as in binary heaps: we
swap an element with its parent as long as it is smaller than (larger than, for the
max heap) that parent.

Deletion of the min element likewise is similar to deletion in a binary heap.
Remove the min element, and replace it with the element from the last leaf. As
long as larger than one of its children swap with the smallest child. There is
one complication. There is no guarantee that the left and right elements form an
interval at each step. When the left element (min heap) is larger than the right
element (max element) we interchange the two elements, and continue (with the
min heap).
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Example 5.15. An interval heap and its embedded min-heap and max-heap.
2-92

8-80 11-75

17-59 42-70 44-73 14-39

24-33 23-51 55-60 44-50 54-57 61
2

8 11

17 42 44 14

24 23 55 44 54 61

92

80 75

59 70 73 39

33 51 60 50 57

Inserting an element to the interval heap is done, by starting at the last position,
and inserting like in a ordinary binary heap. We have to swap keys when this is
necessary to keep the left value smaller than the right value.

First we insert 80 in the heap above. It is added to the rightmost leaf as that
has only a single value. Since 80 > 61 the new interval is [61-80] and we add 80
to the max heap.

2-92

11-75

44-73 14-39

54-57 61
80

2-92

11-75

44-73 14-39

54-57 61-80

2-92

11-80

44-75 14-39

54-57 61-73

Now delete the minimal value (from the original set). Thus we delete the root
of the min-heap, and like in the binary heap, we replace it by 61, the last item in
the tree.

Then we sift-down in the min-heap, swapping the key with that in its smallest
child. When we reach [61-59] the two values have to be swapped and we get the
new interval [59-61]. Note the max-heap is still in order. For the parent 61 < 80,
the value came down and fits inside the parent interval. For the child: we have
increased the right boundary of the interval from 59 to 61, so the heap property
still holds.

The new value in the min-heap is 59, which is further sifted down. At the leaf
we once more swap both elements.
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2-92
61

8-80 11-75

17-59 42-70

24-33 23-51

8-92

17-80 11-75

61-59 42-70

24-33 23-51

8-92

17-80

59-61 42-70

24-33 23-51

8-92

17-80

23-61 42-70

24-33 51-59

♢

References. J. VAN LEEUWEN, D. WOOD: Interval Heaps. The Computer Journal 36
(1993) 209–216. doi:10.1093/comjnl/36.3.209
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Opgaven
1.a) Voeg de getallen 1 tot en met 7 toe aan een lege min-Priority Queue. Hoe

ziet de boom eruit in geval van een Binary Heap en in geval van een Leftist
Heap?

b) Idem, maar nu in het geval van een max-Priority Queue.

2. De operatie Heapify/Makeheap zet een willekeurig array om in een binary
heap.

a) Leg uit waarom dit altijd lineair veel werk kost.

b) Geef aan hoe een array eruit ziet waarvoor de top-down methode (first
approach) inderdaad O(n lgn) veel vergelijkingen gebruikt. De sleutels
schuiven dan maximale afstand door.

3. Maak de volgende boom leftist door op de juiste plekken de kinderen van
een knoop om te wisselen.
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17

40 25

35

38

10

15
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28 55

30

4.a) Rits (Zip) de onderstaande Leftist Heaps, zodat er weer een Leftist Heap
ontstaat.

40
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30

10

35

32

25

20

15

b) Verwijder het maximum uit de resulterende Leftist Heap.

5. Onderzoek hoe een AVL-boom gebruikt kan worden als Priority Queue.
Kun je iets zeggen over de complexiteit van de Priority Queue operaties?
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6 B-Trees
In binary search trees a node contains a single key, and the left and right subtrees
have keys that are less and larger than the key in the node (respectively). This
can be generalized to multi-way search trees with nodes that have a sequence of
several keys, say ℓ keys K1,K2, . . . ,Kℓ, and ℓ+1 subtrees T0,T1, . . .Tℓ at that node
such that Ki is larger than the keys in Ti−1 while it is less than the keys in Ti, for
0 < i < ℓ.

K

T0 T1
T0 T1 T2 Tℓ

K1 K2 . . . Kℓ

T0 < K1 < T1 < · · ·< Kℓ < Tℓ

6.1 B-Trees
Nodes with a large number of keys are preferred when the search tree is stored
on disk. Obtaining new data from disk is several orders of magnitude slower
than from internal memory. This means that the number of disk reads should be
minimized: getting a node with a single key at each step is slowing down the
process. Thus trees are considered with a larger number of keys at each node.

Definition 6.1. A B-tree of order m is a multi-way search tree such that

• every node has at most m children (contains at most m−1 keys),

• every node (other than the root) has at least ⌈m
2 ⌉ children

(contains at least ⌈m
2 ⌉−1 keys),

• the root contains at least one key, and

• all leaves are on the same level of the tree.

This means that there is a strict depth restriction on the B-tree, every path from
root to leaf has the same length. On the other hand, the number of keys per node
may vary by a factor of two, for flexibility.
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Example 6.2. In a B-tree of order 3, the number of children in a node may vary
between 2 and 3, and the number of keys either is 1 or 2. There is no restriction
for the root. Here is an example of such a tree with eight nodes on three levels.

A D E H J K N O

C I M

G

In a B-tree of order 5, the number of children in a node may vary between 3
and 5, so the number of keys is between 2 and 4, except for the root.

3 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 67 71 75 79 83

13 29 41 49 69 77

61

♢

Adding Keys. The algorithm to add a key to a B-tree can be summarized as
follows. The example below will illustrate the various cases.

• Always add the new key to a leaf which is found by following the path from
the root determined by the keys at the internal nodes. If the key can be fitted
into the leaf without exceeding the maximal capacity we are done.

• When that leaf is already at its maximal capacity, the key is added but the
leaf is split into two leaves; the middle key is moved to the parent to serve as
a separator between the leaves. If the parent already is at maximal capacity
we repeat and split there.

• Eventually splits can reach the root. We then obtain a new root with a single
key and two children (which are formed when splitting the old root).

Example 6.3. We store a sequence of numbers (10, 20, 40, 30, 50, 25, 42, 44, 41,
32, 38, 56, 34, 58, 60, 52, 54 and 46, in that order) in an initially empty B-tree of
order 5. Each node (except the root) must hold at least 2 keys, and each node may
hold at most 4 keys.
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After adding the first four keys 10, 20, 40, 30 the tree consists of a single root,
which is now full. Adding the fifth key 50 means we have to split the five keys
into two new nodes, and promote the middle key 30 one level up, to become the
new root.

10 20 30 40
+50

10 20
30

40 50

max 4 keys

10 20 40 50

30

The next three keys 25, 42, 44 can be added in the leaves. The next key 41
arrives in a leaf which already contains four keys, the leaf splits, and its middle
key 42 moves one level up to the root. The root contains two keys, and we have
three leaves below the root.

12 20 25 40 41 42 44 50

30

10 20 25 40 41 44 50

30 42

We now add four keys 32,38,56 and 34 where the last key causes a split of the
middle leaf.

10 20 25 32 38 40 41 44 50 56

30 42

+34

10 20 25 32 34 38 40 41

max 4 keys

44 50 56

30 42

10 20 25 32 34 40 41 44 50 56

30 38 42

Now add two keys 58,60 which both end up in the rightmost leaf. With five
keys 44 50 56 58 60 it has to split. The middle key 56 moves to the parent (the
root).
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10 20 25 32 34 40 41 44 50 58 60

30 38 42 56

The two keys 52,54 are added, ending up in the same leaf 44 50 52 54 . Adding
yet another key 46 destined to that leaf causes it to split. Middle key 50 moves up
to the parent which already is at maximal capacity and splits too, yielding a new
root 42 .

10 20 25 32 34 40 41 44 46 50 52 54 58 60

30 38 42 56

10 20 25 32 34 40 41 44 46 52 54 58 60

30 38 42 50 56

10 20 25 32 34 40 41 44 46 52 54 58 60

30 38 50 56

42

♢

Variations. ⊠ The B-tree has keys and (links to) data at every level of the tree.
A B+-tree has only keys in its internal nodes, no data, to find the proper leaves.
At the leaves all keys are stored together with the data (directly or via a pointer).
This means that some keys are present in both the internal nodes and the leaves.
Additionally the leaves in the B+-tree are usually linked as a linear list so that the
data can easily be accessed in sequential order.

10
×

20
×

25
×

32
×

34
×

40
×

41
×

44
×

46
×

52
×

54
×

58
×

60
×

32 40 52 58

44

There is also the B*-tree in which the nodes are 2/3 full instead of 1/2, by
stronger balancing. It turns out that deletion is much more complicated that way.
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6.2 Deleting Keys
In short:

• For non-leaves: swap key with predecessor (key moves to a leaf)
• If below minimal capacity, get key from sibling with surplus, via parent.
• If no siblings with surplus: merge with sibling and get separating key from

parent. Recurse with parent.
• Due to recursion, deletion may reach the root, and can collapse a level.

When deleting a key from a B-tree we restrict ourselves to leaves. For keys in
an other position we use a trick also used for binary trees: locate the predecessor
of the key and copy that to the key to be deleted. Now we may delete the original
copy of the predecessor, which is located in a leaf.

When deleting a key from a leaf we consider several cases. If, after removing
the key the leaf still contains enough keys, we can stop. Otherwise, if the contents
of the leaf drop below the minimal threshold, we first investigate whether one of
the immediate siblings has and surplus key that can be moved to the leaf. If this is
possible we can solve the deletion by moving the key. We must take care however:
the key is first moved to the parent in the position between the sibling and target
leaf and then the key originally at the parent moves to the leaf.

Example 6.4. We start with the tree fragment below (left) and we will discuss
deletion of each of the three keys indicated by a red circle.
(1) When deleting 45 we delete its predecessor 42 instead, after copying it to the
position of 45 (left & middle). The predecessor is at a leaf, where the actual
deletion starts.
(2) Deletion of 25 is done by just removing the key in the leaf. There are enough
remaining keys in the node.
(3) Deletion of 32 (in the original tree to the left) will leave a leaf with just a
single key. Its sibling to the left has three keys, one of which can be moved via
their common parent (left & right).

10 20 25 32 34 40 41 42

30 38

45

40 41 ×

30 38

42

10 20 × 30 34 40 41 42

25 38

45

♢
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Finally, if the leaf has not enough keys left and is unable to obtain a key from
a sibling we merge the leaf with that sibling. Note we also have to move the key
in the parent between the leaves: as the parent looses a child it also has to reduce
by one key. Now the parent has one key less, which means it can drop below
minimum. In that case repeat at that level: try to move from a sibling, otherwise
merge. Eventually we may loose one level when the two only children of the root
are merged.

Example 6.5. When deleting 41 we cannot move a key from a sibling. Hence we
merge the two leaves. Unfortunately the parent now is left with just a single key.
We iterate one level up where we again have two merge two nodes into a new root.

10 20 25 32 34 40

underfull:
merge brother

41
×

30 38

42

10 20 25 32 34 38 40

30

underfull:
merge brother

× 50 56

42

new root 30 42 50 56

♢

References. R. BAYER, E. MCCREIGHT: Organization and Maintenance of Large
Ordered Indexes, Acta Informatica 1 (1972) 173–189. doi:10.1007/bf00288683

See DROZDEK Section 7.1: The Family of B-Trees

See WEISS Section 4.7: B Trees

6.3 Red-Black Trees
We focus on B-trees with m = 4. These have 1 to 3 keys in each of their nodes
and 2 to 4 children, and are called 2–4-trees. In this section we study a represen-
tation of those trees as binary search trees. Additionally they will have a balanced
behaviour, like the B-trees themselves.
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Example 6.6. We show a 2–4-tree and its representation as binary search tree.
Nodes that are originating from the same B-node are grouped, by ‘horizontal’
edges. Such trees are called VH-trees. As a third figure the red-black representa-
tion of the same configuration. Red nodes are “dependent” of their black parents,
and belong to the same B-node.

20 37 40 41 44 50

30 42 4230

20 4037 41 44 50

42

30

20 40

37 41

44

50

VH-trees and red-black trees are very similar. In VH-trees there are two types
of edges, in red-black trees two types of nodes.

♢

Implementation. The property of being a red node can be coded in the node
itself, but also in its parent, where we can store the colour for each of the children.
This is somewhat logical as the node may want to know whether the children
belong to the same B-node.

For nodes with 4,3,2 keys we have a simple correspondence to red-black trees
as in the diagram below. For a B-node with two keys we have a choice with a red
child to the left or to the right.

a b c

b

a c

a b

b

a

a

b

a

a

Definition 6.7. A red-black tree is a

• binary search tree

such that each node is either black or red, where

• the root is black,
• no red node is the child of another red node,
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• the number of black nodes on each path from root to extended leaf (NIL-
pointers) is the same.

Example 6.8. The first two trees shown are red-black trees: all paths from root to
leaf contain exactly two black nodes. The third tree is not red-black: the path that
ends at the left (nil-)child of node 44 has only one black node, unlike the other
paths.

42

30

20 40

37 41

44

50

40

30 42

20 37 41 44

35 50

42

30

20 40

37 41

44

50

It can be shown that every AVL-tree, and in particular the Fibonacci trees, can
be red-black coloured. See Opgaven.

♢

Inserting a key to a red-black tree. Like in any binary search tree we add
the new key as a leaf in the proper position of the tree. That leaf must be red,
as otherwise we will destroy the property that all paths to leaves have the same
number of black nodes. On the other hand, the parent of the new red node may
also be red. We show how to remedy that.

When a node x and its parent p are both red we first look at the uncle u which
is the brother of the parent. The uncle may very well be an extended leaf, in wich
case we consider it to be black.

• If the uncle is red, perform a flag-flip. Parent and uncle become black,
grandparent becomes red. This will not effect the number of black nodes on
paths from root to extended leaf, so locally solves the problem. However
we have to check at the grandparent what is the colour of its parent, and
repeat the procedure.

• If the uncle is black, perform a rotation, locally restructuring the tree. As
with AVL trees we distinguish LL, LR etc cases leading to single or double
rotations, either to the left or to the right. We can stop. Observe the uncle
u is not involved in the operation, except as part of the subtrees involved in
the rotation.

Below a flag-flip and a single rotation to the right.
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red uncle

g

p u

x

flag flip
=⇒

g

p u

x

black uncle

g

p u

x

rotation
=⇒

p

x g

u

• If the root has been coloured red, make it black.

The rotations to restructure red-red conflicts (with black uncle) are just the
classical binary tree rotations that preserve the search tree order. Likewise we can
have single or double rotations (in both directions). Note the rotation also chooses
proper new colours. The new root will be black, the two children will be red.

42

30

20

30

20 42

42

30

40

40

30 42

Example 6.9. We add 35 to the red-black tree from Example 6.6, as a red leaf,
left child of 37 which itself is red. Uncle 41 is also red, so we perform flag-flip.
The newly red coloured node 40 is the child of red 30. Uncle 44 is black. We
restructure by rotation at 40 (double, to the right) with the recolouring of the three
nodes involved. Done.

42

30

20 40

37 41

44

50

35
new

42

30

20 40

37 41

44

50

35

40

30 42

20 37 41 44

35 50

It is worthwhile to draw the same trees, but now as B-trees.
♢
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Example 6.10. From the introductory comments in stl_tree.h for the GNU C++
Library.

“Red-black tree class, designed for use in implementing STL associative contain-
ers (set, multiset, map, and multimap). The insertion and deletion algorithms
are based on those in Cormen, Leiserson, and Rivest, Introduction to Algorithms
(MIT Press, 1990), except that . . . ”

The Linux kernel seems to be full of red-black trees.

“There are a number of red-black trees in use in the kernel. The anticipatory,
deadline, and CFQ I/O schedulers all employ rbtrees to track requests; the packet
CD/DVD driver does the same. The high-resolution timer code uses an rbtree to
organize outstanding timer requests. The ext3 filesystem tracks directory entries
in a red-black tree. Virtual memory areas (VMAs) are tracked with red-black
trees, as are epoll file descriptors, cryptographic keys, and network packets in the
‘hierarchical token bucket’ scheduler.” lwn.net/Articles/184495/

♢

Final remarks. ⊠ Red-black trees are considered to originate from the sym-
metric binary B-trees proposed by Bayer, one of the inventors of the B-tree. They
were developed by Guibas and Sedgewick.

Implementations sometimes use a parent pointer to locate the parent when
updating the tree, but other implementations are recursive, where the updates can
be performed on the way up.

Sedewick now advocates left-leaning red-black trees, where a single red child
can only occur at the left. (Two red children are OK.) Such trees are more re-
strictive, which may lead to less cases to consider. Others argue that because the
asymmetry the code will become more complex. Also studied are AA-trees, where
a red node can only be at the right. They form an implementation for 2–3 trees
(with one or two keys in a node).

References. R. BAYER: Symmetric binary B-Trees: Data structure and maintenance
algorithms, Acta Informatica (1972) 290–306. doi:10.1007/BF00289509

L.J. GUIBAS, R. SEDGEWICK: A Dichromatic Framework for Balanced Trees, Proceed-
ings of the 19th Annual Symposium on Foundations of Computer Science (1978) 8–21.
doi:10.1109/SFCS.1978.3

See CLRS Chapter 13: Red-Black Trees

See DROZDEK Section 7.1.8: 2-4 Trees

See WEISS Section 12.2: Red-Black Trees
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R. RAMAKRISHNAN, J. GEHRKE: Database Management Systems, Ch10: Tree indexes
(Lecture Databases)
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Opgaven
1.a) Wat is het maximale en minimale aantal sleutels dat geplaatst kan worden

in een B-boom van orde m en drie nivo’s diep?

Beschouw de volgende B-boom B van orde 5:

3 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 67 71 75 79 83

13 29 41 49 69 77

61

Zorg ervoor dat we bij het toevoegen en verwijderen steeds een B-boom van
orde 5 behouden. Geef een korte toelichting en (zo nodig) tussenresultaten.
Ongewijzigde delen van de boom kunnen schematisch worden aangegeven.

b) (i) Voeg aan B de sleutel 24 toe.

(ii) Voeg aan B (de originele boom dus) de sleutel 50 toe.

c) Verwijder de sleutel 77 uit B (alweer de originele boom). Mrt 2016

2.a) Wat zijn de definiërende eigenschappen van de rood-zwart boom (red-black
tree)?

b) Gegeven is de volgende rood-zwart boom, waarbij ‘rode’ knopen een (rode)
cirkel hebben gekregen.

20

10

5 15

35

30

25

45

40 50

Welke boom ontstaat als we hieraan toevoegen

(i) eerst 55 en vervolgens 7.

(ii) eerst 7 en vervolgens 55.

Benoem de achtereenvolgende operaties en geef relevante tussenresultaten.

Jan 2017

3. Volg de suggestie uit Example 6.9, en vertaal het voorbeeld naar 2-4-bomen.
Waarmee correspondeert een flag-flip?
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4. Consider the (Fibonacci) tree in the diagram below, where node values in-
dicate the ordinary height of the subtree. Colour the nodes to obtain a red-
black tree; indicate the black height for each black node.

1

3

2

1

5

2

1

4

1

3

2

1
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7 Graphs

7.1 Representation
A graph G = (V,E)) consists of a set V of vertices (or nodes) and a set E of edges
(or arcs, lines). We distinguish between directed and undirected graphs. Standard
representations are the adjacency matrix and the adjacency lists. If we want to
easily query the existence of an edge (u,v) ∈ E, then the matrix is efficient. If we
need to check all outgoing edges of a given vertex, then the lists work well.

If the graph contains n vertices and e edges, the size of its adjacency matrix
equals O(n2) while the adjacency lists representations uses space O(n+e). Recall
that e is at most n2, or n(n−1)

2 for undirected graphs.
Note that these standard representations need not always be the best choice.

In Example 7.5 we have a kind of rectangular map where each vertex has at most
four neighbours. In that case each vertex can be represented implicitly by a pair
of coordinates (implicit meaning that we do not directly associate objects to the
vertices) and the existence of horizontal and vertical edges can be written in an
array (which is different from the adjacency matrix!).

Example 7.1. A directed graph.
1

2 3 4

56

7

Left: the adjacency matrix of the above graph, where in order to preserve legibility
the dots are used to indicate zero’s. Right: the corresponding adjacency lists.



1 2 3 4 5 6 7
1 · 1 · · · 1 ·
2 · · 1 · · · ·
3 · · · · 1 1 1
4 · · · · · · ·
5 · · · 1 · 1 ·
6 1 · · · · · 1
7 1 · · · · · ·



1
2
3
4
5
6
7

2 6
3
5 6 7

4 6
1 7
1

♢
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7.2 Graph traversal
Graph traversals are techniques to visit the nodes of a graph. Depth-first search
and breadth-first search generalize the tree traversals pre-order and level-order,
using a stack and a queue, respectively. As graphs may contain cycles, we have to
take care that the traversals do not end in an infinite loop. This is done by marking
nodes as visited.

Depth-first search

With depth-first search (DFS) we try to move forward along a path as much as
possible, storing the unvisited neighbors on a stack. When reaching a dead-end
(or already visited nodes) the algorithm back-tracks and pops a node from the
stack.

Recursive DFS

DFS(v)
visit(v)
mark(v)
for each w adjacent to v
do if w is not marked

thenDFS(w)
fi

od
end // DFS

Iterative DFS

// start with unmarked nodes
S.push(init)
while S is not empty
do v = S.pop()

if v is not marked
thenmark v

for each edge from v to w
do if w is unmarked

thenS.push(w)
fi

od
fi

od

The algorithm implicitly builds a DFS-tree: when we pop and visit a vertex
w that was pushed on the stack at the time v was visited we actually follow edge
(v,w), which is part of the tree. It can be the case that during a traversal a vertex
is “seen” at several moments from different neighbours. It is pushed to the stack
each time, as it is the nature of depth-first to back-track from the last time we have
seen the vertex5.

There is no unique DFS tree: its structure will depend on the order in which
the adjacent nodes are processed at each node.

The (directed) graph may not be strongly connected and the DFS when started
at a vertex will not visit all the vertices. Therefore, in general, we start the DFS at
all vertices in succession. This can be done by pushing all vertices on the stack.

The edges in the original (directed) graph are categorized into four types based
on the DFS. Tree edges belong to the DFS-tree; forward edges point to successors

5Marking vertices when they are added to the stack, and not adding marked vertices yields a
valid graph traversal algorithm. It does not have the structure of depth-first.
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in the tree, while back edges point to predecessors; finally cross edges point to
vertices in another subtree (which was searched earlier).

For undirected graphs there is no distiction between forward and back edges.
Also, cross adges cannot exist: an edge connecting two subtrees would be tra-
versed by the algorithm to visit that subtree.

1

2

3

4

5

6

7

forward back
cross

1

2

3

4

5

6

7

back

Example 7.2. We perform a DFS on the given graph, starting at vertex a. When
giving the stack the leftmost vertex is at the top of the stack. Vertices have their
parents (at the time they were pushed) as a superscript. This helps to reconstruct
the spanning tree of the traversal.

push initial a a
pop a visit and mark push adjacent b,e,c ( reverse order) ba,ea,ca

pop b visit and mark push adjacent g,e gb,eb,ea,ca

pop g visit and mark no children eb,ea,ca

pop e visit and mark adjacent b is marked/visited, not pushed ea,ca

pop e marked, already visited ca

pop c visit and mark push adjacent f f c

pop f visit and mark push adjacent d d f

pop d visit and mark adjacent e,d are already marked
empty stack done

b
a

c

e
d

f

g

b2
a1

c 5

e4
d
7 f 6

g3
forward

back

back

cross

The DFS tree is not unique. It depends on the order in which the successors of
a node are pushed on the stack. In our current example we might start with node
c after the initial a, then the DFS tree would look as follows.
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b
a

c

e
d

f

g

b6
a1

c 2

e5
d
4 f 3

g7
back

forward

forward back

♢

Two important applications of DFS are topological ordering and structural
properties like connectedness in the graph. An example of the latter is the detec-
tion of nodes the deletion of which will split the graph.

Articulation points. We present an application of depth-first traversal of a graph.
The articulation points (or cut points) of an undirected graph are those vertices
that removing one of them them (with their incident edges) will increase the num-
ber of components of the graph.

The articulation points can be found using the depth-first tree of the graph. We
use the following characterization.

Lemma 7.3. A vertex v is an articulation point if either

• v is the root, and has two or more children, or
• v has a (strict) subtree, and no node in the subtree has a back edge that

reaches above v.

Example 7.4. An undirected graph and its DFS tree. The articulation points
are marked in red. Cutting for example 10 from the graph will separate nodes
11,12,13 from the rest of the graph.

Consider vertex 3. Its right subtree in DFS (with root 8) has a successor 10
with a back edge to 2 which is above 3. Its left subtree in DFS (with root 4)
however, has no successors with a back edge jumping above 3.

1
2

3

45

6 7 8

9

10

11

12

13 1
2

3

43

53

63

73

81

9 10 1

11
12

13
♢
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Breadth-first search

Breadth-first search BFS visits all vertices in “concentric circles” around the initial
vertex. Thus the vertices are selected based on their distance from the initial
vertex.

We can change the moment vertices are marked. Vertices that are rediscovered
later do not have priority over earlier discoveries. Hence we can mark vertices as
soon they are found and put in the queue.

Iterative BFS

// Q is a queue of vertices
// start with unmarked nodes

Q.enqueue(init)
dist[init] = 0
while Q is not empty
do v = Q.dequeue()

newdist = dist[v] + 1
for all edges from v to w
do if w is not marked

thenQ.enqueue(w)
mark w
dist[w] = newdist

fi
od

od

Example 7.5. Various tasks, like “flood-fill” (colouring pixels in a closed area)
and robot motion planning can be seen as the application of breadth-first search
on (implicit) graphs. The graphs are not always explicitly specified, e.g., vertices
may be pixels or ‘tiles’ in a map, and edges indicate their neighbour relation.

In the picture below a graph with one marked node and other nodes with their
‘breadth-first’ distance to the marked node over the allowed edges.

4

3

4

3

2

1

2

5

4

5

4

3

2

3

6

5

6

5

4

3

4

7

6

7

6

5

4

5

8

7

8

7

6

5

6

9

8

9

8

7

6

7

10

9

10

9

8

7

8

0 1

1 2

2 3

Note that this ‘graph’ can be represented by matrices representing horizontal
and vertical edges:
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H =



1 1 1 1 1 1
1 1 1 1 1 1
1 0 1 1 1 1
1 0 1 1 1 1
1 0 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1


V =



1 1 1 1 1 1 1
1 1 1 1 1 0 0
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 0 0 1 1 1
1 1 1 1 1 1 1


♢

References. J. HOPCROFT, R. TARJAN: Algorithm 447: efficient algorithms for graph
manipulation. Communications of the ACM 16 (1973) 372–378, doi:10.1145/362248.362272.
(describes an algorithm for biconnected components, which uses articulation points)

See DROZDEK Chapter 8.2: Graph Traversals; 8.6: Connectivity

See WEISS Chapter 9.6: Applications of Depth-First Search

7.3 Disjoint Sets, ADT Union-Find
The data structure for disjoint sets is equipped for keeping track the connected
components in an undirected graph while adding edges. Initially no vertices are
connected, so each vertex is a component in itself. When an edge is added between
two different components, the two are joined, UNION. Another operation FIND

is able to retrieve the component in which a vertex belongs. In this way it can be
checked whether or not two vertices belong to the same component. To make this
possible we assign to each component a “name” which usually is a representative
vertex in the component.

As the relative ordering of elements is irrelevant, it is customary to consider
a domain D = {1,2, . . . ,n} of vertices. The components form a partition of the
domain.

• INITIALIZE: construct the initial partition; each component consists of a
singleton set {d}, with d ∈ D.

• FIND: retrieves the name of the component, i.e, Find(u) = Find(v) iff u
and v belong to the same set in the partition.

• UNION: given two elements u and v the sets they belong to are merged. Has
no effects when u and v already belong to the same set.
Usually it is assumed that u,v are representatives, i.e., names of compo-
nents, not arbitrary elements.
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Example 7.6. We want to find a spanning tree of a graph, by repeating the follow-
ing step. Start with an empty forest. Take an edge in the graph. Check whether
an edge can be added to the forest without causing a cycle. When this is possible
add the edge, and continue with the new forest.

In the graph below, the forest connects three components. The edge (6,10)
is within one of these components and cannot be added as it would form a cycle.
Edge (1,5) connects two different components and can be added.

1 2

3

4 5

6 7

8

910
?

?

Let D= {1,2, . . . ,10}. Then {{1,3,4},{6,7,9,10},{2,5,8}} is a partition for
D in three sets. The names (representing elements) of each set are underlined.

Thus Find(6) = 9 = Find(10), indicating 6 and 10 belong to the same set. At
the same time Find(3) = 1 ̸= 5 = Find(5), indicating 3 and 5 do not belong to the
same set.

Now Union(1,5) will result in the partition {{1,2,3,4,5,8},{6,7,9,10}},
with some assignment of representing elements.

♢

Linked lists. In the naive approach we keep an array which lists for each vertex
the set it belongs to. Obviously this gives a very efficient FIND operation. For
UNION we have to rename the representative x for one of the sets into the repre-
sentative y of the other. Without further bookkeeping we have to loop over the full
array, and at each position check for x.

Thus, the complexity for each operation: FIND O(1), and UNION O(n) time.

1 2 3 4 5 6 7 8 9 10
1 5 1 1 5 9 9 5 9 9 find

UNION(9,5)
1 2 3 4 5 6 7 8 9 10
1 9 1 1 9 9 9 9 9 9 find

By adding a linked list for each of the sets in the partition we do not have to
look at every position. We can perform a faster renaming, by iterating over the
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shortest list. Joining lists can be done in constant time (e.g., if we keep a circular
list).

Now the worst case total complexity of n UNION operations is O(n log(n)).
Worst case builds lists of size 2,4,8, etc.. Each FIND is performed in constant
time.

Example 7.7. Start with a collection of ten objects. The lists are chained via the
next field. Recall Example 1.2. The initial configuration starts thus.

1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10 find
1 2 3 4 5 6 7 8 9 10 next
1 1 1 1 1 1 1 1 1 1 size

After Union(1,3), Union(9,10), Union(5,8), and Union(6,7) the arrays look as
follows. Dots indicate don’t cares: size is only important for representative names.

1 2 3 4 5 6 7 8 9 10
1 2 1 4 5 6 6 5 9 9 find
3 2 1 4 8 7 6 5 10 9 next
2 1 . 1 2 2 . . 2 . size

Then Union(9,6) relabels all elements from the list of 6 to 9, the new name of the
combined set, and joins the two lists.

1 2 3 4 5 6 7 8 9 10
1 2 1 4 5 9 9 5 9 9 find
3 2 1 4 8 10 6 5 7 9 next
2 1 . 1 2 . . . 4 . size

♢

References. See DROZDEK Chapter 8.4.1: Union-Find Problem

Inverted trees. The operation Union can be improved, at the cost of Find, by
representing the sets, by upside-down trees. The root of such a tree is the name of
the set. Union can be performed in constant time by adding a simple link. In order
to optimize Find we can store the heights of the trees, so choose which tree to join
to the other. The trees can be represented by a simple array indicating the parent
for each node. The root of a node either points to itself (or to a special value).

Example 7.8. After Union(1,3), Union(9,10), Union(5,8), Union(6,7) and Union(6,9)
the arrays look as follows.

1 2 3 4 5 6 7 8 9 10
1 2 1 4 5 9 6 5 9 9 parent
2 1 . 1 2 . . . 3 . height
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♢

Path compression. Now Find will take several steps to locate the root of the
tree. Luckily the worst case tree has an height logarithmic in the number of nodes.
Assuming that the same node is searched several times we can improve the com-
plexity of Find. When we have located a root-node, revisit the path and set all
parents along the path to the root we have just found. This will double the number
of steps, which does not change the order of complexity, but in subsequent Finds’s
to the same node we find the root in constant time.

Here is a schematic picture for UNION(v,w) and for FIND(v) before and af-
ter the operation, see Slide 18. All nodes along the path benefit from the Find
operation, as well as their subtrees.

The height values of the trees after path compression do not always match the
new trees, but this turns out to be not a real problem.

It can be shown that the complexity of any sequence of n Union and Find op-
erations is ‘almost linear’ in a mathematically well defined sense. The complexity
is α(n) · n, where the extra factor α(n) is the inverse of the Ackerman function.
This function grows very slow: for all practical purposes α(n)≤ 5.

References. B.A. GALLER, M.J. FISCHER: An improved equivalence algorithm. Com-
munications of the ACM 7 (1964) 301–303, doi:10.1145/364099.364331. The paper orig-
inating disjoint-set forests.

See CLRS Chapter 21: Data Structures for Disjoint Sets

See WEISS Chapter 8: The Disjoint Sets Class

On cstheory.stackexchange there is a poll to vote for the “Algorithms from the Book”, a
collection of the most elegant algorithms. Union-Find is in first place, presently with 125
votes, just beating runner-up Knuth-Morris-Pratt with 116 votes. (accessed 9-9-2024)
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Slide 18 Union-Find. Left diagram: UNION(v,w). Middle and right: FIND(v)
with path compression (before and after).
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7.4 Minimal Spanning Trees
A minimal spanning tree in a undirected weighted graph is a tree connecting all
the vertices in such a way that the total weight of the vertices is minimal consid-
ering all spanning trees. We consider two greedy algorithms for finding minimal
spanning trees in graphs: Prim and Kruskal.

Example 7.9. An (undirected) graph and a minimal spanning tree.
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♢

Kruskal’s algorithm

The algorithm of Kruskal considers edges sorted on their weight one by one and
adds them to the constructed spanning tree as far as they do not lead to a cycle
with the already chosen edges. The basic difficulty is checking whether the next
edge added will cause a cycle. An important data structure for keeping track of
the different components in a dynamically growing graph is Union-Find, which
was the topic of Section 7.3 above.

Kruskal (high level)

start with forest without edges
repeat

consider edge with smallest weight
if it does not yield a cycle
thenadd it to the forest
else discard the edge
fi

until no edges left

Prim’s algorithm

Unlike the algorithm of Kruskal, the algorithm of Prim forms a tree in every stage.
New edges always have one end inside the current tree, and one end outside.
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Prim (high level)

start with single node
repeat

consider edge with smallest weight
connecting node in tree with one outside

add new node+edge to the tree
until all nodes in tree

Note however, that if v is a vertex outside the partial spanning tree T , and both
u1 and u2 are vertices inside the tree, then not both (u1,v) and (u2,v) are part of the
final spanning tree: adding both will cause a cycle. This means that we can save
on the efforts needed to select edges. For each vertex outside of the tree we have
to store at most one incident edge, the one of minimal weight. Now rather than
to find the minimal edge among all edges, we look for one edge among all edges
associated to the remaining vertices. That saves work, as there are less vertices
than there are edges.

In the algorithm below, the edge associated with node v is defined by the other
side of the edge, node parent[v]. The length of that edge is cost[v].

Prim

cost[source] = 0 // infinite for other vertices
parent[source] = 0 // code for the root
PQ = V // all vertices
while PQ is not empty
do u is vertex in PQ with minimal cost[u]

remove u from PQ
for each edge (u,v)
do if length(u,v) < cost[v]

thencost[v] = length(u,v)
parent[v] = u

fi
od

od

Example 7.10. Minimal spanning tree, comparing Kruskal (top) and Prim (bot-
tom) algorithms. Zie Algoritmiek.
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Slide 19 Keeping the best ‘incoming’ connection to nodes outside the tree. Left:
Prim choosing minimal weight edges. For node v the optimal connection is from
u1 with cost 4. Right: Dijkstra: minimal distance includes the path from source
to the node. The optimal connection to node v is via u1, as the total distance
12+7 < 16+4.
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Slide 20 Node u just has been added to tree. Updating adjacent nodes outside
tree. Left: Prim. For v1 the previous best connection is from ‘parent’ p1. The new
connection via u does not improve this, as 7 ̸< 4. Right: Dijkstra. The distance to
u has been fixed to 12. The best path to v1 until now is via parent p1 and has length
20 = 16+4. The new connection via u has length 19 = 12+7 and improves the
previous path. The parent for v1 will now be set to u.
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♢

Correctness. The Prim algorithm constructs a set of successive trees T1 ⊆ T2 ⊆
·· · ⊆ Tn by adding in each step a vertex with an incident edge, where Ti contains i
vertices, and n is the number of vertices in the given graph. We show that in each
step there is a minimal spanning tree T such that Ti ⊆ T .

This is true for T1, as that tree has no edges we can start choosing T1 to be any
mst of the graph.

Assume that in Ti we choose an edge e. If e is also in T we proceed. Otherwise,
if e is not in T we construct a new ‘goal’ tree of the same total weight, so it also is
minimal. Adding edge e to T we must find a cycle. Let X be the set of vertices of
Ti. As e has only one endpoint in X this cycle is partly within X and partly outside.
Follow the cycle, and look at the edge e′ where the cycle re-enters X . Note e′ was
not chosen by the algorithm, so weight(e′) ≥ weight(e). If we replace e′ by e in
T we again obtain a tree T ′, the weight of which is not larger than that of T , so it
must be minimal too. Our new goal for Prim is the tree T ′ and we proceed.

Implementation. For implementation and the resulting complexity of the algo-
rithm we refer to the section on Dijkstra below. The algorithms are structurally
similar.

Note that we repeatedly have to choose a minimal cost edge associated to the
vertices. That can be done by a linear search among those edges, or we can keep
the edges (or rather the vertices that are associated with the edges) in a min priority
queue. Note that we need to be able to perform the operation DECREASEKEY on
a vertex in the queue: when a new incident edge is found that is less costly than
the previous one, we have to update the cost.

Example 7.11. Both Prim and Kruskal are defined for undirected graphs. Here
we will see these algorithms cannot be extended to directed graphs in a simple
way. First note the directed problem only makes sense if we consider a node u,
and there actually exist spanning trees starting with u.

The algorithms of Prim and Kruskal make choices in a greedy way. Once the
choice is made, it will not be reconsidered. We show how this choice will go
wrong for certain directed examples.
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The left picture has three spanning trees, with weight 4+2, weight 6+1, and
weight 6+ 4. Kruskal will choose the lightest edge 1. Now, only one spanning
tree remains, not the best one.

The right picture has two spanning trees, with weight 6+2 and weight 6+4.
Starting with node u Prim will consider the two edges 4 and 6 and choose the
lightest one. Now, only one spanning tree remains, not the best one.

u

4

6

21

Kruskal fails

u

6

4

2

Prim fails

A solution for the directed spanning tree problem was given by Edmonds.
♢

References. J. EDMONDS: Optimum Branchings. J. Res. Nat. Bur. Standards 71B
(1967) 233–240, doi:10.6028/jres.071b.032

J.B. KRUSKAL: On the shortest spanning subtree of a graph and the traveling salesman
problem. Proceedings of the American Mathematical Society 7 (1956) 48–50. doi:10.1090/S0002-
9939-1956-0078686-7

R.C. PRIM: Shortest connection networks and some generalizations. Bell System Tech-
nical Journal 36 (November 1957) 1389–1401,
doi:10.1002/j.1538-7305.1957.tb01515

The algorithm was discovered and published much earlier, unfortunately in a less
accessible venue.
V. JARNÍK: O jistém problému minimálním. (Z dopisu panu O. Borůvkovi). Práce
moravské pří rodovědecké společnosti 6, (1930) 57–63. (in Czech: On a certain problem
of minimization, Proceedings of the Moravian Scientific Society.) doi:10338.dmlcz/500726

See CLRS Chapter 23.2: The Algorithms of Kruskal and Prim

See DROZDEK Chapter 8.5: Spanning Trees

See LEVITIN Chapter 9.1& 2: Prim’s & Kruskal’s Algorithm

See WEISS Chapter 9.5: Minimum Spanning Tree
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7.5 Shortest Paths
Dijkstra’s algorithm

Given a startnode source in a graph G with positive edge lengths we compute the
distances to all other nodes in the graph, together with the tree of shortest paths
starting from source. The tree of shortest distances is coded via the parents.

Dijkstra

dist[source] = 0 // infinite for other vertices
parent[source] = 0 // code for the root
Q = V // start with all vertices
while Q is not empty
do u is vertex in Q with minimal dist[u]

remove u from Q
for each edge (u,v)
do if dist[u] + length(u,v) < dist[v]

thendist[v] = dist[u] + length(u,v)
parent[v] = u

fi
od

od

Complexity. Let n = |V | and e = |E| be the number of vertices and of edges
of the graph, respectively. Initialization of the arrays costs O(n). There are n
iterations of the main loop where we find the minimal element (minimal dist). If
we have to look inside an array this will cost a total of O(n2). Then we look at all
outgoing edges from all vertices, which will cost O(e) assuming we use adjacency
lists, and O(n2) using adjacency matrix representation (for each edge). The total
complexity is O(n+n2 + e)⊆ O(n2).

We may improve on this by using a priority queue, in the form of a binary
heap, see Section 5.2, which allows the operation DECREASEKEY (dist < dist).
The number of heap operations totals at most n+e when each edge finds a shorter
distance. The complexity then equals O(e log(n)), which is better than O(n2) if
the number of edges is relatively small.

Clever implementations of a priority queue have O(log(n)) complexity for
DELETEMIN and constant time DECREASEKEY. This results in an overall com-
plexity of O(n+n log(n)+ e)⊆ O(n log(n)+ e).

list heap clever
initialize n n n

minimal dist n2 n· lgn n· lgn DeleteMin

each edge e e· lgn e DecreaseKey(!)

n2 e· lgn e+n· lgn
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Dijkstra (in this implementation) does not work when the graph has negative
edge-lengths. It assumes that the distance to a vertex never is found via another
vertex that has a larger distance.

Example 7.12. We start with source u1. The source has distance 0, are other
are ’infinite’. Dijkstra updates the distances to u2 and u3 to 5 and 7 respectively.
Minimal distance node now is u2 and Dijkstra fixes it at 5. Then last node u3 is
selected, distance is fixed at 7. The algorithms does not look at the edge (u3,u2)
which would shorten the distance to u2.

u1

u2

u3

5

7
−3

♢

Bottleneck paths. With a little thought Dijkstra’s algorithm can be changed to
another version of optimal paths, where we try to find the “widest path” to every
vertex (or the path with “maximum flow”). Here the value of an edge indicates
a restriction (maximal width, height, capacity) and the restriction along the path
is the minimum over the edges. Thus a path with edges 3,6,5 has bottleneck
max{3,6,5}= 3. We want to avoid the bottleneck, thus we look for the maximal
possible value over all paths. Whereas Dijkstra computes

dist[v] = max{ dist[v],dist[u]+ length(u,v) }

for the bottleneck variant we choose

bott[v] = max{ bott[v],min{bott[u],width(u,v)} }

when considering a new edge (u,v).

Example 7.13. An (undirected) graph and with initial vertex C. (Middle) A short-
est distance tree, and (Right) an optimal bottleneck tree. The values at the vertices
indicate final distances and bottleneck restrictions, respectively.
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References. E.W. DIJKSTRA: A note on two problems in connexion with graphs.
Numerische Mathematik 1 (1959) 269–271. doi:10.1007/BF01386390
D.B. JOHNSON: Efficient algorithms for shortest paths in sparse networks. Journal of
the ACM. 24 (1977) 1—13. doi:10.1145/321992.321993 for the implementation using a
heap
See LEVITIN Chapter 9.3: Dijkstra’s Algorithm
See WEISS Chapter 9.3.2: Dijkstra’s Algorithm

All-Pairs Shortest Paths

The problem of all-pairs shortest paths asks to determine a complete matrix of
distances between every pair of vertices. With a little care not only the distances,
but also the corresponding shortest paths themselves can be retrieved. As there are
n pairs of nodes we will not explicitly store all these paths, but enough information
to retrieve them.

Floyd-Warshall

// initially dist equals the adjacency matrix
for each edge (i,j)
do next[i,j] = j
od
for k from 1 to n
do for i from 1 to n

do for j from 1 to n
do if dist[i,k] + dist[k,j] < dist[i,j]

thendist[i,j] = dist[i,k] + dist[k,j]
next[i,j] = next[i,k]

fi
od

od
od

The algorithm of Floyd uses the technique of dynamic programming to com-
pute the shortest distances. With n vertices, we assume the vertices are the num-
bers 1, . . . ,n. For each k = 0,1, . . . ,n a matrix Ak of partial solutions is computed,
where Ak[i, j] denotes the distance from vertex i to vertex j using paths that do
not pass any vertex with number larger than k. In particular the paths for matrix
A0 do not pass any vertex, they can only be paths of a singe edge (i, j) (where no
vertices are passed). The algorithm then adds the vertices 1, . . . ,n one by one as
possible intermediate stops.

The node next(i, j) is the first node on the current shortest path from i to j.
When matrix Ak−1 has been determined we compute Ak. The shortest path

from i to j without using vertices k+ 1 or larger either uses vertex k or not. The
distance via k equals Ak−1[i,k]+Ak−1[k, j], while the distance that does not use k
already has been determined as Ak−1[i, j].
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Hence Ak[i, j] is the minimum of Ak−1[i, j] and Ak−1[i,k]+Ak−1[k, j].

k
new node

i j

next(i, j)

next(i,k) < k < k

< k

When a shorther distance is found, via the new node k, the first node next(i, j)
must be updated, it now lies on the segment from i to k.

Computations for Ak do not change the values at [k, j] or [i,k] in the matrix
Ak−1 so when implementing this algorithm we may in fact use only a single ma-
trix.

Example 7.14. We refer to Slide 21 for an example where the algorithm is applied
to a graph which has partially directed edges. The distance from 3 to 1 is computed
as 5 according to the final matrix. The actual path from 3 to 1: next(3,1) = 2:
this means the first edge is 3→ 2, and we have to resolve the remaining path from
2 to 1. Thus next(2,1) = 4, then next(4,1) = 1 (done), so 3→ 2→ 4→ 1.

♢

This algorithm is closely related to that defined by Warshall, which computes
the transitive closure T of a directed graph, i.e., a Boolean matrix for which T [i, j]
holds iff there is a path from i to j. We start with a Boolean matrix, an unweighted
adjacency matrix, and replace the operations min and + by ∨ and ∧.

The algorithm is also strongly related to Kleene’s algorithm to transform a
finite state automaton into a regular expression. The basic recursion there is
L(i, j) = L(i, j)+L(i,k) ·L(k,k)∗ ·L(k, j).

Warshall

// initially conn equals the adjacency matrix
// with additionally 1=true on the diagonal

for k from 1 to n
do for i from 1 to n

do for j from 1 to n
do conn[i,j] = conn[i,j] or ( conn[i,k] and conn[k,j] )
od

od
od
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Slide 21 Voorbeeld uitwerking Floyd, opgave uit het tentamen van maart 2017.
In de linkerkolom staan steeds de (op dat moment kortste) afstanden via knoop i,
achtereenvolgens i = 0, . . . ,4. Kijk dan steeds of die afstand een verbetering is,
resultaat in de middelste kolom. Gegeven zijn daarnaast de matrices next(i, j),
óók als er nog geen pad gevonden is.

1

2 3

4

4 1

2

−2

5
A0 =


1 2 3 4

1 0 4 1 ∞

2 4 0 2 5
3 ∞ 2 0 ∞

4 −2 5 ∞ 0



A0 =


1 2 3 4

1 . 4 1 ∞

2 4 . 2 5
3 ∞ 2 . ∞

4 −2 5 ∞ .




1 2 3 4
1 . 4 1 ∞

2 4 . 4+1 4+∞

3 ∞ ∞+4 . ∞+∞

4 −2 −2+4 −2+1 .




1 2 3 4
1 . 2 3 4
2 1 . 3 4
3 1 2 . 4
4 1 2 3 .



A1 =


1 2 3 4

1 . 4 1 ∞

2 4 . 2 5
3 ∞ 2 . ∞

4 −2 2 −1 .




1 2 3 4
1 . 4 4+2 4+5
2 4 . 2 5
3 2+4 2 . 2+5
4 2+4 2 2+2 .




1 2 3 4
1 . 2 3 4
2 1 . 3 4
3 1 2 . 4
4 1 1 1 .



A2 =


1 2 3 4

1 . 4 1 9
2 4 . 2 5
3 6 2 . 7
4 −2 2 −1 .




1 2 3 4
1 . 1+2 1 1+7
2 2+6 . 2 2+7
3 6 2 . 7
4 −1+6 −1+2 −1 .




1 2 3 4
1 . 2 3 2
2 1 . 3 4
3 2 2 . 2
4 1 1 1 .



A3 =


1 2 3 4

1 . 3 1 8
2 4 . 2 5
3 6 2 . 7
4 −2 1 −1 .




1 2 3 4
1 . 8+1 8−1 8
2 5−2 . 5−1 5
3 7−2 7+1 . 7
4 −2 1 −1 .




1 2 3 4
1 . 3 3 3
2 1 . 3 4
3 2 2 . 2
4 1 1 1 .



A4 =


1 2 3 4

1 . 3 1 8
2 3 . 2 5
3 5 2 . 7
4 −2 1 −1 .




1 2 3 4
1 . 3 3 3
2 4 . 3 4
3 2 2 . 2
4 1 1 1 .
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Example 7.15. ⊠ This is how Floyd’s algorithm was first presented. (From the
journal style guide: Algorithms should be in the Reference form of ALGOL 60 and written
in a style patterned after the most recent algorithms appearing in this department. For
the convenience of the printer, please underline words that are delimiters to appear in
boldface type.)

ALGORITHM 97 SHORTEST PATH
ROBERT W. FLOYD Armour Research Foundation, Chicago, Ill.

procedure shortest path (m,n); value n; integer n; array m;
comment Initially m[i, j] is the length of a direct link from point i of a network to point

j. If no direct link exists, m[i, j] is initially 1010. At completion, m[i, j] is the
length of the shortest path from i to j. If none exists, m[i, j] is 1010. Reference:
WARSHALL, S. A theorem on Boolean matrices. J ,ACM 9(1962), 11–12;

begin integer i, j, k; real inf, s; inf := 1010;
for i := 1 step 1 until n do
for j := 1 step 1 until n do
if m[j,i] < inf then
for k := 1 step 1 until n do
if m[i,k] < inf then
begin s:= m[j,i] + m[i,k];
if s < m[j,k] then m[j,k] := s;
end
end shortest path

♢
Although conceptually very simple, it is more efficient to compute the strongly

connected components of the graph to determine the connectivity between ver-
tices. Algorithms to do this are based on depth-first traversal of the graph.

References. ROBERT W. FLOYD. Algorithm 97: Shortest Path. Communications of
the ACM 5 (June 1962) 345. doi:10.1145/367766.368168
STEPHEN WARSHALL. A theorem on Boolean matrices. Journal of the ACM 9 (January
1962) 11–12. doi:10.1145/321105.321107
S.C. KLEENE. Representation of Events in Nerve Nets and Finite Automata. Automata
Studies, Annals of Math. Studies. vol. 34, Princeton Univ. Press. 1956, pages 3–
42. Kleene’s algorithm transforms a nondeterministic finite automaton into an equivalent
regular expression. It has the same (algebraic) structure as the Flod-Warshall algorithm.
See DROZDEK Chapter 8.3: Shortest Paths
See LEVITIN Chapter 8.4: Warshall’s and Floyd’s Algorithms
See WEISS Chapter 10.3.4: All-Pairs Shortest Path
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7.6 Topological Sort
Definition 7.16. Let G = (V,E) be a directed graph. A topological ordering [or
sort] of G is an ordering (v1, . . . ,vn) of V , such that if (vi,v j) ∈ E then i < j.

In technical terms the topological sort is a linear ordering that is compatible
with a partially ordered set. More informally it is an ordering on the nodes such
that all edges are from left to right.

Example 7.17. Topological sorts are usually not unique. The given graph has a
topological sort (1,2, . . . ,7,8) but also (2,1,4,6,3,5,8,7). And more.

1 2 3

4 5

6 7 8

1 2 3 4 5 6 7 8

12 34 56 78

♢

Clearly a graph that has a topological ordering cannot have cycles. The con-
verse is also true.

Theorem 7.18. Let G = (V,E) be a directed graph that has no cycles. Then G
has a topological ordering.

Proof. We start with an observation: G has a source, a node without incoming
edges. Assume to the contrary that G has no source, every node has an incoming
edge. Then following edges backwards we start a path, that eventually enters the
same node twice. Hence we found a cycle; a contradiction. Using this observation
we prove the theorem using induction. Take a source v of G. Then G−{v} is
also an acyclic directed graph. Hence by the induction hypothesis G−{v} has
a topological ordering (v1, . . . ,vn) of V −{v}. Writing v in front we obtain a
topological ordering (v,v1, . . . ,vn) for G: any edge involving v must be outgoing.
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A useful observation is that the proof above in fact gives an algorithm that
performs a topological sort. Find a source in the graph, write it as first element in
the topological ordering, delete its (outgoing) edges, and repeat. Wikipedia calls
this Kahn’s algorithm.

An efficient implementation does not really remove the edges. It iterates over
the edges (in an adjacency lists representation) and for each node counts the in-
coming edges. We keep a list of sources. Choose a source, and when deleting
it, look at its outgoing edges and decrease the count for the targets of the edges.
When the count drops to 0 add the vertex to the list of sources. This algorithm
considers every edge exactly twice, once when counting ingoing edges, a second
time when each edge is ‘removed’ with its source: linear time.

Example 7.19. Count incoming edges in Example 7.17. The sources are kept in
a list. Repeatedly remove a source and update counts and add new sources to the
list.

1 2 3 4 5 6 7 8 sources remove
0 0 0 2 2 2 2 2 1,2,3 1

0 0 1 1 1 2 2 2,3 2
0 0 1 1 2 2 4,3 4
0 1 0 1 1 6,3 6
0 1 1 1 3 3

0 1 0 5,8 5
0 0 7,8 7

0 8 8
♢

Another approach to find topological orderings is to use depth first-search. The
ordering is found as the reverse post-order of the DFS spanning tree (or better,
forest). When a node is popped in DFS no further descendants of the node are
found, so all edges are to a node with lower DFS number.
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Example 7.20. DFS applied to the graph of Example 7.17. For example, node
7 is the first node found to have no decendants, and is the last in the topological
order.

11,6
pre,post

27,7 38,8

44,5 52,2

65,3 73,1 86,4

1
6

2
7

3
8

4
5

5
2

6
3

7
1

8
4

11,6 27,7 38,8

44,552,2

65,373,1 86,4

♢

References. ARTHUR B. KAHN. Topological sorting of large networks. Communica-
tions of the ACM 5 (1962) 558–562. doi:10.1145/368996.369025

See CLRS Chapter 22.4: Topological Sort

See DROZDEK Chapter 8.7: Topological Sort

138

http://dx.doi.org/10.1145/368996.369025


Maximum flow ⊠
Er zijn nog veel andere problemen die geformuleerd kunnen worden voor grafen.
Een belangrijk voorbeeld is het maximum flow problem. Hier geven de gewichten
de capaciteit van verbindigen weer, en de vraag is hoe we zoveel mogelijk kunnen
laten stromen tussen twee gegeven knopen in de graaf, waarbij de capaciteiten
gerespecteerd worden. Een flow heeft ook de eigenschap dat de totale flow (in-
gaand min uitgaand) in elke knoop nul is, behalve in de source en sink (net als
Kirchhoff’s law).

Een vroeg algoritme daarvoor is van Ford en Fulkerson. Het idee is dat her-
haald een pad in de graaf gezocht wordt waarlangs nog extra capaciteit bestaat.
Dit is een augmenting path. Een probleem is dat er langdurig kleine verbe-
teringen gevonden kunnen worden. Betere methoden om augmenting paths the
bepalen zijn van Edmonds–Karp en van Dinitz, met complexiteit O(|V ||E|2) en
O(|V |2|E|), respectievelijk.

Hieronder een voorbeeld van het bepalen van de maximum flow.

Example 7.21. Overgenomen van wikipedia. In de onderstaande gerichte graaf
zoeken we een maximum flow van A naar G. Een tak label x/c geeft een verbind-
ing mat capaciteit c weer, waarvan er in de gegeven graaf op dat moment x ge-
bruikt worden.

We starten met de nul flow. Begin met het augmenting path A−D−E−G. Da
vrije capaciteit over dat pad is het minimum van 3,2,1, dus 1. En we passen de
flow in die richting aan. In de tweede stap is het augmenting path A−D−F−G
en de vrije capaciteit op dat pad is 2, namelijk het minimum van 3−1,6,9.

In de vierde stap is het augmenting path A−B−C−E −D−F −G. Merk
op dat een van de takken tegen de richting in gevolgd wordt. Als we daar de flow
aanpassen wordt de flow in die tak kleiner gemaakt in plaats van groter.

A

B

C

D

E

F

G

0/3

0/3

0/4

0/3
0/1

0/2
0/2

0/6

0/1 0/1

0/9

c = 1
A

B

C

D

E

F

G

0/3

1/3

0/4

0/3
0/1

0/2
1/2

0/6

0/1 1/1

0/9

c = 2

A

B

C

D

E

F

G

0/3

3/3

0/4

0/3
0/1

0/2
1/2

2/6

0/1 1/1

2/9

c = 1
A

B

C

D

E

F

G

1/3

3/3

1/4

0/3
1/1

0/2
1/2

3/6

0/1 1/1

3/9

c = 1
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Het eindresultaat is als hieronder, met een totale flow van 5 tussen A en G.

A

B

C

D

E

F

G

2/3

3/3

2/4

0/3
1/1

1/2
0/2

4/6

0/1 1/1

4/9

A

B

C

D

E

F

G

0/3

0/3

0/4

0/3
0/1

0/2
0/2

0/6

0/1 0/1

0/9

Het is ook te bewijzen dat er geen grotere totale flow bestaat, met behulp dan
de max-flow-min-cut stelling. Er is een snede in de graaf waarlangs in totaal niet
meer dan 5 verplaatst kan worden (in de goede richting). Zie boven.

♢

Travelling salesman problem ⊠
Het Handelsreizigersprobleem is één van de bekendste optimalisatieproblemen.
Gegeven een graaf met afstanden tussen elk paar steden, bepaal de kortste route
die elke stad precies één keer aandoet en eindigt in de eerste stad. Er is geen
efficient algoritme voor dit probleem bekend. Om precies te zijn is het probleem
NP-compleet.

Een beslissingsprobleem is een algoritmische vraag waarvoor het antwoord
alleen ja/nee is. De (beslissings-)problemen die in polynomiale tijd kunnen wor-
den opgelost vormen de klasse P. Technisch gebruiken we daarvoor het reken-
model van de Turing machine maar dat is hier niet essentieel. Een probleem
behoort tot de klasse NP als een oplossing in polynomiale tijd kan worden gev-
erifieerd. De afkorting staat voor niet-deterministisch polynomiaal. Het niet-
determinisme slaat erop dat we een oplossing mogen gokken en die dan contro-
leren.

Het is een belangrijk open probleem of P gelijk is aan NP. De moeilijkste
problemen uit NP heten NP-compleet. Dat betekent dat als één NP-compleet
probleem in polynomiale tijd kan worden opgelost, dat dat voor alle NP-problemen
geldt, en daarmee P=NP. Zie voor meer detail het college COMPLEXITEIT.

Het Handelsreizigersprobleem kan als beslissingsprobleem worden omgezet:
bestaat er een handelsroute die alle steden precies een keer aandoet met lengte
maximaal ℓ’. In die versie is het Handelsreizigersprobleem NP-compleet. Het
probleem is zelfs NP-compleet als de afstanden die gebruikt worden in de graaf de
gewone afstanden van punten in het platte vlak zijn, het zogenaamde Euclidische
TSP. Een gerelateerd NP-compleet probleem is het Hamiltonpadprobleem: bepaal
of een ongerichte ongewogen graaf een gesloten pad heeft dat elke knoop precies
één keer aandoet.
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Opgaven
1.a) Wat is een topologische ordening op de knopen in een gerichte graaf G =

(V,E) ? Wees precies.

b) Hieronder staat een schematische recursieve functie voor depth-first search.

DFS (KnoopType x)
{ // aanname: knoop x nog niet bezocht

bezoek x
markeer x als bezocht
for (elke knoop w bereikbaar vanuit x)
{ if (w niet bezocht)

{ DFS (w)
}

}
// knoop x volledig afgehandeld:
push x op stapel S

}

Beredeneer dat de knopen op de stapel S een topologische ordening van de
acyclische graaf vormen nadat DFS op de achtereenvolgende knopen zonder
inkomende takken is aangeroepen.

c) Gegeven is een adjacency-list representatie van een acyclische graaf G en
een lijst met een topologische ordening voor G.

Beschrijf hoe het langste pad in G efficient kan worden bepaald. Pseudo-
code is welkom. Mrt 2016

2. Onderstaande graaf heeft negatieve gewichten (en is slechts gedeeltelijk
gericht).

1

23

4

-2

4
6

1

1

3

a) Laat zien dat het algoritme van Dijkstra niet toepasbaar is op grafen met
negatieve gewichten, door het algoritme toe te passen op bovenstaande graaf.
Kies een geschikte beginknoop, voer Dijkstra uit en controleer de uitkomst.
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b) Het algoritme van Floyd (all pair distances) is wel geschikt voor negatieve
gewichten, zolang er geen negatieve kringen zijn in de graaf.

Geef het algoritme van Floyd. Jan 2017

c) Pas het toe op de gegeven graaf.

3. Bij de uitleg van Floyd staat: Computations for Ak do not change the values
at [k, j] or [i,k] in the matrix Ak−1 so when implementing this algorithm we
may in fact use only a single matrix.

Controleer deze uitspraak.

4.a) Geeef het algoritme van Dijkstra, maar nu aangepast om de bottleneck waar-
den te berekenen, dus het pad waarlangs de minimale waarde van de pijlen
maximaal is.

b) Idem, maar nu voor Floyd.
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8 Hash Tables
Hash tables form an implementation for ADT’s SET and DICTIONARY (or asso-
ciative array) see Section 3.1, as an alternative to the several types of balanced
trees, see Chapter 4 and Chapter 6.

The C++ STL has set and map as implementations for SET and DICTIO-
NARY where the keys are stored in order (from small to large). Typically this
is done using some kind of balanced tree. It also has unordered_set and
unordered_map where this order is not respected. Typically this is done using
hash-tables, the topic of this chapter.

find insert delete
av wc av wc av wc order

unordered list n 1 n no
bin tree logn n logn n logn n yes
balanced logn logn logn yes
hash table 1 n 1 n 1 n no

av=average, wc=worst case

We like to store a number of keys from a huge domain (strings, numbers) in
a table where necessarily the number of available addresses is much less than the
number of possible keys. We investigate ways of directly computing the address
where each key is stored with a simple function h(K) based on the key K alone.
As the number of possible keys is relatively large compared to the number of
addresses we have to consider the case that two keys K,K′ are destined in the
same address, h(K) = h(K′). Such keys are called synonyms. In case actually two
synonyms are supposed to be stored in the same table, we speak of a collision.

Here we consider three cases.

8.1 The keys are fixed and known in advance, so we can avoid collisions: per-
fect hashing.

8.2 After a collision the key is stored elsewhere: open addressing.
8.3 The table is designed to store various keys at the same address: chained

hashing.

Hashing basics

• store keys of arbitrary size (usually large domains) in table of fixed size
(usually small)

• store passes, checksums (MD5, CRC32)
• implement ADT unordered set: find, insertion and deletion in (avg) constant

time
• hash function calculates position in table: h(K) mod T (TableSize)
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• collision: attempt to store key K when h(K) is occupied

8.1 Perfect Hash Function
A perfect hash function is a mapping from the set K of keys into the address space
of table T without collisions. This can only be attempted when the set of keys
that is to be placed is known in advance. Examples of these are keywords of
a specific programming language, or a dictionary of most occurring words in a
natural language.

With such a perfect hash function h it is possible to test membership in K in
constant time (plus the time needed to compare two keys), assuming h(w) can be
computed in constant time for any possible key w. We can use the observation
that w ∈ K iff T (h(w)) contains w.

An example. Cichelli computes the set of 36 keywords of the programming
language Pascal as an example of the method. He proposes an hash function for
strings of the form h(w) = |w|+ v(first(w))+ v(last(w)), where v is a mapping
from characters to integers, and first(w) and last(w) are the first and last letters of
w. Suitable values can usually be found using clever backtracking.

Example 8.1. An example is the set of keywords in the programming language
Pascal. The letters of the alphabet get their value according to the following table.
Letters not mentioned get value 0.
a b c f g h i l m n p r s t u v w y

11 15 1 15 3 15 13 15 15 13 15 14 6 6 14 10 6 13
Thus, for example h(case) = 4+1+0 = 5. Also h(label) = 5+15+15 = 35.
We get the following table.

2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7
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♢

References. R.J. CICHELLI. Minimal Perfect Hash Functions Made Simple, Commu-
nications of the ACM 23 17–19 (January 1980)
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8.2 Open Addressing
With this method we have an array T[M] of M possible slots, each which can hold
just a single key (or more precisely for Dictionaries a single key-value pair). The
hash function h returns the intended address of the key. Collisions are resolved
by looking for an alternate unused location in the array. The process of checking
at various locations for an empty slot is called probing. The probing sequence for
each key K is fixed, but depends on the specific hash method and its parameters.
We discuss several variants: linear, quadratic, and double hashing.

The operation ISELEMENT checks whether a key is present, and is imple-
mented by following the probing sequence for the key. It is successful if the key
is found, it is unsuccessful when we happen to hit an empty slot (we can conclude
the key is not present as it would have been stored at that position).

Both the INSERT (add a key, or key-value pair) and the RETRIEVE (for a Dic-
tionary, find the value for a give key) operations follow the same path over the
address space. INSERT is successful if an empty slot is found, and the key is
stored (and needs special attention if we find the key instead, we do not allow
duplicate keys); RETRIEVE on the contrary fails if we discover an empty slot.

There are several ways to choose the probe sequence h(K,0) = h(K),h(K,1),
h(K,2), . . . , i.e, the sequence of addresses that are checked consecutively. Note
we theoretically wish to make this sequence a permutation of the addresses in
the table, as we want to visit each address exactly once. In practise however we
sincerely hope that the number of visits is bounded by a constant to fulfill the
promise of hashing.
(1) With linear probing we search for an available position (or the key itself) in
the positions immediately before the original address: for key K after i ≥ 0 steps
we check address h(K, i) = h(K)− i (mod M). Recall that M is the table size.
The probe sequence wraps to the last element when we failed at the 0’th position,
because of the modulo. Mind the negative sign.

Unfortunately linear probing is sensitive to primary clustering: segments of
occupied spots are filling the table. Note that larger segments have a larger prob-
ability to grow: each collision to one of the elements in the cluster means that the
new key will end up in the free position just before the cluster.

This means we have to be extremely careful that the input distribution of keys
will not form clusters using the chosen address function. As an example: variable
sequences like help1, help2, help3 are common, and they should not be placed
at consecutive places in the hash table as that would already start a cluster.

145



Example 8.2. We use a table T [11] to store integers and hash-function h(K) = K
(mod 11) using linear hashing. We add the keys

60(5), 29(7), 74(8), 3(5), 19(8), 23(1), 40(7)
(in that order) to an empty table. Here the values in parentheses are the computed
hash values: for example 60 = 5 ·11+5≡ 5 (mod 11).

The keys 60, 29, and 74 are stored on their intended addresses, the address
determined by the hash-function. Then we have a collision of key 38 at slot 5. We
try one slot to the left, and place 38 at 4.

Key 19 again is in collision at 8, and is placed after two more probes at slot 6.
Key 40 cannot be placed at address 7, and we need several steps to find a free

slot at 3.

0 1 2 3 4 5 6 7 8 9 10

38 60
38

29 74

23 38 60 19 29 74
19

23 40 38 60 19 29
40

74

♢

Sometimes it might be a good idea to change the step size for linear hashing
from 1 to another constant c. That can be done provided that c has no divisors in
common with the table size M.

It might seem that large c is profitable as it will jump over clusters. The prob-
lem is that with c ̸= 1 the clusters are not formed in consecutive cells.

Example 8.3. Starting with h(K, i) = (K mod 10)− 3i we have the following
table. One needs many steps to find 65. (Start at address h(65) = h(65,0) =
65 mod 10 = 5. This is occupied by 55. Continue three steps to the left at
5−3 = 2, which again is occupied by another key. Etc.)

0 1 2 3 4 5 6 7 8 9
65 32 43 55 72 19

The reason is that the table is one big cluster, visible when we show the neigh-
bours relative to the step size 3.

0 3 6 9 2 5 8 1 4 7
65 43 72 19 32 55

This is actually equivalent to hashing according to h′(K, i) = (7K mod 10)− i.
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0 1 2 3 4 5 6 7 8 9
65 43 72 19 32 55

In this last version of the table, the cluster that does not appear to be present
in the first version, is plainly visible.

♢

(2) Ideally we would like to use a random permutation r0 = 0,r1,r2, . . . of all
addresses to avoid primary clustering and visit the slots as h(K, i) = h(K)− ri
(mod M). It is however hard to devise a random sequence for every table size. A
solution which is close to randomness is quadratic probing. Here the squares are
used to substitute random numbers: 0,±12,±22,±32,±42, . . . . Technically it can
only be guaranteed this forms a permutation of the address space if M is a prime
number, which is 3 (mod 4).

This avoids primary clustering, but still all keys at a given address follow the
same path, a phenomenon called secondary clustering.

Example 8.4. We use a table T [11] to store integers and hash-function h(K) = K
(mod 11) using quadratic hashing. We add the keys 60(5), 29(7), 74(8), 38(5),
19(8), 23(1), 40(7) (in that order) to an empty table. Again in parentheses are the
computed hash values.

The steps we take, each time starting from the initial address (not the last
address) are +1,−1,+4,−4,+9,−9, . . . ,

The keys 60, 29, and 74 are stored at free addresses immediately as we have
no synonyms. Then we have a collision of key 38 at slot 5. The slot 5−1 = 4 is
free so we store 38 there.

Key 19 again is in collision at 8, and we try at 8−1 = 7, and then 8+1 = 9 is
free. No problems for 23.

Key 40 cannot be placed at address 7, but we find a slot at 7−1 = 6.

0 1 2 3 4 5 6 7 8 9 10

38 60
38

29 74

23 38 60 29 74 19
19

23 38 60 40 29
40

74 19

♢

(3) Double hashing. In this method we use a second hash function to determine
the step size. This probe function p(K) must be ‘independent’ from h(K) so that
keys hashed to the same address do not follow predictable paths.
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The step sequence equals h(K, i) = h(K)− i · p(K) (mod M). As mentioned
with linear probing, the values of p must be relatively prime to the table size M.

Example 8.5. We repeat Example 8.2 now using the probe function p(K) = (K
mod 4)+1. This leads to five different step sizes for each location. Note the table
size is a prime, so the step sizes do not have a divisor with the table size.

The keys 60, 29, 74, 38, 19, 23 and 40 have the following hash values h(K)
and p(K):

Key 60 29 74 38 19 23 40 K
Address 5 7 8 5 8 1 7 h(K) = K mod 11
Step size 1 2 3 3 4 4 1 p(K) = (K mod 4)+1

The table is filled in a similar way as before, except we now have different
sized steps when looking for a free spot.

0 1 2 3 4 5 6 7 8 9 10

38 60
38

29 74

23 38 19 60 29 74
19

23 38 19 60 40 29
40

74

Observe that we have a cluster of five keys stored in a contiguous interval. This
is however not always a cluster from the viewpoint of each key. When looking for
key 30 (hash value 8, step 3) we first look at 8, then 8− 3 = 5, 2 and finally 10.
The last slot is empty and shows key 30 is not in the table.

♢

Expected number of steps. According to Knuth we have the following ex-
pected number of steps for three hashing methods above, and both unsuccessful
search (or adding) and successful search. The variable α represents the load fac-
tor, the fraction of occupied slots in the table. It determines the expected number
of probes to find or store a key in the table.

We give the function values where α = 0.5−0.8. Not too bad at 50% it seems.

find / successful add / unsuccessful
linear 1

2(1+
1

1−α
) 1.5–3 1

2(1+
1

(1−α)2 ) 2.5–13
secondary 1+ ln( 1

1−α
)− α

2 1.4–2.2 1
1−α
−α + ln( 1

1−α
) 2.2–5.8

double 1
α

ln( 1
1−α

) 1.4–2.0 1
1−α

2–5
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1

2

3

4

5

6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

expected probes

load factor α

linear hash
quadratic
double hash

Note that for open addressing we have to choose a table size that is appropriate
for the number of expected keys! If the load factor α reaches 1 the table starts to
behave like a unordered list.

What to remember of this?

• Finding is faster than adding (because we stop early along the path).
• Double is faster than secondary, which is faster than linear.
• Avoid large load factors.
• (But do not memorize the exact functions given here. . . )

Deletion. Removing a key to make room for another one is a bad decision in
open hash tables. If the key K is on the search path for another key K′ between its
home address and the slot where it was placed, we will conclude the key K′ is not
present after removal of K.

Usually a wise solution is to use lazy deletion, by marking the slot as ’deleted’.
When searching for a free slot we can use it as if empty, when searching for a given
key we pretend it is in use (by another key).
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8.3 Chaining
Instead of storing keys directly in the table, here we keep a linked list of keys
for each table element. Such a list usually is called a bucket. That means that
collision is solved by adding the new elements to the bucket at the hash address.
We can choose to just add the new elements at the beginning of the list or to keep
the list ordered (which is slightly faster when searching elements not in the table).
Deletion is not a problem in chained hashing: just remove the key from the proper
bucket.

Example 8.6. Consider the table T [11] of size 11 and the address function h(K) =
K mod 11. After adding the keys 60(5), 29(7), 74(8), 38(5), 19(8), 23(1) and 40(7)
the table looks as follows (assuming we store the keys in ascending order).

0 1 2 3 4 5 6 7 8 9 10
Λ Λ Λ Λ Λ Λ Λ

23 38 29 19
Λ

60
Λ

40
Λ

74
Λ

Recall that a list does not automatically implies a pointer implementation. One
can also use an array to store the buckets. We then get the following picture. (Here
Λ indicates an end-of-list value.)

0 1 2 3 4 5 6 7 8 9 10 index
Λ 5 Λ Λ Λ 3 Λ 1 4 Λ Λ bucket

0 1 2 3 4 5 6 7 8 9 10 index
60 29 74 38 19 23 40 key
Λ 6 Λ 0 2 Λ Λ Λ Λ Λ Λ next

♢
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8.4 Choosing a hash function
A good hash function h(K) should

• be fast to compute,
• evenly distribute the keys over the table, and
• depend on all ‘distinctive bits‘ of the key.
One of the main concerns is to counteract any expected ‘behaviour’ of the

keys. If we hash bank account numbers, several digits might be predictable in case
the number includes a code for the bank. If we hash student accounts, the initial
digits might represent year or discipline. If we hash variables we might expect
sequences like x1, x2, . . . , that should not be hashed on consecutive addresses.

We mention some techniques. We assume the key is in fact a (possibly large)
number. Any string can be read as number.

Division. Return the key modulo the table size (as we have done in several ex-
amples). When the table size is a power of two, then division amounts to choosing
the last bits of the key, see Extraction. This seems to have good results when the
table size is prime (or without small divisors).

Folding. The key is chopped into parts, which are then added/xor-ed. The result
is then again returned modulo the table size.

Mid-squaring. Take the square of the key, and select the middle bits as result
(assuming the table size is a power of two). In several contexts squaring behaves
rather randomly. Take care when the key contains many zeros at its start or end.

Extraction. The address is computed based on selected bits of the key. These
bits should be as random as possible, and preferably not be somewhat predictable
like year or check-bits.

Example 8.7. Developing a good hash function is hard work. In professional
context it should be fast and very thoroughly mix the bits of a key. The resulting
code matches the architecture of the processor to achieve speed. Just as illustration
we give MurmurHash, on which google’s CityHash is based, in Slide 22.

The GNU C++-compiler defines hash_bytes , “a primitive used for defining
hash functions. Based on public domain MurmurHashUnaligned2”. (stackover-
flow: What is the default hash function used in C++ std::unordered_map?)

♢
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Slide 22 ⊠MurmurHash as presented on Wikipedia
MurmurHash

Murmur3_32(key, len, seed)
// integer arithmetic with unsigned 32 bit integers.
c1 := 0xcc9e2d51
c2 := 0x1b873593
r1 := 15
r2 := 13
m := 5
n := 0xe6546b64

hash := seed
for each fourByteChunk of key

k := fourByteChunk
k := k * c1
k := (k « r1) OR (k » (32-r1))
k := k * c2
hash := hash XOR k
hash := (hash « r2) OR (hash » (32-r2))
hash := hash * m + n

with any remainingBytesInKey
// (also do Endian swapping on big-endian machines.)
remainingBytes := remainingBytesInKey * c1
remainingBytes := (remainingBytes « r1) OR (remainingBytes » (32 - r1))
remainingBytes := remainingBytes * c2
hash := hash XOR remainingBytes

hash := hash XOR len
hash := hash XOR (hash » 16)
hash := hash * 0x85ebca6b
hash := hash XOR (hash » 13)
hash := hash * 0xc2b2ae35
hash := hash XOR (hash » 16)
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For double hashing we also choose a second hash function p(K) (the probe
function, which determines the step size). As discussed earlier that function
should have no divisors in common with the table size (to ensure we visit all ad-
dresses) and it should be independent of the address function (to avoid secondary
clustering).

Note that passwords are usually stored using hash functions. Examples of
these are MD5 (Message Digest Algorithm 5) or SHA-1 (Secure Hash Algorithm).
To check the given password it is hashed and compared with the stored value.
Needless to say such hashes must be very unpredictable.

Wikipedia gives the example MD5("Pa’s wijze lynx bezag vroom het fikse
aquaduct") = b06c0444f37249a0a8f748d3b823ef2a, while MD5("Ma’s wijze lynx
bezag vroom het fikse aquaduct") = de1c058b9a0d069dc93917eefd61f510 .

References. See DROZDEK Chapter 10: Hashing.

See LEVITIN Section 7.3: Hashing.

See CLRS Chapter 11: Hash Tables.
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Opgave
1. Beschouw hashen in een zgn. ‘open’ hashtabel met twee hash-functies h en

p. Het i+ 1-ste bezochte adres h(K, i) is zoals gewoonlijk h(K)− i · p(K)
(modulo M).

a) Welke twee punten zijn belangrijk bij de keuze van de adresfunctie h ?

Waarop moeten we letten bij de keuze van de stapfunctie (probe function)
p?

b) Welke twee soorten clustering onderscheiden we bij hashen met open adresser-
ing? Geef een korte beschrijving.

c) In een tabel T[0..10], dus M = 11, worden achtereenvolgens de sleutels 10,
22, 31, 4, 15, 28, 17, 88, 59 geplaatst, met adresfunctie h(K) = K mod 11
en lineair hashen (stapgrootte 1).
Laat zien welke tabel ontstaat, maar geef op een overzichtelijke manier ook
alle plekken waar de sleutels geprobeerd worden.

d) Idem, nu met een stapfunctie p(K) = 1+(K mod 10). Jan 2015
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9 Data Compression
Data compression can save both time (transmission of data) and space (storage).
We study lossless data compression, so the coded data can be decoded back into
the data that was used to generate it. We present two well-known techniques to
code a text in binary: Huffman coding and Ziv-Lempel-Welch. The first method
codes each single letter by a fixed binary string such that frequently occurring
letters get short codes. Ziv-Lempel-Welch tries to find codes for sequences of
substrings that occur more often in the input.

Example 9.1. (Left: Huffman coding) The binary tree representation of a prefix
code. The coded symbols are represented as leaves. The binary code follows the
path from node to leaf. (Right: Ziv-Lempel-Welsh) The code is given as a trie,
with letters along edges. The numders inside the nodes represent binary codes of
a fixed length. Here, e.g., number 7 is the five letter code 00111.

a

b e

0 1

0 1

f

c d

0 1

0 1

0 1

1 2 3
a b c

4 5

6

7
b a b

c
8

9

10

11
b

a

a

a

e 7→ 011
f 7→ 10

cb 7→ 00111 7
aaa 7→ 01011 11

♢

9.1 Huffman Coding
In the ASCII code every ‘letter’ is encoded as a bit string of 8 bits. In Morse code
every letter is encoded by a variable length sequence of dots (‘dit’) and dashes
(‘dah’): E, the most common letter in English, is represented by a single dot.
Decoding ASCII is easy. Decoding Morse is only possible because besides dots
and dashes one also uses ‘spaces’ between letters and words. These spaces are
important because Morse is not a prefix code (see below). Without spacing letter
I (‘dit dit’) has the same code as two I’s.

Informally the binary compression problem we solve is as follows. We start
with a message over some alphabet Σ. We know the alphabet and the frequency
of the symbols in the message in advance. We want to replace the symbols in the
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message by a binary code (each letter in Σ gets a fixed code, but the length of the
code may vary between letters) such that the encoded binary message is of mini-
mal length. Of course the compressed binary message must be easily decodable,
where the binary code for each letter is known at the time of decoding.

Features:

• variable length code for single letters
a1, . . . ,an ∈ Σ 7→ w1, . . . ,wn ∈ {0,1}∗

• based on character frequencies (known in advance) f1, . . . , fn

• optimal expected code length (for prefix code)
n

∑
i=1

fi · |wi|

• code has to be known by decoder

Given a set of letters Σ = {a1, . . . ,an} and their (relative) frequencies f1, . . . , fn,
we want to find a variable length (binary) code w1, . . . ,wn of strings over {0,1}∗
that is easily decodable and has minimal expected length.

The code of a message ai1ai2 . . .aim equals wi1wi2 . . .wim , i.e., is obtained by a
string morphism. It is decodable if no two messages generate the same code, i.e.,
the homomorphism is injective. The expected length of a message, given the letter
frequencies, equals ∑

n
i=1 fi · |wi|.

Example 9.2. The code a 7→ 10,b 7→ 1,c 7→ 00 is uniquely decodable. However
we have to look ahead. Each sequence in 10∗ has to be completely read before it
can be decoded. If the number of 0’s is even then 102n is decoded as bcn, if the
number is odd then 102n+1 is decoded as acn.

The code a 7→ 0,b 7→ 01,c 7→ 011 is uniquely decodable: each letter can be
recognized by the initial 0. Still we have a (small) lookahead: a letter is only
decoded when the first 0 bit of the next letter is seen.

♢

In order to be able to decode messages without lookahead we restrict ourselves
to prefix codes. This means no codeword wi is a prefix of another codeword w j.
These codes can be represented as binary trees, with the letters of the input alpha-
bet at the leafs. Internal nodes do not represent codewords, because of the prefix
property. The expected length of a message equals the weighted external path
length in the tree: the sum over all leaves of the depth of the leave times its fre-
quency. We may assume the tree is full (i.e., each internal node has two children),
as we can find a shorter code by omitting the nodes with a single child.

Decoding a prefix code is trivial. Start at the root and follow the edges until a
leaf is reached; output the letter at the left; return to the root, and continue.
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Example 9.3. Reversing the codewords in the second example above we get a 7→
0,b 7→ 10,c 7→ 110, which is a prefix code with the tree representation below (left).
Obviously it is not optimal (the tree is not full) as the code for c can be changed
into 11 without losing the prefix property (right). String 010111110001011 is
decoded via 0 ·10 ·11 ·11 ·10 ·0 ·0 ·10 ·11, i.e., as abccbaabc.

a

b

c

0

0 1

0 1 33

a

b c

0 1

0 1

♢

Huffman’s solution for constructing an optimal code tree is an elegant greedy
bottom-up algorithm.

Huffman

// initialize:
for each input letter a tree with that letter,

and its frequency
repeat

take two trees of minimal frequencies
join these as children in a new tree,

with combined frequency
until one tree left

The algorithm is not deterministic. We may swap left and right branches with-
out changing the efficiency of the code (only the corresponding bits 0 and 1 are
swapped for the code words in the tree). A simple example shows we can have
two ‘structurally different’ code trees for a given alphabet (with frequencies).

Consider the alphabet {a,b,c,d} with respective frequencies 10,5,5, and 5.
The following two optimal trees both have expected code length 50: 2 · 10+ 2 ·
5+2 ·5+2 ·5 resp. 1 ·10+2 ·5+3 ·5+3 ·5. Both of them can be obtained from
the algorithm.
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2 ·10+2 ·5+2 ·5+2 ·5 = 50

a b c d

0 10 1

0 1

1 ·10+2 ·5+3 ·5+3 ·5 = 50

a

b

c d

0 1

0 1

0 1

Example 9.4. We construct a Huffman code for the alphabet a,b,c,d,e, f , the
letters of which have relative frequencies 18, 8, 12, 13, 7, and 21, respectively.

a
18

b
8

c
12

d
13

e
7

f
21

a
18

c
12

d
13

f
21

b e

15

0 1

a
18

f
21 15

b e

0 1

c d

25

0 1

33

a

b e

0 1

0 1
f

21

c d

25

0 1

33

a

b e

0 1

0 1

46

f

c d

0 1

0 1

79

a

b e

0 1

0 1

f

c d

0 1

0 1

0 1

With the given (relative) frequencies the expected code length equals 18 ·2+
8 ·3+12 ·3+13 ·3+7 ·3+21 ·2 = 198.

♢

Complexity. Clearly the number of steps taken by the algorithm is linear, as
we lose one tree each step. However, the complexity is slightly more than that,
O(n lgn), as we have to take the two least frequencies in each step. This can be
done in two ways. First, we can keep the trees in a priority queue. We then have a
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linear number of insertions and deletions, each of complexity O(lgn). As a second
possibility we can sort the initial frequencies and keep them in a list. The trees
that are joined are kept in a separate list. The second list can be kept in sorted
order, as each new tree has a larger frequency over time. In each step we choose
the minimal frequency from the two (sorted) lists. This has the same complexity
as sorting, which is O(n lgn).

Dynamic frequencies. ⊠ If we add the frequencies of each subtree (which are
just the total frequencies of the leaves in the subtree), then we obtain the expected
path length (see the left tree in the example below, 79+33+46+15+25 = 198).
This is a consequence of the fact that the frequency of each leaf is counted in each
of its predecessors.

We can rearrange the Huffman tree, swapping left and right branches where
necessary, to obtain a tree where the frequencies are ordered in breadth-first order.
In fact, this is a characteristic of a Huffman tree. This observation is the basis of
the dynamic Huffman algorithm, where the frequencies are not known in advance
and the tree is restructured while counting. The restructuring process is rather
costly, and the algorithm probably is not very practical.

79

33

18 15

8 7

0 1

0 1 46

21

12 13

250 1

0 1

0 1 79

25

13

46

12

21

0 1

0 1

33

18

8 7

150 1

0 1

0 1

Remarks. ⊠ Despite its simplicity, Huffman’s algorithm was a major break-
through. The previous best method was the Shannon–Fano coding which basi-
cally worked in a top-down manner, repeatedly dividing the frequencies into two
subsets.

The solution found by Huffman’s algorithm does not try to keep the codes in
alphabetical order. If that is required and one is looking for optimal alphabetic
binary trees, there is an algorithm by Hu-Tucker. This works in O(n lgn) time,
just like Huffman.

Example 9.5. With frequencies 19, 8, 9, 9, 7 the Shannon–Fano coding gives a
total expected length 2 · (19+9+9)+3 · (8+7) = 119, whereas Huffman yields
1 ·19+3 · (9+9+8+7) = 118. Tiny difference, but enough to show that Shan-
non–Fano is not optimal.
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a d c

b e

0 1

0 1

0 1

0 1

19+9

9+8+7

a

d c b e

0 1 0 1

0 1

0 1

♢

References. D. HUFFMAN. A Method for the Construction of Minimum-Redundancy
Codes. Proceedings of the IRE 40 (1952) 1098–1101. doi:10.1109/JRPROC.1952.273898

T.C. HU, A.C. TUCKER. Optimal Computer Search Trees and Variable-Length Alpha-
betical Codes. SIAM Journal on Applied Mathematics 21 (1971) 514–532. doi:10.1137/0121057

See DROZDEK Chapter 11.2: Huffman Coding.

See LEVITIN Section 9.4: Huffman Trees.

9.2 Ziv-Lempel-Welch
Features:

• fixed length code for repeating patterns in input
x1, . . . ,xn ∈ Σ∗ 7→ w1, . . . ,wn ∈ {0,1}k

• strings xi learned while reading input
• code is also learned by decoder and does not have to be trans-

mitted

Before we start the coding and decoding algorithms, we have to agree on the
input-alphabet, and on the number of bits used to send each code word. We start
by setting the codes for each single letter in the alphabet. The number of bits is
important as the decoder has to read that number of bits to translate the code back
into its original. The coding algorithm keeps a ‘dictionary’ of input segments that
have received a code. It scans repeatedly over the input to find the next segment
that can be coded. When the longest segment has been discovered, the code is
output. At the same time a new code is entered into the dictionary. The current
segment plus the next letter from the input get the next available bit string. In this
way the encoding algorithm ‘learns‘ from what it reads.
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ZLW compression

initialize dictionary with single characters

w = "";
while ( not end of input )
do read character c

if w+c exists in the dictionary
thenw = w+c;
else

add w+c to the dictionary;
output the code for w;
w = c;

fi
od
output the code for w

In the toy example below we include and ‘end-of-string’ symbol (to signal the end
of the message). This is a technicality, and there might be other ways to recognize
the end of a sequence of bits.

The dictionary can be represented as a trie, where nodes have (possible) chil-
dren for each input letter.

Example 9.6. Input string ababcbababaaaa over the alphabet {a,b,c}. We do
not fix the number of output bits, but use numbers to indicate output. For example
3 denotes 0011 or 00011 for 4 or 5 bits, respectively. In this example we assume
to have at least five bits (to accommodate 12 code words).

w c dict? out new code
a ✓

a b × 1 4 7→ ab
b a × 2 5 7→ ba
a b ✓

ab c × 4 6 7→ abc
c b × 3 7 7→ cb
b a ✓

ba b × 5 8 7→ bab
b a ✓

ba b ✓
bab a × 8 9 7→ baba

a a × 1 10 7→ aa
a a ✓

aa a × 10 11 7→ aaa
a ⊥ 1

1 2 3

a b c

4 5

6

7

b a b

c

8

9

10

11

b

a

a

a

0 (end)
1 a
2 b
3 c
4 ab
5 ba
6 abc
7 cb
8 bab
9 baba
10 aa
11 aaa
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learned

output
a b a b c b a b a b a a a a

4 5 6 7 8 9 10 11

1 2 4 3 5 8 1 10 1

♢

If the dictionary becomes full during the algorithm, we have to agree on the
proper action. There are several conventions.

1. Continue "as is", no further codes are entered into the dictionary.
2. Add one bit to code space, and continue.
3. Many of the leaves in the code tree represent codes that are no longer used

as they were not extended. Reclaim this space by pruning the tree, cutting
the last letters from each branch and reusing the codes.

Decoding. The reverse operation is performed by virtually the same algorithm,
adding new codes into the dictionary. If binary code n is read we output its original
w and we should add new code for wb, where b is the single letter look-ahead in
the coding algorithm. However b is not known until the next binary code n′ has
been processed. Thus, decoding lags behind by one character.

This can have an unfortunate effect. It may happen that the next code n′ is
not yet in the dictionary, as it actually is the one that should have been added the
previous step. This can only happen if the (unknown) lookahead letter b actually
is the first letter of the new code wb, i.e., the first letter of the last decoded word
w. With this knowledge we can close the gap.

ZLW decompression

initialize dictionary with single characters
read first code in variable prev and output str(prev)
while ( not end of input )
do read w

if w exists in the dictionary
thenoutput str(w)

add to dict: str(prev) + firstchar(str(w))
else

// special case
output str(prev) + firstchar(str(prev))
add to dict: str(prev) + firstchar(str(prev))

fi
prev = w

od
output the code for w
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Example 9.7. We decode the output we found in the previous example, i.e., the
bit sequence corresponding to the numbers 1,2,4,3,5,8,1,10,1.

As before we start with the dictionary 1 7→ a, 2 7→ b, and 3 7→ c.
First code 1 is decoded to a using the initial dictionary. We cannot learn the

new code, as we need to know the next symbol. Second code 2 is decoded into b.
Now we nknow the next symbol and learn 4 7→ ab.

This continues until we have to decode 8. Yet the code for 8 is not in our
dictionary: it is the next one that should have been learned. For the new code we
know 8 7→ ba? because we extend the previous code. Since the first letter read is
used for the new code, and we now know the letter is b, we can complete the code
8 7→ bab.

learned

input
decoded a b a b c b a ? ? ?

4 5 6 7 8

1 2 4 3 5 8 1 10 1

We complete the table, as below. Each step we add the new code for the string
decoded in the last step plus the first letter of the present string. The special case
is marked by ’!’. The tree to the right is the code-tree at the moment we read code
8.

code means add
1 a
2 b 4 7→ ab
4 ab 5 7→ ba
3 c 6 7→ abc
5 ba 7 7→ cb
8 ! bab 8 7→ bab
1 a 9 7→ baba

10 ! aa 10 7→ aa
1 a 11 7→ aaa

1 2 3

a b c

4 5

6

7

b a b

c

♢

Remarks. The ZLW compression is part of the GIF file format (“Graphics Inter-
change Format”), and was patented. In the 1990s the owners of this patent started
to ask licence fees for developers that incorporated the algorithm in their tools. As
a consequence the conversion to GIF was removed from many distributions, and
a new file format PNG was developed. Around 2003 the patent on LZW expired.

References. T. WELCH. A Technique for High-Performance Data Compression. Com-
puter 17 8–19 (1984). doi:10.1109/MC.1984.1659158
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J. ZIV, A. LEMPEL. Compression of individual sequences via variable-rate coding. IEEE
Transactions on Information Theory 24 530–536 (1978). doi:10.1109/TIT.1978.1055934
(The original paper has “Ziv-Lempel” but now “Lempel-Ziv” seems common.)

See DROZDEK Chapter 11.4: Ziv-Lempel Code.

9.3 Burrows-Wheeler ⊠
Start with a string, like MISSISSIPPI. For clarity of the presentation we add an
end marker, like $ here. List all rotations of the string (moving the last letter to
front repeatedly). Then write the rotated strings in alphabetical order, where the
marker comes last in the alphabet.

MISSISSIPPI ⇝ S2MP$PIS2I3

1 M I S S I S S I P P I -
2 I S S I S S I P P I - M
3 S S I S S I P P I - M I
4 S I S S I P P I - M I S
5 I S S I P P I - M I S S
6 S S I P P I - M I S S I
7 S I P P I - M I S S I S
8 I P P I - M I S S I S S
9 P P I - M I S S I S S I

10 P I - M I S S I S S I P
11 I - M I S S I S S I P P
12 - M I S S I S S I P P I

8 I P P I - M I S S I S S
5 I S S I P P I - M I S S
2 I S S I S S I P P I - M

11 I - M I S S I S S I P P
1 M I S S I S S I P P I -

10 P I - M I S S I S S I P
9 P P I - M I S S I S S I
7 S I P P I - M I S S I S
4 S I S S I P P I - M I S
3 S S I S S I P P I - M I
6 S S I P P I - M I S S I

12 - M I S S I S S I P P I

S1 I1
S2 I2
M1 I3
P1 I4
$ M1
P2 P1
I1 P2
S3 S1
S4 S2
I2 S3
I3 S4
I4 $

Read the last column, which is a permutation of the original string. The result
SSMP$PISSIII is the Burrows-Wheeler transform of the original string. It is the
basis of compression techniques like bzip2 as in general there will be segments of
the same letter repeated: S2MP$PIS2I3. To this we can apply run length encoding.

It is rather surprising that we can decode the transform, and obtain the original
string. This is based on the observation that the copies of a single letter are in
the same order if we look at the in either the first or the last column of the sorted
array: Aw is before Au iff wA is before uA. Also note that the letter in the last
column is followed by the letter in the first column.

Next to the last column we write the first column. The first column can be
found from the first column just by sorting the letters. (And even this sorting is
efficient as we just can count the number of each symbol in the columns: 4 copies
of I, etc. ) We have just seen that the order of each copy of a letter is the same in
those two columns. In order to decode, we number the occurrences of each letter
for clarity. Now we can distinguish and identify each letter. Thus M1 is the first
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letter as it ‘follows’ $. Next character is I3 as it follows M1. Following I3 is S4,
etc. Finally we get M1I3S4S2I2S3S1I1P2P1I4.

Decoding BW with the counting trick is quite efficient. Efficiently encoding
BW is more difficult. It uses techniques that are similar to the suffix array, which
is also mentioned in Chapter 10.4.

References. M. BURROWS AND D.J. WHEELER. A Block-sorting Lossless Data
Compression Algorithm. Digital Systems Research Center Research Report 124 (1994).
HP Labs Technical Reports “The algorithm described here was discovered by one of the
authors (Wheeler) in 1983 while he was working at AT&T Bell Laboratories, though it
has not previously been published.”
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Opgave
1.a) Welk probleem lost het algoritme van Huffman op?

Als er n sleutels gegeven zijn, wat is dan de complexiteit? Geef enige
toelichting.

b) Pas Huffman toe op symbolen a,b, . . . , f met respectievelijke frequenties
10,7,2,8,11,5.

c) Er bestaat een dynamische versie van Huffmans algoritme, waar de frequen-
ties kunnen veranderen. Daartoe wordt gebruik gemaakt van een bijzon-
dere eigenschap van de bomen die geconstrueerd worden: de waardes in de
knopen kunnen breadth-first van groot naar klein gekozen worden. Leg
uit dat dit inderdaad lukt. Jan 2016

2. Ziv-Lempel-Welsh codering. Het alfabet heeft vier letters a, b, c, d. Letter a
krijgt code 1.
Geef telkens welke letters ‘geleerd’ worden, en de uiteindelijke codeboom.

a) Codeer cdbc acac daaa bc, spaties staan hier alleen voor de leesbaarheid.

b) Decodeer 2 4 4 5 1 3 7 11 1 2 14 10. Jan 2017
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10 Pattern Matching
There are many forms of string searching. The most basic form is finding a rather
small substring P (the pattern) in a rather large string T (the text).

We start by illustrating the straightforward naive approach, aligning the first
characters of pattern and text and comparing the consecutive letters one by one. At
a mismatch we shift the pattern one to the right and start again at the first character
of the pattern, again comparing the letters one by one.

Example 10.1. We try to locate pattern P = ‘ABCABABC’ in text T which starts
with ‘ABABCABCABABCC. . . ’. arrows indicate matches, crosses the first mis-
match at that position.

1
T = ABABC. . .
↑ ↑×

P = ABCAB. . .
3

⇒

2
ABABCAB. . .
×
ABCABA. . .
1

⇒

3
ABABCABCAB. . .
↑ ↑ ↑ ↑ ↑×
ABCABABC. . .

6

⇒

4
ABABCABC. . .

×
ABCAB. . .
1

⇒

5
ABABCABC. . .

×
ABCA. . .
1

⇒

6
ABABCABCABABCC. . .

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
ABCABABC

♢

This set-up might take a long time on special examples like P = AmB and
T = AnB. Each iteration all letters A of pattern P are matched, until the last letter
B is not found in the text. Then the pattern is shifted by one. The method compares
all letters of P to all letters of T , and thus is of complexity O(m ·n).

In this chapter we present the Knuth-Morris-Pratt algorithm which uses pre-
processing of the pattern to avoid returning to an earlier position in the text. Other
important algorithms are Rabin-Karp which computes a running hash of the text
and compares it with the hash of the pattern. and Boyer-Moore which also prepro-
cesses the pattern, but additionally observes the letters occurring in the text (and
matches the pattern backwards).

Even in searching for a single string in a long string many algorithms are
available. Some points that can be taken into account in choosing the best one.

• Size of the alphabet. Some techniques are applicable to smaller alphabet
sizes, like the binary alphabet 0,1, are the alphabet of DNA bases A,C,G,T .
In a smaller alphabet relatively more repetitions will occur.
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• Number of applications. If we use the same long text multiple times for
searching, we might consider preprocessing the text. This usually takes ei-
ther a long time or huge storage space but modern techniques like the suffix-
tree and the suffix-array give an efficient approach to answering questions
like ‘which is the longest substring that occurs twice in the text?’.

The notion of ‘pattern’ can also be generalized from a single string to a set of
strings, or even a pattern in a general sense, like ‘palindrome’ or ‘regular expres-
sion’.

Computational biology. In some applications we want to measure the similar-
ity of two strings x and y. In a general setting the similarity of two strings is the
number of basic operations that is needede to transform the first string into the
second. In bioinformatics this is formulated as finding an alignment between the
strings. Another typical requirement in bioinformatics is the robustnest against
errors, we are not always looking for precise answers, but fast and good approxi-
mations are usually preferred.

10.1 Knuth-Morris-Pratt
Features:

• failure links
• linear time preprocessing pattern
• search will never back-up in text

If (during the naive implementation of pattern matching) a mismatch occurs at the
k-th position of the pattern, we start again with the first position of the pattern at
the next position of the text. We know however that the first k−1 positions of the
pattern match the text when we tested the pattern at the previous position. We can
use this knowledge to predict how the pattern matches at the next position, basi-
cally by matching the pattern against itself as a preprocessing step. This approach
is used in the KMP algorithm: if the shifted pattern does not match the pattern
then the shifted will not match the text.

Example 10.2. We consider again the pattern P = ‘ABCABABC’, and assume a
mismatch has been made at position 8. We match the 7-letter prefix ABCABAB
against itself. We observe that the first possible match is when the first and last
two letters of the prefix are aligned.
ABCABAB ?
×

. ABCABAB

ABCABAB ?
×

. . ABCABAB

ABCABAB ?
×

. . . ABCABAB

ABCABAB ?
×

. . . . ABCABAB

ABCABAB?

. . . . . ABCABAB
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From this we conclude: if a mismatch occurs at position 8 then we can shift
the pattern such that the present position of the text aligns with position 3 of the
pattern. Always, regardless of the text, it is not useful to shift less.

♢

The failure link at position k for the pattern P is the maximal r < k such that
P1 . . .Pr−1 = Pk−r+1 . . .Pk−1. Thus, the maximal overlap of a prefix and a suffix
of the pattern P1 . . .Pk−1 up to this position. When during the matching process
an error occurs at position k, we can only expect a new match if we continue the
match of the pattern at the position indicated by the failure link and the present
position of the text.

k

Pk−r+1 . . .Pk−1

r k

P1 · · · Pr−1

For k = 1 we set the failure link equal to 0. If an error occurs at the first
position, we have to shift the pattern by one position to the right and continue at
the first position of the pattern at the next position of the text.

Note that the failure link does not take into account which letter was missed,
so we do not verify whether or not Pk = Pr. This means that if an error occur we
may shift the pattern to a new position with the same letter that was rejected in the
step before.

Example 10.3. We determine ‘by hand’ the failure links for the pattern of our
running example. For every position we show which is the longest prefix which
matches a suffix at the position. (This is slow. We learn an efficient algorithm
later.)

2
A
. A

1

3
AB
. . AB

1

4
ABC
. . . ABC

1

5
ABCA
. . . ABCA

2

6
ABCAB
. . . ABCAB

3

7
ABCABA
. . . . . ABCA

2

8
ABCABAB
. . . . . ABCABAB

3
Hence we obtain the following table of failure links.

k 1 2 3 4 5 6 7 8
P[k] A B C A B A B C

FLink[k] 0 1 1 1 2 3 2 3
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0 1 2 3 4 5 6 7 8 9
A B C A B A B C

match

skip to next
letter in text

mismatch fail

♢

The following pseudo-code searches the text using the KMP algorithm assum-
ing the failure links are already computed.

KMP using failure links

Pos = 1 // position in pattern
TPos = 1 // position in text
while ((Pos <= PatLen) and (TPos <= TextLen))
do if (P[Pos] == Text[TPos])

thenPos ++
TPos ++

else Pos = FLink[Pos]
if (Pos == 0) // next position in text
thenPos = 1

TPos ++
fi

fi
od
if (Pos > PatLen) // found?
thenPattern found at position TPos-PatLen+1 in Text
fi

Example 10.4. We locate the pattern P = ‘ABCABABC’ from earlier examples,
in text T = ‘ABAB CABC ABAB ABC. . . ’ using the algorithm of Knuth-Morris-
Pratt and the failure links obtained above.

k 1 2 3 4 5 6 7 8
P[k] A B C A B A B C

FLink[k] 0 1 1 1 2 3 2 3

(1) Pattern at position 1. First two positions match with text. Mismatch at
position 3 of pattern. Failure link at 3 equals 1.

1 3
T = ABABC. . .
↑ ↑×

P = ABCAB. . .
3

⇒

3 8
ABABCABCAB. . .
↑ ↑ ↑ ↑ ↑×
ABCABABC. . .
1 6

⇒

6 8 13
BCABCABAB A BC. . .

↑ ↑ ↑ ↑ ↑ ×
ABCABAB C

3 8

⇒

(2) Put 1st position of pattern at present position 3 in text. Positions 3–7 of
text match positions 1–5 of pattern. Mismatch at position 6 of pattern. Failure
link at 6 equals 3.
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(3) Put 3rd position of pattern at present position 8 in text. Thus the pattern
now starts at position 6 in text, but we do not reconsider the first two positions
of the pattern: we know they already match the text. Continue comparing letters
at position 3 of pattern and position 8 of text. Mismatch at position 8 of pattern,
position 13 of text. Failure link at 8 equals 3.

13
ABAB A BC..

×
AB C ABABC

3

⇒

13
BAB A BC..

↑ ↑ ↑
A BCABABC
1

⇒ . . .

(4) Continue comparing letters at position 3 of pattern and current position 13
of text. Immediate mismatch at position 3. Failure link at 3 equals 1.

(5) Put 1st position of pattern at current position 13 in text. Three matches in
a row. (But we do not know continuation of text, so stop here.)

All together, in one diagram (the grayed symbols are not compared to the text
at that position).

1 3 8 13
T = A B A B C A B C A B A B A B C . . .

↑ ↑ ×
P = A B C . . .

3
↑ ↑ ↑ ↑ ↑ ×
A B C A B A . . .
1 6

↑ ↑ ↑ ↑ ↑ ×
(A) (B) C A B A B C

3 8
×

(A) (B) C
3
↑ ↑ ↑
A B C . . .
1

♢

Constructing the failure links. We now present the algorithm to efficiently
construct the failure link table of a pattern. In words, at each position pos we
try to locate the letter P[pos-1] from the previous position following the failure
links, starting at Flink[pos-1], the failure link of the previous position.
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computing KMP failure links

Pos = 1 // position in pattern
FLink[1] = 0
for Pos = 2 to PatLen
do Fail = FLink[Pos-1]

while ( (Fail > 0) and (P[Fail] != P[Pos-1]) )
do Fail = FLink[Fail]
od
FLink[Pos] = Fail+1

od

k−1 k

A C B A

Example 10.5. In our example pattern P = ‘ABCABABC’ we construct FLink[7]
at Pos=7, based on the previous links. Fail = Flink[6] = 3. But P[3] ̸= P[6]. So
we follow the Flink at that position: Fail = Flink[3] = 1. As P[1] = P[6] we stop
and set Flink[7] = Fail+1 = 2.

♢

Correctness. Consider the set of all positions t < k such that P1 . . .Pt−1 =Pk−t+1 . . .Pk−1,
i.e., all prefixes of P1 . . .Pk−1 that are also a suffix of that string. Assume t0 <
t1 < t2 < .. . is this sequence. By definition t0 = FLink[k]. We claim that ti =
FLink[ti−1]. This follows from the fact that P1 · · ·Pti−1 = Pk−ti+1 . . .Pk−1 is a prefix
of P1 · · ·Pti−1−1 but also a suffix of Pk−ti+1 · · ·Pk−1.

t1 t0 k

P1 · · · Pt0−1

(0)

Pk−t0+1 · · · Pk−1

(0)

P1 · · · Pt1−1

(1) (1)

Pk−t1+1 · · · Pk−1

(1’)

Note that if we delete the last letter from a string that is both a prefix and
suffix before position k + 1 (as we look for in the failure links) then we get a
prefix/suffix at position k. If we now want to find the failure link P at position
k+1, i.e., the longest prefix of P1 . . .Pk which is also a suffix of P1 · · ·Pk, then we
try to extend the possible prefix/suffixes of P1 . . .Pk−1 by the letter Pk, i.e., we test
whether Pt = Pk for the values t as above. Thus we follow the failure links for the
previous position, like in the algorithm.
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A
t1

B
t0

A
k k+1

Improving the failure links. A failure link may point to the same character that
has been rejected in the previous step, thus P[k] = P[FLink[k]]. This happens in
the example ABCABABC where FLink[5] = 2. If a mismatch occurs at position
5 (because the text does not have a B) in the next step we will again check a
B (the one at position 2) That is a consequence of the fact that we did not look
at the character itself when constructing failure links. This can be fixed in one
simple sweep over the array of failure links. (It can also be done in the failure
link construction itself, but to me that is slightly confusing.) Note the inner loop
is a simple if, it is not necessary to use another while as the failure link at the
previous position already points to a different letter.

improving KMP failure links

for Pos = 2 to PatLen
do if ( P[Pos] == P[FLink[Pos]] )

thenFLink[Pos] = FLink[FLink[Pos]]
fi

od

Example 10.6. Improving failure links in the running example, before and after.
k 1 2 3 4 5 6 7 8

P[k] A B C A B A B C
FLink[k] 0 1 1 1 2 3 2 3
FLink′[k] 0 1 1 0 1 3 1 1

♢

Complexity. The total complexity of determining the failure links is linear (in
the length of the pattern). In a single step we might have to follow a sequence of
failure links, but on this averages over a sequence of operations. The argument
follows the ideas of amortized complexity analysis. The value of Fail over the
various loops may go down several times, but in total cannot be decreased more
than it is increased, which is once for every letter of the pattern, in the instruction
FLink[Pos] = Fail+1 which sets the Fail for the next letter.
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References. D. KNUTH, J.H. MORRIS, V. PRATT: Fast pattern matching in strings.
SIAM Journal on Computing 6 (1977) 323–350. doi:10.1137/0206024. For fun (and
education) read Section 7, Historical remarks "The pattern-matching algorithm of this
paper was discovered in a rather interesting way"

See CORMENLRS Section 32.4: The Knuth-Morris-Pratt Algorithm

See DROZDEK Section 13.1.2: The Knuth-Morris-Pratt Algorithm

10.2 Aho-Corasick
The algorithm of Aho-Corasick builds on KMP, but instead considers a finite set
of strings that are searched in parallel. The set of strings is stored in a trie. Failure
links from one string in the pattern can end somewhere in one of the other strings.
They are computed like for KMP, but breadth-first.

Example 10.7. Consider the set P = {aaa,abc,baa,baba,cb}. We want to search
for occurrence of any of these patterns in a long text, in parallel.

Start by building a trie for {aaa,abc,baa,baba,cb} (left). Then add failure
links, similar to KMP. For example (right) in blue: constructing failure link at 6.
Incoming edge form 4 has label c, now follow the failure links, starting at parent
4 and then search for a node which has outgoing c. First to node 2 which has only
outgoing a, then to the root which has outgoing c to node 3. This then is the the
failure link at 6. As we see here, this might end up in a different subtree of the trie
than where we started.

1 2 3

a b c

4 5

a

6 12

c
7

b

8

a b

9

a

10

a b

11

a

1 2 3

a b c

4 5

a

6 12

c
7

b

8

a b

9

a

10

a b

11

a

In this way we obtain the following tire with failure links (left). Then, right in
red, we follow the path for text T = aaba . . . . If the wanted outgoing letter is not
available, we follow the failure-links to try elsewhere.

Thus after four letters of the text we end in node 5 meaning that the letters ab
leading to that node correspond to the prefix ab of the two patterns baa and baba,
and this is the longest such overlap at this moment.
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1 2 3

a b c

4 5

a

6 12

c
7

b

8

a b

9

a

10

a b

11

a

1 2 3

a b c

4 5

a

6 12

c
7

b

8

a b

9

a

10

a b

11

a

♢

This has been useful, quote from colleague in paper: “A massive thanks [..] for
pointing us to the Aho-Corasick algorithm which resulted in a speed-up of several
orders of magnitude.”

References. ALFRED V. AHO, MARGARET J. CORASICK: Efficient string matching:
An aid to bibliographic search. Communications of the ACM 18 (June 1975) 333–340.
doi:10.1145/360825.360855

See DROZDEK Section 13.1.6: Matching Sets of Words

10.3 Comparing texts ⊠
Geen tentamenstof. Originally written for a course in Molecular Computational
Biology.

The similarity (or rather dissimilarity) between two strings can be measured in
the number of operations needed to transform one into the other. There are three
basic operations we consider here: changing one character into another, inserting
a character, or deleting a character. In the context of molecular biology these
operations correspond to mutations (point mutations or insertions and deletions)
in the genome.

When we assume that no two operations take place at the same position (like
changing a character, then removing it) the operations used to transfer one string
into another can be represented by an alignment of the two strings. Corresponding
symbols are written in columns, marking positions where a symbol was deleted
or inserted with a dash in the proper position.
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Example 10.8. We have recreated an example of alignment given at wikipedia.
It consists of sequences AAB24882 and AAB24881, and was generated using the
ClustalW2 tool at the European Bioinformatics Institute, where all settings were
left as default. The symbol * in the bottom row indicates that the two sequences
are equal at that position, whereas : and . indicate decreasing similarity of the
amino acids at that position.

82 TYHMCQFHCRYVNNHSGEKLYECNERSKAFSCPSHLQCHKRRQIGEKTHEHNQCGKAFPT 60
81 --------------------YECNQCGKAFAQHSSLKCHYRTHIGEKPYECNQCGKAFSK 40

****: .***: * *:** * :****.:* *******..

82 PSHLQYHERTHTGEKPYECHQCGQAFKKCSLLQRHKRTHTGEKPYE-CNQCGKAFAQ- 116
81 HSHLQCHKRTHTGEKPYECNQCGKAFSQHGLLQRHKRTHTGEKPYMNVINMVKPLHNS 98

**** *:***********:***:**.: .*************** : *.: :

♢

Formally an alignment of strings x and y over alphabet Σ is a sequence of letter
vectors,

(x1
y1

)(x2
y2

)
. . .

(xℓ
yℓ

)
, with xi,yi ∈Σ∪{ε} and

(xi
yi

)
̸=
(

ε

ε

)
such that x= x1x2 . . .xℓ

and y= y1y2 . . .yℓ. Note that ℓ≤ |x|+ |y|. Usually the empty string ε is represented
by a dash −.

Given two sequences x and y it is an algorithmic task to determine the align-
ment where the number of operations involved has been minimal, counting the
number of positions in the alignment where the two rows have unequal content.
This value is called the edit distance of x and y.

In general one considers a weighted version of this problem by adding a scor-
ing system. This in general consists of a similarity matrix σ (or substitution ma-
trix) specifying a value σ(a,b) for all a,b in the alphabet (representing the cost of
changing a into b) and gap-penalty σ(a,−) and σ(−,b) for deleting a or insert-
ing b. Thus the score for the general alignment above is given by ∑

ℓ
1=1 σ(xi,yi),

where the empty string ε is equated with the dash −.
Given a scoring system, the similarity of strings x and y is defined to be the

maximal score taken over all alignments of x and y. An alignment that has this
score is called an optimal alignment of x and y.

In simple examples the distances are given by just three values, one fixed value
(typically positive) for matches σ(a,a), one (typically negative) for mismatches
σ(a,b), a ̸= b, and one (also negative) for the ‘insdels’ (insertions and deletions)
σ(a,−) and σ(−,b). This latter is sometimes referred to as the gap penalty.
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Example 10.9. The scoring system on the alphabet {A,C,G,T} of nucleotides is
defined here by the values +2 and −1 for match and mismatch, and −1 for gaps.

For the strings TCAGACGATTG and TCGGAGCTG a possible alignment is
TCAG - ACG - ATTG
TC - GGA - GC - T - G

It consists 7 matches and 6 insdels, so its score is 14−6 = 8.
Similarly, the alignment

TCAGACGATTG
TCGGA - GCT - G

consists of 6 matches, 2 mismatches, and 2 insdels. Consequently the score
is 12−2−2 = 8. Both alignments have the same score, and the similarity of the
strings is at least 8.

♢

As stated above, one usually has σ(a,a)> 0. In some applications also σ(a,b)
may be positive when a and b are different (but have some similarity). For in-
stance, the BLOSUM62 scoring system, used for amino acids, has this feature. In
general σ will be symmetric: σ(a,b) = σ(b,a). In the sequel the value for insdels
is assumed to be given by a fixed gap penalty g ≤ 0, which does not depend on
the symbol that is deleted or introduced.

As noted above, an alignment gives at most a single operation at each position,
which seems reasonable in general. Consider the case where deleting A and C
costs −5 and −2, respectively, whereas substituting A by C costs −2. Now the
two operations A→ C → − have total cost −4 which is better than the direct
deletion of A. In such a case the algorithms of this section will compute the
optimal alignment, however this might not correspond to the optimal score set of
operations from one string to the other. Usually the scoring system avoids this
kind of problems.

Global Alignment Given a pair of strings x and y over an alphabet Σ and a
scoring system for Σ, we want to compute the similarity of x and y, and an optimal
alignment for the strings.

We use a dynamic programming approach for this problem. The algorithm
computes the similarity for each pair of prefixes of the two strings starting with
short prefixes, storing the values in a table, and reusing them for the longer pre-
fixes. When the scores of the partial alignments are determined, the second phase
starts. The alignment itself is computed from the numbers stored, working back-
wards. This is called a traceback. In the context of molecular biology this method
is known as the Needleman-Wunsch algorithm.
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A recursive implementation of the problem is easily given. Consider the last
position of an optimal alignment of strings xa and yb. We have only three possi-
bilities:

(−
b

)
,
(a

b

)
, or

(a
−
)
. Hence the similarity of x and y, the value sim(xa,yb) of

an optimal alignment is found by recursively computing

sim(xa,yb) = max


sim(xa,y) + g
sim(x,y) + σ(a,b)
sim(x,yb) + g

Boundary values (when one of the sequences is empty) can be obtained from the
identities sim(xa,ε) = sim(x,ε)+g, and sim(ε,ε) = 0.

Let x = x1 . . .xm and y = y1 . . .yn be two strings that we want to align. Denote
the value of the optimal alignment of the prefixes x1 . . .xi and y1 . . .y j by A[i, j], to
stay close to programming style. (In our program strings start at position 1, index
i = 0 or j = 0 corresponds to the empty string.)

The first phase of the algorithm computes the values A[i, j] as follows. The
value of the optimal alignment, the similarity of x and y, can be found as A[m,n].

A[i,0] = i ·g 0≤ i≤ m
A[0, j] = j ·g 0≤ j ≤ n

A[i, j] = max


A[i, j−1] + g
A[i−1, j−1]+ σ(xi,y j)
A[i−1, j] + g

1≤ i≤ m,1≤ j ≤ n

For the second phase, traceback, we assume that for each position (i, j) in the
matrix A the cases were stored for which the value of that element was obtained,
either (i, j− 1), (i− 1, j− 1), or (i− 1, j) – as the three cases in the maximum,
representing

(−
y j

)
,
(xi

y j

)
, or

(xi
−
)
. Now start at the bottom-right position (m,n), and

return to the cell of the matrix that resulted in that value. This is repeated until the
first cell (0,0) is reached. In many cases the maximum was obtained not for one
of the arguments, but for two or even three arguments. In that case we can choose
to store just a single of these, or to store all of them, and trace all alignments rather
than single one.

Alternatively, the trace is not followed from stored values, but is recomputed
from the values in the matrix at the current position A[i, j] and three neighbouring
positions A[i−1, j], A[i−1, j−1], and A[i, j−1].

Complexity. We assume the given strings have length m and n, respectively.
The matrix takes space O(mn), and computing all its elements takes time O(mn).
The traceback is computed in time O(m+ n). If we do not need the alignment
itself, but only its score, it is not necessary to store all elements of the matrix but

178



only the last column (or last row). This reduces the space complexity to O(m),
but time complexity still is O(mn).

Example 10.10. Global alignment of TTCAT and TGCATCGT with scoring sys-
tem match 5, mismatch -2, and insdel -6.

A graph represention the problem is as below. The task is to find the optimal
path from top-left to bottom-right, where the costs of traversing an edge are related
to the label of the edge (negative values represent costs, while positive values
can be seen as rewards). Bold diagonal edges represent matches, horizontal and
vertical edges represent insdels.

T G C A T C G T

T

T

C

A

T insdel

mismatch

match

The following matrix is computed by the dynamic programming algorithm. It
indicates that the score of the optimal global alignment equals 0.

− T G C A T C G T
− 0 −6−12−18−24−30−36−42−48
T −6 5 −1 −7−13−19−25−31−37
T −12 −1 3 −3 −9 −8−14−20−26
C −18 −7 −3 8 2 −4 −3 −9−15
A −24−13 −9 2 13 7 1 −5−11
T −30−19−15 −4 7 18 12 6 0

The alignment itself can be traced back from the final position, following in-
coming edges that represent the direction over which the maximal score was ob-
tained. These edges and a possible traceback are as follows, giving the alignment

T - - - T C A T
T G C A T C G T

+5 -6 -6 -6 +5 +5 -2 +5
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T
T

−
G

−
C

−
A

T
T
−
T

−
C

−
G

T
T
−
T

T
T

T
−

T
G

T
C
−
C

T
A
−
A

T
T

−
C

−
G

T
T
−
T

C
−

C
G

C
−

C
C

−
A

−
T

C
C

−
G

−
T

A
−

A
G

A
−

A
−

A
A

−
T

−
C

A
G
−
G

A
T
−
T

T
T

T
−

T
G

T
−

T
−

T
−

T
T

−
C

−
G

T
T
−
T

T
−

T
−

C
−

A
−

T
−

−
T

−
G

−
C

−
A

−
T

−
C

−
G

−
T

Two other alignments with optimal score can be read from the diagram.

TTCA - - - T
TGCATCGT

TTCAT - - -
TGCATCGT

♢

Edit Distance. The edit distance between two strings, also called Levenshtein
distance, counts the minimum number of operations to change one string into
the other. Possible operations are inserting or deleting a character, as well as
changing a character into another. This corresponds with alignment with match
score 0, while mismatch and insdel are both −1.

LCS. A string z is a subsequence of string x if z can be obtained by deleting
symbols from x. Formally z is a subsequence of x = x1 . . .xm if we can write
z = xi1xi2 . . .xik for i1 < i2 < · · ·< ik. A longest common subsequence of strings x
and y is a string z of maximal length such that z is subsequence of both x and y.
Although z itself may not be unique, the length of a longest common subsequence
of given strings is.

The problem of finding a longest common subsequence can be answered by
computing the alignment where match is rewarded by +1 while mismatch and
insdel penalty are both 0.

A T T G C C - A - - T T
A - T - C C A A T T T T

Local Alignment Global alignments attempts to align every character in both
sequences. This is useful when the sequences are similar and of roughly equal
size. In some cases one expects only parts of the strings to be similar, e.g., when
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Figure 1: Global versus local alignment.

both strings contain a common motif. In such cases one tries to find segments of
both strings that are similar, using local alignment (known as Smith-Waterman).
This uses a simple adaptation of the global approach, and is the main topic of this
section.

Another variant is when one wants to determine whether one string can be
seen as extending the other, following a partial overlap. This is motivated by
sequence reconstruction based on a set of substrings. Also this can be solved by
an adaptation of the dynamic programming technique.

Given two strings x and y, and a scoring system, we want to find substrings x′

and y′ (of x and y respectively) such that the similarity of x′ and y′ is maximal.
The main difference with the global version of the algorithm is that we can

forget negative values. Whenever a partial alignment reaches a negative value it is
reset to zero. As we want to find substrings with maximal alignment we can drop
the pieces that give negative contribution. In the same vein the value of the local
alignment is not found in the bottom-right corner of the matrix, but rather it is the
maximal value found in the matrix. Indeed, extending the maximum alignment
will add negative contribution to the value so far obtained, and this part is skipped
when stopping at the maximum.

This means we obtain the following algorithm for the computation of local
alignment. It differs in two aspects from global alignment. The initialization sets
the borders to zero (not the multiples of the gap penalty), and the maximum for the
computation of the non-border cells now includes zero, to avoid negative values.

A[i,0] = 0 0≤ i≤ m
A[0, j] = 0 0≤ j ≤ n

A[i, j] = max


A[i, j−1] + g
A[i−1, j−1]+ σ(xi,y j)
A[i−1, j] + g
0

1≤ i≤ m,1≤ j ≤ n
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Figure 2: Semi-global alignment: finding overlap or containment.

Example 10.11. Local alignment of ATTCAT and TGCATCGT with scoring sys-
tem match 2, mismatch -1, and insdel -1.

The following matrix is computed by the dynamic programming algorithm.
It indicates that the score of the optimal local alignment equals 7, which is the
maximal value in the matrix.

− T G C A T C G T
− 0 0 0 0 0 0 0 0 0
A 0 0 0 0 2 1 0 0 0
T 0 2 1 0 1 4 3 2 2
T 0 2 1 0 0 3 3 2 4
C 0 1 1 3 2 2 5 4 3
A 0 0 0 2 5 4 4 4 3
T 0 2 1 1 4 7 6 5 6

Tracing back the matrix from the maximal position until a zero is reached one
finds one of the following alignments.

TTCAT
TGCAT

T - CAT
TGCAT

♢

Semi-Global Alignment. In some contexts we are interested in specific overlap
between the strings x and y. For instance, when we have a set of (overlapping)
random segments of a long string we may reconstruct the original long string using
the segments, after we have determined their order using the overlap between the
strings. Hence we are interested in determining the maximal overlap consisting of
a suffix of x and a prefix of y. As another example when y is much shorter than x
it is not very useful to consider the global alignment of x and y to find the possible
position of y within x. See Fig. 2 for a pictorial representation of these two cases.
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Both these cases share a property with local alignment that gaps at the begin-
ning or the end of one of the strings should not be penalized. As a consequence
these problems can be solved in a similar manner. Where initial gaps are free we
can include this in the initialization phase of the algorithm (see local alignment),
not counting the gap panelty in the first row or column of the matrix. Where final
gaps are free we solve this in the final phase of the algoritm. The solution then is
not found in the bottom-right cell, but rather is the maximal value on either bottom
row or rightmost column.

References. V.I. LEVENSHTEIN: Binary codes capable of correcting deletions, inser-
tions, and reversals. Soviet Physics Doklady 10 (1966) 707–710.

S.B. NEEDLEMAN, C.D. WUNSCH: A general method applicable to the search for sim-
ilarities in the amino acid sequence of two proteins. Journal of Molecular Biology 48
(1970) 443–53. doi:10.1016/0022-2836(70)90057-4

T.F. SMITH, M.S. WATERMAN: Identification of Common Molecular Subsequences.
Journal of Molecular Biology 147 (1981) 195–197. doi:10.1016/0022-2836(81)90087-5

10.4 Other methods ⊠
The method of Boyer-Moore also takes into account the letters seen in the text
at a mismatch. Moreover it works backwards, starting from the last letter of the
pattern. If the last letter of the pattern does not fit the letter in the text, and that
letter does not occur in the pattern at all, then we can shift the pattern completely
over its present interval. Except for finding the first occurrence of the pattern in
a string one might ask related questions, like how many instances of pattern can
be found in text, or what is the longest string that appears at least twice in text.
This leads to a surprising efficient data structure that preprocesses the text (not the
pattern), called Suffix Tree and Suffix Array.
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Opgave
1.a) Bij het algoritme van Knuth-Morris-Pratt berekenen we failure links voor

ieder van de posities in het patroon dat we zoeken. Wat weten we van het
patroon als gegeven is dat de failure link van positie k gelijk is aan r?

b) Bereken op efficiënte wijze de failure links voor het patroon P = abacaaba.

c) We zoeken naar P in de tekst T = abab caab aaab acab acaa baba (hier
staan de spaties louter voor de leesbaarheid). Geef nauwkeurig aan hoe het
zoeken volgens het KMP-algoritme gebeurt. Welke letters worden telkens
met elkaar vergeleken?

d) Geef een voorbeeld van een type patroon waar KMP significant sneller
werkt dan het naïeve algoritme.

(Het naïeve algoritme om patronen in een tekst te zoeken werkt als volgt: we
leggen het patroon aan het begin langs de tekst en we vergelijken patroon
en tekst letter voor letter. Wanneer er verschil optreedt, schuiven we het
patroon één letter verder en we beginnen opnieuw.) Mrt 2016
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Standard Reference Works
Some of the sections carry references to chapters of the books that are listed below.
Other references may carry a DOI (digital object identifier) linking to the original
paper of a certain data structure or algorithm. These papers are not always open
access, but most of these can be retrieved within Leiden University.

The Leiden University course DATASTRUCTUREN 20XX is based on the books
by Drozdek and Weiss. Some (otherwise logically fitting) topics are skipped, as
they were part of the predecessor course ALGORITMIEK which uses the book by
Levitin. Topics on Sorting are presented in the course COMPLEXITEIT.

T.H. CORMEN, C.E. LEISERSON, R.L. RIVEST, C. STEIN. Introduction to Al-
gorithms (3rd ed.). MIT Press and McGraw-Hill 2009. [new edition in 2022]

A. DROZDEK. Data Structures and Algorithms in C++, 4th / International Edition.
Cengage Learning 2013.
D.E. KNUTH. The Art of Computer Programming (TAoCP), Volume 1: Funda-
mental Algorithms, 2nd ed., Volume 3: Sorting and Searching. Addison-Wesley,
Reading, MA, 1973. [latest third ‘boxed’ edition 2011]

A. LEVITIN. Introduction to the Design and Analysis of Algorithms. (2nd Edi-
tion) Pearson International 2007. [This is not the latest edition]

M.A. WEISS. Data Structures and Algorithm Analysis in C++ (4th edition). Pear-
son 2014.

Links
Cyan links lead to outside the document, to the original publications or Wikipeda,
for example. Red links lead to other positions in the document. If you are using
Acroread, then you can return to the previous position by pressing alt-←.
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