
Leiden University

Computer Science

Mobile radio tomography:

Object detection using autonomous unmanned vehicles

Name: Leon Helwerda

Date: March 9, 2018

1st supervisor: Walter Kosters (LIACS)

2nd supervisor: Joost Batenburg (CWI & MI)

MASTER’S RESEARCH PROJECT REPORT

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Mobile radio tomography: Object detection using autonomous unmanned vehicles

Abstract

Radio tomography applies low-energy radio signals to measure and reconstruct
physical properties of objects within an environment. Currently, this technique is based
on measurements from static sensors. We propose a mobile setup that could improve
the reconstruction. We explore the possibilities for using unmanned vehicles to create
a mobile sensor network. The vehicle must detect objects and avoid collisions during
a scanning mission. We investigate available software and hardware. A new toolchain
determines a trajectory using distance sensors. We implement safety checks, mapping
components and visualizations. The vehicle is simulated within different environments.
Our experiments show that preplanned missions can only function within an unknown
environment if we use artificial intelligence to make quick decisions during the mission.

Contents

1 Introduction 2

1.1 Problem statement . 4
1.1.1 Motivation . 4
1.1.2 Applications . 5

1.2 Approach . 5
1.2.1 Team . 6

1.3 Overview . 6

2 Related work 7

2.1 Toolchains . 7
2.2 Hardware . 7

3 Drones and other vehicles 9

3.1 Requirements . 9
3.2 Drone regulations . 10

4 Implementation 11

4.1 Overview of the components . 11
4.2 Simulations . 12

4.2.1 Vehicle . 12
4.2.2 Geometry . 13
4.2.3 Environment . 14
4.2.4 Visualization . 15
4.2.5 Distance sensor . 16
4.2.6 Servo . 18

4.3 Missions . 18
4.3.1 Monitor . 19
4.3.2 Memory map . 20
4.3.3 Planned missions . 20
4.3.4 Guided missions . 21

5 Experiments 22

5.1 Setup . 22
5.2 Results . 23

6 Conclusions 24

6.1 Further research . 24

References 25

1

Leon Helwerda

1 Introduction

Radio tomography is an emerging collection of techniques that can detect and localize
objects and people within an environment without any markers or devices on the objects of
interest themselves. The technique makes use of wireless transmission sensors that send and
receive signals. The signals are then intersected and attenuated by the objects, depending
on their density. The gathered signal strength measurements allow us to derive information
about properties of the objects and use radio tomographic imaging (RTI) to reconstruct
an image that resembles the actual situation [24].

Figure 1: A radio tomography network with static sensors that send and receive signals.
The objects inside the network are reconstructed using the measurements [24].

This network, as illustrated in Figure 1, requires many static sensors in order to reconstruct
objects with enough detail and less noise [12]. This means that deployment of a network
at a random location is impractical. By using mobile sensors, we can make network more
dynamic and require fewer assumptions about the environment. This also decreases the
necessary number of physical sensors by placing them at different locations after every
signal sweep. This allows more freedom to scan the environment, so that we can adaptively
determine the regions of interest.

A dynamic setup brings new challenges that we need to research. Reconstruction becomes
more computationally expensive and the result may be noisy due to interference. Problems
arise if not all measurements are available. We need to gather enough signal strength
measurements to perform 2D reconstruction, which can be extended to 3D reconstruction.
Instead of having static positions at which we always measure, we now need to determine
a strategy for the positions while scanning.

We propose this mobile radio tomography variant and solve the problem of positioning the
sensors through the use of drones. These are flying vehicles that carry a small payload
and move between locations. There is an increase in the use of drones and other small,
unmanned vehicles for various real-life applications. Reconnaissance missions can be used
in, e.g., the security and military sectors. Particular contexts are crowd control [19] and
identification of objects and people. Drones with mounted cameras can also be used for
professional filming. In scientific research, we can apply the concepts related to autonomous
movement and artificial intelligence (AI) to perform dynamic experiments. This allows us
to turn the static sensor network into a mobile setup.

2

Mobile radio tomography: Object detection using autonomous unmanned vehicles

We can remotely operate a drone, such as the one shown Figure 2, or let it fly around
autonomously. A plane or a miniature driving car also support these modes using specific
hardware suited for controlling the rotors, motors and servos on the physical device. A
flight controller acts as an interface between the decision-making actor and the physical
mechanisms. The AI actor can issue commands remotely if the flight controller is capable
of receiving those wireless signals. A remote decision maker does have the problem of
latency before the command is acknowledged, and thus a local AI actor running on the
vehicle can be preferable. We achieve this using a companion computer that is directly
connected to the flight controller and can run the AI actor.

Figure 2: An example bare-bones quadcopter drone [2].

This imposes hardware limits on the AI, since the small computer does not have the
necessary clock cycle frequency or specific optimized chip components to perform overly
complex calculations in real-time. Image recognition and reconstruction tasks fall outside
the reach of this equipment. We opt for simple sensors that give a distance measure to
other objects without lots of processing, unlike a full-scale camera.

Although the vehicle can operate autonomously, the realization of a ground station is
still desirable. The ground station monitors the current status of the vehicle and a human
operator can take action in case of problematic behavior. The ground station also performs
the reconstruction tasks. We then need bidirectional communication using a lightweight
protocol. Additionally, a swarm-based solution is possible when unmanned vehicles inform
each other about dangers or features of interest.

Our research focuses initially on implementing an autonomous vehicle control toolchain.
The code simulates, plans and runs missions for unmanned vehicles, and makes intelligent
decisions based on sensor information during the mission. We then use this toolchain to
perform experiments and proof-of-concept missions in order to verify whether it is working
as expected, or in which cases the mission is unable to decide on a safe trajectory within
its environment.

This research project is created in association with the LIACS Institute of Advanced
Computer Science of Leiden University as well as the CWI research centre for mathematics
and computer science in Amsterdam, under the supervision of Walter Kosters and Joost
Batenburg. We provide a complete profile of the research team in Section 1.2.1.

3

Leon Helwerda

1.1 Problem statement

The project as a whole centers around the problem of mobile radio tomography. The major
parts of this problem are autonomous control of unmanned vehicles, sensors that send and
detect a form of radiation through objects, and the reconstruction of this information
into a visualization of the internal contents of the objects. We use a simplified variant of
the WiFi messaging protocol known as ZigBee, which operates at a frequency spectrum
around 2.4 GHz [17].

This thesis states the first subproblem in more detail and attempts to find solutions for
this part only. However, the context of this subproblem is of importance in its elaboration,
since the task is to plan a trajectory around the relevant objects in order to scan them.

Flight planning and unmanned vehicle operations have their own subproblems which we
need to worry about. The planning phase revolves around whether preplanned paths or
dynamically-chosen trajectories in fact solve the problem at hand. We assess the benefits
and disadvantages of these types of missions. During the mission itself, we need to keep the
vehicle in a safe position so that it can perform the necessary tasks. The vehicle must visit
a certain sequence of locations. We assess the sources of information that are available to
detect our position within the environment, such as GPS, altimeters and distance sensors.

We also need to tackle physical constraints of the hardware. These restrictions include
operating speed and maximum load of the vehicle. The cable connections to the peripherals
and sensors must be secured tightly so that it does not become loose during flight. Finally,
the software-level interfaces between the companion computer and flight controller have
to function quickly and correctly.

1.1.1 Motivation

As mentioned in the introduction in Section 1, the use of autonomous vehicles presents
many research opportunities. We can transform a static experiment into a dynamic or
mobile approach. In our case, we wish to replace a sensor network that operates with a
large number of sensors at fixed positions. The new setup instead uses fewer sensors that
are moved around.

This setup should be able to replace the static sensor network with fewer nodes and still
perform at least the same kinds of measurements as the static network. There may be a
downgrade in the real-time reconstruction of the detected objects, since the sensors cannot
be in multiple places at the same time. Also, the data needs to be sent to a ground station
before it can be processed. The main point is to be able to perform scans at different
altitudes and more locations, in an effort to improve the reconstruction quality altogether.

The intention is to make this novel setup easy to deploy with a low budget. The distance
sensors and tomography communication chips are quite cheap, and a companion computer
can also be purchased easily with the necessary power cables and battery packs. Prices for
drones and other radio-controlled vehicles range from budget customer models to elaborate
professional products. The most expensive part may very well be the flight controller which
binds all the physical components together and can ensure a safe flight. We use readily
available sensors and other hardware, so that the principle can be reused in real-world
applications with the use of, e.g., WiFi antenna stations.

4

Mobile radio tomography: Object detection using autonomous unmanned vehicles

An important rationale of our research is that it is a novel approach toward a widely
investigated problem where multiple scientific fields meet. Radio tomography has a basis of
mathematical models and physical properties. Meanwhile, drone operations also make use
of such concepts in trajectory planning and flight movement. This allows for an interesting
combination of theoretical and mathematical foundations, realized within the boundary of
computer science by means of an AI actor, and taking place within a physical environment.

1.1.2 Applications

Radio tomographic imaging is a technique for reconstructing an image of objects within
a specified area by sending out waves of radiation and detecting them at collectors. An
object located between the sensors attenuates and reflects the radiation, causing a different
signal strength at the collector. There is a large foundation of tomography theory to make
the reconstruction feasible. There exist applications in the medical diagnostics field [3].

Whereas medical imaging uses high-energy radiation to accurately detect whether and to
what extent a ray is blocked by the objects of interest, we reconstruct tomogram images
using waves in the electromagnetic spectrum that have less energy. Emitting the waves
then requires less power, making it feasible to use a battery source for powering the sensors.

With a lower power also comes a much lower risk of permanent damage caused by radiation.
This opens up possibilities for tomography in applications that frequently involve biological
materials such as humans without concerns for radiation dose. In fact, many of these
applications correspond to the use cases mentioned in the introduction in Section 1. We
can use tomography to detect whether there are people inside a building, which is useful
for burglar detection and other security purposes. If the building is on fire, for example,
the fire brigade can detect from a distance whether any people need rescue.

There are drawbacks to the low-power tomography approach that hinders its widespread
application. The waves might not fully penetrate the objects. It is also difficult to distin-
guish between an attenuated signal and one that is received fine. Noise filtering is essential
to achieve a recognizable result. Even detecting anything relevant is great. The resulting
images only show“blobs”of detected objects. This has the benefit of preserving the privacy
of people within the scan region since there are no determining features [24].

To improve the reconstruction phase, we can use additional data collected using the un-
manned vehicle. The distance sensor is not only meant for avoiding collisions with objects,
but to detect the exterior walls of the building, for example. This convex hull can be used
to ensure that the reconstructed image is calculated to be inside these boundaries.

1.2 Approach

The project is split up in multiple phases related to operating unmanned vehicles, com-
municating between the tomography sensors [17] and the reconstruction and visualization.
Section 1.1 summarizes these phases, and Figure 3 provides a high-level overview of them.

Trajectory
planning

Mission
monitoring

Wireless
measurements

Tomography
reconstruction

Tomography
visualization

Figure 3: Flow diagram of the high-level phases of the toolchain

5

Leon Helwerda

This thesis focuses on the first phases of autonomous unmanned vehicle control. We state
the desired applications, research existing hardware and software support, implement a
software toolchain that plans and monitors missions, and experiment with the entire setup.

A large part of the research involves simulations before moving on to a physical setup.
This roadmap is mostly for safety reasons, so that we test the implementation without
crashing the vehicle into real objects. This also allows for precise comparisons of missions.
We can quickly tune parameters with less potential for errors [23].

1.2.1 Team

In order to research all the fields related to the drone tomography project and to divide
the tasks among the people responsible for it, we formed a research group consisting of
members from Leiden University as well as CWI Amsterdam. The group consists of the
following members (in alphabetical order):

• Joost Batenburg (CWI Amsterdam): Supervisor, diverse knowledge of tomography
theory and radio tomography imaging (RTI)

• Folkert Bleichrodt (CWI Amsterdam): Researcher in RTI and robot movement

• Leon Helwerda (Leiden University): MSc student, focus on drone operations

• Walter Kosters (Leiden University): Supervisor, diverse knowledge in the field of
artificial intelligence

• Tim van der Meij (Leiden University): MSc student, focus on ZigBee sensor control
and communication

The group is frequently assisted by Daniel Pelt, Zhichao Zhong and Xiaodong Zhuge, all
from CWI Amsterdam, with useful feedback on theoretical basis of tomography, drone
research and antenna properties. We also appreciate the initial help and suggestions from
Willem Jan Palenstijn (CWI Amsterdam) and Alyssa Milburn. This allows our research
to base upon and continue with earlier projects [16, 18].

1.3 Overview

The remainder of this thesis is structured as follows. We investigate existing software and
hardware that may be of use in our implementations in Section 2. We provide insights into
the scope of the thesis, namely drone operations, and state concrete definitions that are
relevant within this scope in Section 3. This includes formal requirements of the physical
vehicle in Section 3.1 as well as a study of applicable drone regulations in Section 3.2.

We then present an overview of the implementation for unmanned vehicle control, as part
of our toolchain in Section 4. The implementation comprises of several components that
are related to simulations of the environment, actual missions, or both. We describe the
components related to these two elements in Sections 4.2 and 4.3, respectively.

Finally, we report on several experiments with the toolchain in Section 5. We provide
details of the setup of each experiment in Section 5.1 and present the results in Section 5.2.
We then conclude the project’s thesis with some observations during the experiments in
Section 6. In Section 6.1, we mention the problems that the project continues to research
as well as additional subjects that may become future research.

6

Mobile radio tomography: Object detection using autonomous unmanned vehicles

2 Related work

In this section, we delve into previous experimental research on drone operations. This is
mostly a practical overview of existing solutions, rather than a pure literature study. We
discuss and elaborate on the workings of several software toolchains in Section 2.1, and
review the flight controller hardware that they run on in Section 2.2.

2.1 Toolchains

There exists a variety of software collections related to steering and driving unmanned
vehicles remotely or autonomously. In particular, recent efforts focus on multiple unmanned
aerial vehicles (UAVs), such as drones, miniature planes and rover cars, using an interface
that is compatible between all of them. There are open source software packages that are
designed to interface with each other and remain as versatile as possible for the end user.

The toolchain that we focus on is a collection of three software layers. The first package
is ArduPilot [2], which operates on the lowest level, namely the flight controller. It can
control rotors of drones, flies fixed-wing planes and powers servo motors of rover cars.
ArduPilot knows how to make a UAV take off by itself, can keep a mission plan based
on waypoint locations that the vehicle visits in order, and can return to the launch site
relatively easy. The flight controller can be connected to various peripherals. The ArduPilot
code supervises these sensors and takes very simplistic autonomous decisions.

ArduPilot provides a simulator to test the vehicle’s functioning with various simulated
scenarios, such as a GPS sensor failure and random faulty readings. However, both the
real binary program and the simulator cannot be started standalone, since it needs to
receive parameters and other information regarding the mission plan. This can be received
via various communication channels from a ground station, which can be a directly-linked
companion computer or another program in simulation.

This telemetry interface makes use of a self-contained communications protocol known
as MAVLink [14]. The protocol supports various kinds of packets that can be sent to or
received by the flight controller, either regarding status updates or commands to change
the vehicle mode or operating parameters.

The companion computer can also interface with MAVLink using various programming
language bindings. MAVLink comes together with a Python package known as MAVProxy,
which can create minimal ground stations via additional links.

This interface works seamlessly with the Python modules related to DroneKit [1], which
allows user-created scripts and modules to communicate with the flight controller program
using an abstracted interface. We receive information regarding the vehicle position as the
status updates come in. For example, we be notified of low battery levels automatically.

2.2 Hardware

In order to control an unmanned vehicle with our own mission scripts, we need a flight
controller that can communicate with a companion computer using the toolchain described
in Section 2.1. It also has to be compatible with the vehicle’s motor control, which is a
matter of having the correct wiring.

7

Leon Helwerda

In the open source community for autonomous or remote control of drones and rovers, there
are several hardware lines for flight controllers. In this section, we discuss two relevant ones:
the Pixhawk from PX4 [15] and the Navio+ from Emlid [7]. Both are compatible with the
ArduPilot flight controller and the MAVLink protocol. They can connect with various
peripherals through external ports.

Often, the flight controller is combined with a companion computer, which is usually a
Raspberry Pi (RPi). This miniature computer has the dimensions, computational power
and hardware interfaces that we want. In the remainder of this section, we compare the
two flight controllers as a means of determining which best fits our needs.

(a) Pixhawk [15] (b) Navio+ on Raspberry Pi [7]

Figure 4: Commonly used flight controller hardware in unmanned vehicles.

The Pixhawk is a mature flight controller, shown in Figure 4a. It has failsafes and internal
backup systems, to ensure that it remains safe in, e.g., a flight. It can connect with many
peripherals, and the ArduPilot documentation uses the Pixhawk as a reference for many
demonstrations on how to assemble it. Although it is relatively small, it does have an
awkward model. It cannot mount a companion computer, instead it needs to connect to
the Raspberry Pi using wiring. Also, there may be some deficiencies with the RC pins that
make it potentially unsafe to connect peripherals that require a high power.

Navio+ is a more modern but well-backed project from Emlid. It has power monitoring
and a triple redundant power supply, so that the flight controller always has power in a
reasonable mission radius. There is a bunch of documentation from Emlid [7], which is not
always very specific. The Navio+ connects directly with the Raspberry Pi via the general
purpose input and output (GPIO) pins by mounting on top of it, so that it is smaller and
wiring as shown in Figure 4b. The RPi GPIO pins extend to ports for peripherals so that
either the flight controller or the RPi itself can access them. The additional servo rail has
its own power supply for motor and servo control, so that it cannot steal power from the
main hardware.

8

Mobile radio tomography: Object detection using autonomous unmanned vehicles

3 Drones and other vehicles

This section introduces the main concepts regarding autonomous and remotely controlled
vehicles. We distinguish the different types of unmanned vehicles and specify their benefits
and drawbacks.

In Section 3.1, we investigate the expectations of the vehicle and the hardware mounted
on it and deduce the physical requirements. Section 3.2 describes the current regulation
regarding flights with drones and other UAVs within applicable jurisdictions.

3.1 Requirements

The use of drones is a very compelling idea, however one should be cautious not to decide
too quickly. Unmanned vehicles come with various features and exist in many price ranges.
The ability to mount a camera on a drone may be helpful for replaying the mission, even if
we do not use image processing to detect objects. However, a fully advanced system with
a large number of rotors, servos and mount points is exorbitant for our research.

It makes sense to describe what the project necessitates as a means for selecting what kind
of unmanned vehicle fits with the purpose. The following properties should be taken into
account:

• The vehicle must be able to propel itself autonomously without wires. The vehicle
may have miniature dimensions, with no driver on board. Instead, the motor and
steering controls must be compatible with the hardware flight controllers described
in Section 2.2 and the software toolchains running on it, as shown in Section 2.1.

• The vehicle should also have some form of remote control. The toolchain supports
additional ground stations that can take over control in case the autonomous mode
fails, which is desirable for safety but not required in controlled situations.

• The vehicle should operate at a reasonable speed. Our missions are not lengthy, but
the vehicle should have a reasonable range depending on the battery capacity and
motor power. This cannot take such a long time that the experiment’s measurements
are no longer useful.

• The vehicle must be able to carry its payload without hindering its operations. While
the vehicle does not need to carry much else than the flight controller, companion
computer and mounted peripherals such as sensors, it must carry these components
without damaging or losing them.

• The vehicle must have a way to stabilize itself such that it can stand still at one
position. This is useful for accurate measurements. Especially when it is close to
obstacles, the vehicle may need to halt and decide a new route in place.

• There must be a means to point the distance sensor in different directions on the
horizontal plane. As explained in Section 4.2.5, the distance sensor works in a straight
line, and rotating it allows us to detect more of the environment. We can achieve this
by mounting the sensor on a servo, or by rotating the vehicle as a whole, if possible.

9

Leon Helwerda

3.2 Drone regulations

There are few constraints to the use of autonomously or remotely driven small ground
vehicles. One must avoid public roads and busy locations. This means such miniature rover
cars can be driven around inside or outside, which is helpful for comparisons between test
runs and actual demonstrations.

On the other hand, there are laws and regulations regarding flights with unmanned aerial
vehicles. These rules differ by jurisdiction and can be more or less stringent depending
on location. In our project, we only plan flights above the mainland of the Netherlands,
therefore we describe the regulations that hold in the jurisdiction of the Netherlands.

As of July 1st, 2015 the laws and regulations were tightened, which further restricts the
use of drones for recreational or non-professional commercial use. Unlawful use or breaking
these regulations results in a fine or a confiscation of the drone [5].

Drones or UAVs are sometimes calledmodel air planes or lightweight unmanned air planes.
The following restrictions apply to these vehicles [21]:

• A drone must give priority to planes, helicopters, gliders, balloons and airships.

• In other cases where two UAVs cross each other at or around the same altitude,
the UAV must grant priority to the vehicle at its right hand side. (Note that this
regulation does not provide a solution in the case of an impending frontal collision.)

• During flight, the vehicle and the surrounding air must be clearly visible from the
ground. This means the weather conditions and the surface must be appropriate —
flying over a dense forest might not be allowed in this sense. Furthermore, the flight
can only be performed during the daylight period, with an extra 15 minutes margin
before sunrise and after sunset. The controller of the vehicle must keep a clear sight
of the model plane.

• It is not allowed to fly over urban areas with contiguous buildings, works of art, or
industrial areas, including harbors. Also restricted are crowded areas, railway lines
and roads where the speed limit is 80 km/h or more (including highways). It is
advised to keep a 150 meter distance from these areas [5]. It is not allowed to fly
within a 3 km radius of any kind of airport. A drone may not fly higher than 120 m.

For professional drone operators, there exists a special certificate which simultaneously
requires them to adhere to more criteria, but also allows a little more leniency with the
rules. In any case, the following restrictions that normal planes have, no longer apply:

• There is no need to have an altimeter or other navigation devices, and a flight plan
does not need to be submitted. Also, the vehicle does not need to reply to requests
from an air traffic control station.

• The captain does not need to be on board of the unmanned vehicle.

• It is allowed to make photos from the sky. A license to make aerial recordings is no
longer necessary. It is still not allowed to make photos of military bases [5].

The important bottom line here is that there are no regulations regarding flying a drone
indoors, at least as long as the owner of the building allows such activities. It is therefore
possible to start testing a drone within a large hall. This does have risks involved with
nearby objects and people, thus the coverage of insurances should be examined beforehand.

10

Mobile radio tomography: Object detection using autonomous unmanned vehicles

Flying a drone outside buildings is a lot more restricted in this sense. The only suitable
locations are large, open spaces without any roads or other infrastructure nearby. Perhaps
a location at a university campus could still suffice, given that there is some spacing
between buildings or undeveloped pieces of land. We must still keep a safe distance from
railways and busy roads.

This means that for safety, one would have to travel to a more natural landscape. In the
Netherlands, one is often close by roads or railways, and having to avoid them makes it
difficult to actually reach that location.

4 Implementation

In this section, we describe our contributions to the toolchain regarding drone operations
and simulations. We first introduce the new features in an overview of the toolchain, where
we describe the components in a summarized form. This overview is given in Section 4.1.
We explain the components that are mostly related to the simulations in Section 4.2, and
the mission components that run in simulations or physical tests are laid out in Section 4.3.

All components are written in the Python programming language and are meant to either
run on the vehicle’s companion computer, or on a developer computer for simulation.

4.1 Overview of the components

The overall toolchain consists of a number of components related to the distance sensor,
the environment and the trajectory path missions. Some parts of each component are
related to simulations only, some of them only function in a physical environment with
the actual hardware, and some mission components function in any environment.

The rationale between this hybrid setup is that it becomes very easy to swap out different
components with each other, which makes it easy and predictable to work with the same
code for both simulations and physical runs. This reduces the chance that problems arise
with the components themselves in actual demonstrations, since the code has already been
tested thoroughly.

Geometry
(4.2.2)

Vehicle
(4.2.1)

Environment
(4.2.3)

Visualization
(4.2.4)

Distance
sensor (4.2.5)

Servo
(4.2.6)

Memory
map (4.3.2)

Mission
(4.3)

Monitor
(4.3.1)

Figure 5: Diagram of components in the toolchain. The arrows indicate that the latter
component depends on the first component.

11

Leon Helwerda

The simulated components fall into a number of groups built on top of each other. Figure 5
summarizes the dependencies between these groups and components. In the core, there is
a physics and geometry engine that a simulated vehicle can make use of. This is used not
only by the simulated vehicle but also by the environment simulator. On top of these two
components is a group of sensor simulation classes. Finally, we develop visualizations for
the simulations.

The simulated environment and sensor components have a physical variant that only works
on the companion computer of the unmanned vehicle, after it has been connected to all
peripherals. Additionally, there are components that control the current behavior of the
vehicle and determine its mission. These components work either within a simulation or
on the physical version.

4.2 Simulations

Among the core simulations are a simple simulation engine for a vehicle (Section 4.2.1), a
number of utilities for geometry and physics simulation (Section 4.2.2), and a scene loader
and environment simulation helper component, as described in Section 4.2.3.

On top of this, we provide a simulated version of the distance sensor that makes use of the
scene to determine distances (Section 4.2.5). A simulated servo component doubles as a
tracking object for the current servo state: more details on this are given in Section 4.2.6.
The environment and current state of a vehicle are visualized with components as shown
in Section 4.2.4.

4.2.1 Vehicle

The vehicle component is an optional part of the simulation that implements simplistic
movement. As we detail in Section 2.1, there already exist tools for simulating drones,
planes or rovers. The ArduPilot engine [2] works with the actual binaries that are also
compatible with the flight controller hardware in Section 2.2. It puts the software binaries
inside a simulation loop, also called Software in the Loop (SITL), which makes the program
believe that the hardware is physically moving around while it is actually inside a simulated
environment.

The problem with the ArduPilot simulator is that it is slow to start up. Although the
binaries only need to be compiled once for each vehicle type in the optimal case, the time
that the program needs to set up is very long. This is due to numerous components being
initialized and the load time of some simulated libraries.

Additionally, while ArduPilot is able to simulate the randomness that a vehicle would
experience in reality, such as imperfect sensor readings and GPS antenna failures, it does
not provide precise means to simulate an environment. It is possible to load terrain data
with altitudes determined by satellites. This is very coarse satellite data for our purposes,
at a resolution of around one pixel per 90 meters [8]. Also, a very simple polygon-defined
geofence can be provided to the vehicle, which disallows the vehicle from leaving the
bounding box of the geofence. We rather want to disallow the vehicle from entering certain
physical objects. Both the terain data and the geofence are stored on the flight controller,
instead of defined and verified by the simulator itself.

12

Mobile radio tomography: Object detection using autonomous unmanned vehicles

For these reasons, we implement our own “mock” vehicle which is able to emulate most
of the simple movement schemes that the flight controller also performs. The replacement
engine has support for the same command sequence storage defined in ArduPilot and the
MAVLink protocol [14] described in Section 2.1. When given a target location, the vehicle
first changes its attitude to turn itself in the right direction and then moves to the given
location. The movement updates happen slowly based on intervals between checks of the
location. We also keep the current velocity of the vehicle in mind. Changing the speed of
the vehicle makes it move in its current direction until other orders arrive.

The mock vehicle component supports various ArduPilot vehicle modes. It also tracks the
home location and enables other components to check whether a location update is correct,
such as whether the vehicle did not move into an object.

4.2.2 Geometry

The geometry component is a physics engine, featuring a large number of methods that
perform calculations and conversions with coordinates, distances and angles.

Navigational tools such as flight controllers define the bearing as the direction in which a
vehicle is moving. This direction is defined in terms of three axes, pointing in the north,
east, and upward direction. In standard convention of right-handed Cartesian coordinate
systems, these directions are also called z, y, and x axes, respectively. A vehicle has a
certain direction that need not be in one of these perpendicular directions, therefore we
define this direction by means of three angles: the roll, yaw and pitch. These rotate around
the z, y, and x axes, respectively. However, the order in which they are applied in order
to get the actual attitude of the vehicle is roll, pitch, and then yaw [4].

We make use of these angles in various conversion methods, which also need to track
whether the given angles are bearings, which start at 0◦ facing forward and increase clock-
wise, or mathematical angles, which start at 0◦ facing orthogonally rightward and increase
clockwise. We convert between the variants as follows: a bearing β in radians is equal to
the angle α in radians when α = −(β− π

2
) mod 2π and vice versa, β = −(α− π

2
) mod 2π.

We also have methods for comparing angles, such as calculating the difference between two
angles a1, a2 and finding the direction in which a1 reaches a2 the quickest. These methods
also accept angles that are in different periods of the unit circle. The radial difference ignor-
ing periodicity is (a1−a2+π) mod 2π−π. The sign of the difference is unrelated to which
angle is smaller than the other. Instead, it indicates whether counterclockwise or clockwise
rotation brings a1 to a2 the fastest, based on negative or positive sign, respectively.

Aside from bearings and angles, the other geometry utilities mostly deal with locations
and distances. The geometry has two modes for the coordinate system: all locations can
either be defined in meters or using geographic coordinates of the WGS84 system [20]. In
the former system, we calculate distances between locations using Euclidean distance, and
determine new locations based on trigonometric angles and distances. The WGS84 system
takes the curvature of the earth into account, while the basic operations remain reusable.
The locations can be relative to a home location, or a global coordinate.

Finally, the geometry contains various intersection methods. This allows detecting whether
a given point is within a 2D polygon, a 3D plane or a 3D polygon. By extension, we
can detect the intersection of a line, a ray or a line segment with any of these shapes.
Section 4.2.5 provides more details on the use of these methods.

13

Leon Helwerda

4.2.3 Environment

We implement an environment simulator that makes use of the physics simulators from
Sections 4.2.1 and 4.2.2, respectively. This component keeps provides a central location
for retrieving current vehicle properties. Also, the environment instantiates and tracks the
sensors related to the environment, such as the XBee sensor interfaces, the distance sensor
from Section 4.2.5 and the servo container described in Section 4.2.6.

The simulated sensors can be easily replaced by physical versions. Whether we use a real
or virtual distance sensor depends on the type of environment we have, whereas the XBee
sensors can work with either the simulated socket interface or the actual communication
sensors connected to USB ports [17]. It can also work standalone with no sensors at all.

The simulated environment in particular has the option of loading a scene file. If it is not
used, a simple environment with some wall-like objects and poles is created. The importable
scene files have to be Virtual Reality Modeling Language (VRML) files. VRML is a stable
and fairly old specification for structured storage of information about static objects and
their behavior within a 3D scene [11]. An example scene is shown in Figure 6.

Figure 6: Visualization of a VRML file: a castle with a large pillar. Screenshot from the
view3dscene model browser from the Castle game engine [13].

Developers can easily create 3D game engines using VRML files. The simple but extensible
format has been used for simulation specifically for drones [10]. There are multiple libraries
available to import them. Simpler polygon file formats only support defining one object
without scene information. While VRML has been superseded by newer formats such as
X3D, it is still supported and many scenes are available or exportable to the format [13].

The VRML files contain nodes of various types, and the nodes can be nested in one
another. A simple use case for this is a Transform node, which defines rotation and scaling
operations and contains other nodes that are translated according to the affine matrices
that are determined from these operations. Objects can also be defined using a name and
reused later on in the file, except when nested within the node itself. This means that the
scene graph of all the nodes and their dependencies is a directed acyclic graph.

A node of the Shape type contains coordinate information. These define the polygons that
make up the object, as well as texture locations and so on. We are only interested in the

14

Mobile radio tomography: Object detection using autonomous unmanned vehicles

polygon coordinates of these actual nodes, and the transformations we have to apply to
make up the entire scene.

We load all these objects so that it can be used by the distance sensor as described in
Section 4.2.5 and for visualization in Section 4.2.4.

4.2.4 Visualization

The ArduPilot simulator has a simple access script with options to monitor the mission
via a terminal, including outputs from the missions described in Section 4.3. Secondly, one
can verify whether the flight controller MAVLink connections are instantiated via another
terminal emulator. Finally, there is an option to view a map of the surroundings around
a home location on Earth.

While this map is useful for viewing the relative distances of mission waypoint locations,
it does not provide enough visual cues for investigating certain problems or scenarios. The
top-down overview map still has its own purposes, and in fact is an inspiration for parts
of the memory map. We describe the memory map itself and its visualization separately
in Section 4.3.2.

Figure 7: Visualization of the castle VRML file as polygons within the viewer.

The additional visualization that we need is based on the simulated environment with the
3D scene shown in Section 4.2.3. After we load a VRML file, we can display the polygons
using OpenGL in a viewer window as shown in Figure 7. During a simulated mission, we
can display what the vehicle would currently see at its given position and angles. There is
also a script that instantiates the viewer and provides interactive control over the camera
within the environment using the keyboard or the mouse.

Controlling the camera in either case is a matter of its own. While the position could
be achieved by simply translating the entire scene loaded into the viewer in the opposite
direction, the same cannot be done with the rotational angles. This is because the yaw,
pitch and roll are applied one after another, making each axis relative to the previous
one. There is also the problem of gimbal lock, where one axis of rotation becomes “locked”
with another one due to deficiencies in the rotation matrices. Such an event would make
it difficult to control the camera correctly.

15

Leon Helwerda

Instead of using matrix transformations, OpenGL provides a method of controlling the
camera using a number of vectors. Not only the position vector is stored, but also the
vectors relative to the camera that face upward, forward and rightward. We can convert
the current yaw, pitch and roll to orthonormalized vectors, and then convert them back
again after movement to receive updated angles [4].

4.2.5 Distance sensor

The unmanned vehicle uses an ultrasonic distance sensor as its main source of information
for the purpose of object detection. This sensor sends sound waves in one direction, and
waits for the echo signal to return. This method works in a nearly-straight line. It detects
almost all types of objects up to a certain distance, regardless of texture. If the angle of
incidence is too large, then the sensor may not receive the echo signal at its location [6].
This simplistic directional sensor is a limitation to the sight of the vehicle [17]. We can
improve the range of the vehicle’s scanning ability by rotating it around itself in one place,
which is especially possible with drones. We can also mount multiple distance sensors on
the vehicle and use servos to rotate the sensors themselves, as explained in Section 4.2.6.

We focus on simulating the distance sensor within a virtual environment. We simulate the
range of the physical distance sensor by ignoring distances above a certain value. We use
geometry and intersection calculations to determine the distances algebraically.

There are three types of objects that we can simulate in our environment. In Section 4.2.3,
we introduced the VRML format, which produces objects based on 3D polygon shapes.
Determining the distance to these polygons is possible, but non-trivial. We instead first
describe two simpler types of virtual objects and how we detect their distances.

The simplest object that we can detect is a cylindrical pole. It stands perpendicular to
the ground, and it has a certain circular radius and height. When a UAV flies above this
height, it is not visible and the vehicle never collides with it. Otherwise, the pole is only
visible if the vehicle’s angle is between the two angles of the sides of the pole as seen
from the vehicle’s location. We can easily determine these angles using the position of
the vehicle and the radius of the object. One add margins to allow the distance sensor to
detect or miss when it is flying near the pole’s height or close to the sides of the pole.

We can also apply the concept of objects defined by their height to more arbitrary shapes.
We can define an object by a polygon, where each point contains the 3D positioning infor-
mation of a vertical edge reaching up to that point. We define the polygon P as an ordered
vector P = 〈p0, p1, . . . , pn−1〉 of n ≥ 2 points. Then each pair of points (pi, pi+1 mod n) —
including the pair of points consisting of the end and start point — in fact generates a
face of a 3D object. The object basically consists of vertical walls, whose topmost edges
can slope diagonally, but always connect to the next wall at an equal height.

We need to perform several steps to determine the distance to such an object. We first
check whether the vehicle’s angle α is within the minimum and maximum angles from the
vehicle to the points of the polygon, ignoring height differences and making sure that the
periodicity of the angles is the same by checking in which quadrant of the coordinate system
each angle goes. Then for each pair (pi, pi+1 mod n) we calculate several line components
within a 2D system, ignoring altitude: the slope of the vehicle’s angle mv = tan(α) with
α an angle in radians, and its latitude intercept bv = yv − mv · xv, where yv and xv are
the vehicle’s latitude and longitude coordinates, respectively.

16

Mobile radio tomography: Object detection using autonomous unmanned vehicles

For the edge pair pi and pi+1 mod n we also determine the line of the edge e. In case the
longitudes of the points are the same, the line is vertical within the 2D system, thus
me ∞ and be = 0, and we use xs = xi and ys = mv · xs + bv as the intersection point
coordinates. Otherwise, the edge line has slope

me =
yi+1 mod n − yi

xi+1 mod n − xi

and

be =

{

yi −me · xi if yi ≤ yi+1 mod n

yi+1 mod n −me · xi+1 mod n if yi > yi+1 mod n

If the two slopes mv and me are equal, then the ray from the vehicle never intersects with
the edge. Otherwise, the latter case has an intersection point

xs =
be − bv

mv −me

ys = mv · xs + bv

We then determine the distance d to this point on the same altitude using Euclidean
distance and calculate the altitude using the vehicle’s pitch β using zs = zv + β · d. We
still have to check whether the intersection point is actually on the edge, which is the case
using our construction if and only if the distance between the two points is no larger than
the distances from the detected point and the edge points.

y

x

v : y = mv · x+ bv

(yv, xv)

mv · xv

bv

α

e : y = me · x+ be

be

me · xi+1
pi = (yi, xi)

pi+1 = (yi+1, xi+1)

(ys, xs)

Figure 8: Example coordinate system with vehicle and edge line functions.

Using this construction, which is summarized in Figure 8, the object has detectable walls,
but no roof. We can make it solid using an altitude check and a point in polygon algorithm
using the topmost polygon P . We pass a ray from the current vehicle position eastward,
and count the number of intersections with edge pairs (pi, pi+1 mod n) from P . The vehicle
is inside the object if and only if an odd number of such intersections occur [22].

The distance calculations for these simple objects are somewhat reusable for the VRML
object shapes. Once we determine an intersection point, we can check whether it is inside
one of the polygon faces of an object by projecting the point and polygon in 2D, ignor-
ing the least relevant coordinate. Determining this and the potential intersection points
requires some preliminary steps, however.

17

Leon Helwerda

A VRML polygon needs at least 3 points in order to be considered complete. The polygon
P = 〈p0, p1, p2, . . . , pn−1〉 usually lies on one 2D plane within the 3D space. We determine
this plane’s normal vector r by calculating two vectors u = p0 − p1 and w = p0 − p2 and
taking their cross product :

r = u× w = (u1 · w2 − u2 · w1,

u2 · w0 − u0 · w2,

u0 · w1 − u1 · w0)

We calculate the vector ℓ of the ray extending from the vehicle’s position q by taking the
difference of two points on the line: ℓ = q− q∗. Then the ray and the plane intersect if and
only if the dot product r · ℓ is strictly positive.

We obtain the intersection point t through some additional vector calculations:

c =
−(r · (p0 − q))

r · ℓ
t = q + c · ℓ

However, if c < 0 then the point is actually on the line extending from the vehicle in
the other direction and should not be detected by the distance sensor. The point t must
still be projected and checked whether it is inside the projected polygon, ignoring the ith
coordinate, where i = argmaxj |rj |, so that the projected surface area of the polygon is
maximal.

4.2.6 Servo

A servo is a small motor that can rotate an axle, which is often used to steer autonomously.
The simulated distance sensor mentioned in Section 4.2.5 always points into one direction,
and measures the distance in a straight line. A physical version shows similar behavior [17].
This may be problematic in case there is an object that is close to the vehicle’s path, but
not completely straight ahead. It is definitely more secure if we can scan 360 degrees of
the surroundings continuously.

Instead of rotating the entire vehicle in place, which increases the time needed to perform
the mission, one can physically mount a distance sensor upon a servo motor. The servo
can be steered by the flight controller based on commands in the mission. Servos operate
by sending a power signal at high and low voltages at a certain frequency. The width of
the pulses sent in this way results in an average voltage between the low and high voltages.
This then determines the angle that the servo maintains. This technique, known as pulse
width modulation (PWM), controls the servo and makes it possible to read out its current
state. We convert the desired angle and the current PWM value back and forth in this
way. The current angle affects the calculations related to the distance sensor.

4.3 Missions

The mission components determine the trajectory that the vehicle should take in order
to achieve its goals, which include visiting a number of preselected waypoints and safely
returning home without colliding into other objects. Whereas the components described
in Section 4.2 mostly deal with simulations and abstractions of reality, the mission has

18

Mobile radio tomography: Object detection using autonomous unmanned vehicles

physical control over the vehicle. It is at a higher level than the physical engine and sensor
interfaces. We make use of the sensors to deduce what the vehicle should do to execute
the mission without failures. The mission is a basic AI agent that operates step-wise,
determining its next step based on its current situation.

Figure 9: Memory map plot of a simple projected environment. We detect a few points on
the northern (top) and eastern (right) objects. The arrow shows the vehicle’s positioning.

We categorize the individual missions into two types: pre-planned automatic missions and
dynamic missions that react to new situations. Both types operate autonomously. We show
several examples of both modes in Sections 4.3.3 and 4.3.4, respectively. The component
that controls the entire mission by checking sensors at a regular interval is aptly named
the monitor. We introduce this component in Section 4.3.1, before describing the memory
map that the monitor keeps track of in Section 4.3.2.

4.3.1 Monitor

The monitor keeps track of the sensor information and passes this along to the actual
mission. Like other components related to mission control, the monitor activates on a
regular schedule. The monitor supervises the measurements on each step. It determines
whether the measured distance to objects is too far away, so that it is dropped in case the
distance sensor has a glitch in its exactness. Also, a very low distance to objects halts the
vehicle so that it must either rescan or completely stop its mission. Otherwise, we pass
the data on to the mission for additional safety checks.

The monitor also updates the memory map with the distance measurements and can
display a plot of the map. We provide more details on this feature in Section 4.3.2. The
monitor is also responsible for tracking mission progress, and for safely returning home
when reaching the final goal or when problems arise. This includes landing the vehicle in
case it is a UAV or halting all the motors.

Certain parts of the monitor can run on their own thread in a multiprocessing environment.
We use this to let the XBee communications sensor control its own scheduling loop while
still integrating all sensors into the mission monitor.

19

Leon Helwerda

4.3.2 Memory map

The memory map keeps track of detected objects. It plays a vital role in the missions that
use it to determine a path around the objects in order to avoid collisions. The mission
monitor from Section 4.3.1 is responsible for constantly updating as new measurements
from distance sensors arrive.

Assuming that the vehicle operates on one altitude level, the memory map can be defined
as a two-dimensional array that stores a grid representation of the known environment.
Each cell in the grid relates to a square area at the given altitude. The value that we store
in the cell determines whether there is likely to be an obstacle within this area.

The memory map is finite, thus there is a space size in which we assume the vehicle to be
operating. If the vehicle goes outside this area, then we cannot ensure the vehicle’s safety.
It then stops or returns to its starting location.

We can configure both the space size and the resolution of the cells, which is deduced
from the number of cells per meter along each dimension. This allows missions within a
confined space to have some more precision in the memory map, so that it may be able
to find its way around objects with relative ease. Missions in an open environment have a
lower resolution and are thus more careful with any oncoming objects.

Although we currently only support a two-dimensional memory map, we can easily extend
it to include the altitude component as well. The memory map keeps in mind that the
vehicle may be slightly tilted, causing the detected object to be at a different position
and altitude. The reason for an initial 2D approach is that the memory map can be easily
inspected and visualized as shown in Figure 9. A three-dimensional map is only useful if
the vehicle operates on multiple altitudes, which is usually not the case for a rover on a
flat surface or a simple drone flight.

4.3.3 Planned missions

The first and simplest vehicle mode is the automated mission, designated as the AUTO

mode in the ArduPilot toolchain. This mode works by sending a sequence of commands
to the flight controller, involving a number of waypoint locations. After the vehicle is set
up, the vehicle has to move to the given locations in that order. If the vehicle is a UAV,
then it first takes off to the specified operating altitude.

This mission is easy to set up by programmatically defining the waypoints, for example by
converting their distances to the starting position to actual coordinates using the geometry
utilities from Section 4.2.2. The flight controller then determines the paths to be taken
to reach them. An example mission of this type is the Square mission, which flies in a
square around the central home location. This is based on a simple DroneKit example [1].
One can also use a mission planner to pick the waypoints on a map, or replay a mission
performed by a human.

A disadvantage to automatic mode is that one cannot deviate from the chosen paths aside
from skipping a waypoint. The AUTO mode does not keep collisions in mind. In order to
load a new mission, the vehicle has to wait until all the new waypoints are loaded and
validated, which costs time. Instead, it is possible to let the companion computer track
the waypoints in the mission on its own, of which we shown an example in the Pathfind

mission in Section 4.3.4.

20

Mobile radio tomography: Object detection using autonomous unmanned vehicles

4.3.4 Guided missions

The GUIDEDmode allows more freedom during missions than the AUTOmode of Section 4.3.3
does. This is because this mode does not make use of a predefined mission passed in the
sequence of commands, but instead accepts commands on the go. These commands can
steer, rotate and move the vehicle into certain directions, adjust the operating altitude
and speed, and so on.

This allows the mission and the monitor to react on circumstances during the mission
that were not precisely foreseen beforehand. The possibly dangerous situations can then
be handled by routines and AI algorithms that decide on the next step that should be the
safest and most useful according to the AI actor.

A very simplistic mission that operates in this mode is the Browse mission. When the
vehicle is browsing, it attempts to stabilize itself upon one position. It then turns itself
around so that the distance sensor from Section 4.2.5 can check its surroundings, step by
step. After rotating in a loop, this gives us some information about the potentially unsafe
environment we are in. This could not be performed in an AUTO mission since yaw changes
interfere with the automatic path traversal. While the Browse mission is quite useless on
its own, it is a helpful test to see if the vehicle functions correctly without any serious
danger. Also, this mission is a building block for other missions, that can use the browsing
routine when those missions are actually at unsafe locations. This allows them to achieve
the goals of visiting locations and returning home safely. Finally, the Browse mission can
make use of the servos from Section 4.2.6 to only rotate the distance sensors and not the
whole vehicle. We deduce which servo to use and what angle to pass it from the desired
yaw angle.

Another mission, Search, actually moves around in the environment. It attempts to stay
close to the relevant objects, but not crash into them. To do this, we first browse around
the vehicle using the Browse mission. We then decide to move into a direction that is close
to but not directly onto a detected point. The chosen direction is the one with the furthest
point and with the most open space next to it in a weighted equation. This should keep
the vehicle within a zone of interest around the convex hull of the object, and not fly into
the interior of objects. The Search mission starts browsing again after traveling a little
further than the chosen point, or when it is close to a new object. Search is mostly based
on readings from the distance sensor from the current browsing sweep, and does not make
full use of the memory map.

Finally, the Pathfind mission does rely on the memory map in order to determine and
correct a path. Pathfind works with waypoint locations much like the planned missions
from Section 4.3.3. The vehicle must visit the waypoints in order, but the path to it can
be altered in case there are objects blocking the current path. We use the A* algorithm [9]
to find a new path in case we detect a nearby object. To improve the algorithm, we browse
the surroundings when we are close to an object while staying in one place. We then use
all the detected points in the memory map to specify disallowed paths. The A* algorithm
works on graphs in general, and each point in the memory map has eight neighbors in
the cardinal and diagonal directions. The monotonous cost and estimation functions are
determined by the distance between the two points. We achieve a slight speed-up by using
the indices of the memory map rather than locations themselves, at the cost of some
preciseness.

21

Leon Helwerda

5 Experiments

We propose a number of experiments to determine the functioning and effectiveness of
our implementation from Section 4. We perform these experiments in a simulator. We use
different vehicle parameters that may influence the outcome. We provide the vehicle with
various environments and determine whether the missions function normally in them.

To find out how much of the environment a mission detects, we calculate the number of
detected objects in the memory map. We specify the experimental setup in Section 5.1. In
Section 5.2, we provide the results and observe some of the behavior of the tested vehicles.

5.1 Setup

The experiments mainly focus on the effectiveness and completeness of the memory map,
which we describe in Section 4.3.2. We also investigate whether the mission succeeds and
how much time it takes to finish, which can be determined using an in-program timer.

(a) castle (b) trees

(c) house floor plan

Figure 10: Visualization of the environments in which the vehicle is tested. The starting
positions for the castle and trees scenes and the floor plan of the house are shown.

Comparing the memory maps between various runs is more difficult in this regard. We can
look at the monitor plots from Section 4.3.1, but it does not provide a ground for exact
measurements. Instead, we use the memory map data itself.

22

Mobile radio tomography: Object detection using autonomous unmanned vehicles

Every time a mission detects an object and stores it in the memory map, we expect other
missions to detect that object in the same environment as well. Most missions do not cover
the entire surface of their operating altitude, thus they never detect every single point.
However, we can determine which mission detects the most points.

The most important goal of our missions at this point is to finish safely. Thus the vehicle
should never move into an object that it had not detected. Our environment simulation
has a feature that ends the mission in case the vehicle moves through an object’s polygon,
so we can determine this without the memory map. Still, we want to see whether the
memory map is actually filled with that point in this case, since that can signal a problem
with the detection or with the vehicle moving in directions that are not necessarily safe.

In order to speed up and simplify the experiment setup, we run the simulated vehicle under
our own mock vehicle simulation from Section 4.2.1. We do not use the randomization
that the ArduPilot simulator provides, since it can influence the results in multiple ways,
including detecting points more often than in the baseline situation. We use different
simulated environments from VRML files, which are shown in Figure 10. These are the
castle pillar scene (Figure 10a), a closed scene within a house with a floor plan shown
in Figure 10c, and a scene with uneven ground and trees (Figure 10b).

5.2 Results

We run almost 600 experiments using different permutations of parameters for the vehicle
and the environment. These parameters include safety distances, memory map resolutions
and space sizes. We change the default monitoring frequency of 0.5 seconds for the house
environment to 0.25 seconds, so that the vehicle can quickly take actions. We describe the
influence of some of these parameters and show the best results of each mission.

castle trees house

Square 6 7 11
Browse 13 49 68
Search 140 65 258
Pathfind 74 37 109

(a) Best counts

castle trees house

Square 00:01:46 00:00:00 00:00:10
Browse 00:08:49 00:10:02 00:10:02
Search 00:09:01 00:04:51 00:03:58
Pathfind 00:10:43 00:00:34 00:13:06

(b) Best times

Table 1: Best memory map counts and their respective mission durations for each mission
and environment. Red colors mean that the mission failed.

In Table 1, we show the best results for each mission and scene with regard to the number
of detected objects in the memory map. It is immediately visible from Table 1b that the
Squaremission does not perform well in these environments, because it quickly flies into an
object. We chose the starting locations in such a way that the missions would at least come
across an object. There is no other safe option than to end the mission in a preplanned
mission from Section 4.3.3, so this is expected.

The Browse mission detects a few more objects in the environment as seen in Table 1a,
despite not leaving its initial location. The Search mission does move around and detects
many objects. The downside that this mission does not visit specific waypoints, which can
hinder the tomography measurements. It also has a high chance of stopping prematurely
due to it staying too close to walls.

23

Leon Helwerda

The Pathfind mission instead tries to avoid walls and appears to be the safest in this
regard. It still fail to finish its mission if it cannot find a suitable path, but if there is one
then it also detects a reasonable number of objects on its way. The mission is however
slow, because it has to wait when a new path has to be calculated.

These results should be reproducible in other environments as well, but the success of
the missions is sensitive to the chosen parameters. The size of the search space depends
completely on the environment, and needs to be tuned specifically for them. A higher
memory map resolution works well in all runs. It is interesting to find that low padding
and closeness parameters (both at 10 cm) gives a higher chance of success on most missions
except Pathfind, which needs higher values so as not to trap itself in corners.

6 Conclusions

In this paper, we explore the problems and possibilities related to unmanned vehicle control
in the context of a mobile radio tomography setup. We investigate the available toolchains
and hardware that are able to operate motors, servos and other peripherals during a
mission. The goal of the mission is to visit locations where we scan features of interest.

For this purpose, we need to detect objects during the mission without crashing into
them. We implement a toolchain that determines a trajectory based on measurements
from distance sensors and takes actions accordingly. We test the vehicle’s behavior in
simulations with different environments and parameters.

The experiments suggest that it is important to find a balance between an automated
mission that simply follows actions and a free-form search that attempts to find the best
locations to detect and avoid objects. Safety checks must stop the vehicle before it would
move into the object. A mission that avoids these situations performs better than simplistic
missions. Some of the current missions are able to detect objects and navigate their way in
a virtually modeled environment, but it can take a long time to reach the goals, especially
if we have little prior knowledge of a potentially hazardous environment.

6.1 Further research

While the experiments show the potential of the missions within a simulation, the goal is
of course to have an actual vehicle moving around. In a physical environment, additional
problems surface. The physical distance sensor may have problems with highly reflective or
permeable textures. A comparison to other detection methods can be future research. The
vehicle might also be inexact in its movement, such as a rover with imperfect wheels. The
flight controller should be able to adjust for this. It uses multiple sources for calculating
the location of the vehicle, including GPS and gyroscopes. A study into other solutions for
accurate positioning is also useful. We can make assumptions that certain areas are safe
and other areas contain the object of interest.

The missions can be repurposed for the WiFi tomography setup, however it may be better
to create missions specific for this purpose. We can follow a trajectory that helps improve
the reconstruction the most by moving the vehicles to obtain specific lines between them.
The more of these lines intersect, the better the reconstruction becomes. We can create,
adjust and compare such missions to see what performs well.

24

Mobile radio tomography: Object detection using autonomous unmanned vehicles

References

[1] 3D Robotics. DroneKit. Developer tools for drones. http://dronekit.io/ (accessed
September 15, 2015).

[2] ArduPilot developers. Open source autopilot. http://ardupilot.com/ (accessed
September 15, 2015).

[3] F. Bleichrodt. “Improving robustness of tomographic reconstruction methods”. PhD
thesis. 2015. isbn: 978-94-6259-869-0.

[4] J. Doty. Determining yaw, pitch and roll from up and forward vectors. http://www.
jldoty.com/code/DirectX/YPRfromUF/YPRfromUF.html (accessed October 26,
2015).

[5] Drones.nl. Wetgeving. Dutch. http : / / www . drones . nl / wetgeving/ (accessed
September 11, 2015).

[6] ElecFreaks. HC-SR04 User Guide. http://www.elecfreaks.com/store/download/
product / Sensor / HC - SR04 / HC - SR04 _ Ultrasonic _ Module _ User _ Guide . pdf

(accessed January 26, 2016).

[7] Emlid. Navio+. http://www.emlid.com/ (accessed November 19, 2015).

[8] T. G. Farr et al. The shuttle radar topography mission. In: Reviews of Geophysics
45.2 (2007). doi: 10.1029/2005RG000183.

[9] P. Hart, N. Nilsson, and B. Raphael. A formal basis for the heuristic determination

of minimum cost paths. In: IEEE Transactions on Systems Science and Cybernetics
4.2 (1968), pp. 100–107. doi: 10.1109/TSSC.1968.300136.

[10] Z. Huang, A. Eliëns, and C. Visser. 3D agent-based virtual communities. In: Proceed-
ings of the Seventh International Conference on 3D Web Technology. ACM, 2002,
pp. 137–143. doi: 10.1145/504502.504525.

[11] ISO. VRML97: The Virtual Reality Modeling Language, Part 1: Functional specifi-
cation and UTF-8 encoding. ISO/IEC 14772-1. 1997.

[12] O. Kaltiokallio, M. Bocca, and N. Patwari. Enhancing the accuracy of radio tomo-

graphic imaging using channel diversity. In: IEEE International Conference on Mo-
bile Adhoc and Sensor Systems (MASS). 2012, pp. 254–262. doi: 10.1109/MASS.
2012.6502524.

[13] M. Kamburelis. Castle game engine: view3dscene. http://castle-engine.sf.
net/view3dscene.php (accessed November 17, 2015).

[14] L. Meier. MAVLink Micro Air Vehicle Communication Protocol. http : / / www .
qgroundcontrol.org/mavlink/start (accessed October 27, 2015).

[15] L. Meier. PX4. Pixhawk autopilot. https : / / pixhawk . org / modules / pixhawk

(accessed November 19, 2015).

[16] T. van der Meij. “Constructing an open-source toolchain and investigating sensor
properties for radio tomography”. Bachelor thesis, Leiden University. 2014.

[17] T. van der Meij. “Mobile radio tomography: constructing an open-source framework
with wireless communication components”. Research project report, Leiden Univer-
sity. 2016.

[18] A. Milburn.“Algorithms and models for radio tomographic imaging”. Bachelor thesis,
Leiden University. 2014.

25

http://dronekit.io/
http://ardupilot.com/
http://www.jldoty.com/code/DirectX/YPRfromUF/YPRfromUF.html
http://www.jldoty.com/code/DirectX/YPRfromUF/YPRfromUF.html
http://www.drones.nl/wetgeving/
http://www.elecfreaks.com/store/download/product/Sensor/HC-SR04/HC-SR04_Ultrasonic_Module_User_Guide.pdf
http://www.elecfreaks.com/store/download/product/Sensor/HC-SR04/HC-SR04_Ultrasonic_Module_User_Guide.pdf
http://www.emlid.com/
http://dx.doi.org/10.1029/2005RG000183
http://dx.doi.org/10.1109/TSSC.1968.300136
http://dx.doi.org/10.1145/504502.504525
http://dx.doi.org/10.1109/MASS.2012.6502524
http://dx.doi.org/10.1109/MASS.2012.6502524
http://castle-engine.sf.net/view3dscene.php
http://castle-engine.sf.net/view3dscene.php
http://www.qgroundcontrol.org/mavlink/start
http://www.qgroundcontrol.org/mavlink/start
https://pixhawk.org/modules/pixhawk

Leon Helwerda

[19] T. Müller and M. Müller. Vision-based drone flight control and crowd or riot analysis

with efficient color histogram based tracking. In: SPIE Proceedings. Vol. 8020. 2011,
pp. 1–14. doi: 10.1117/12.884213.

[20] National Geospatial-Intelligence Agency. Department of Defense World Geodetic

System 1984, Its Definition and Relationships With Local Geodetic Systems. Tech-
nical report. NIMA TR8350.2. 1997.

[21] Overheid. Regeling modelvliegen. Dutch. HDJZ/LUV/2005-2297. http://wetten.
overheid.nl/BWBR0019147/ (accessed September 11, 2015).

[22] M. Shimrat. Algorithm 112: position of point relative to polygon. In: Communications
of the ACM 5.8 (1962), p. 434. doi: 10.1145/368637.368653.

[23] A. Visser, N. Dijkshoorn, M. van der Veen, and R. Jurriaans. Closing the gap between

simulation and reality in the sensor and motion models of an autonomous AR. drone.
In: International Micro Air Vehicle Conference and Competitions. 2011, pp. 40–47.

[24] J. Wilson and N. Patwari. Radio tomographic imaging with wireless networks. In:
IEEE Transactions on Mobile Computing 9.5 (2010), pp. 621–632. doi: 10.1109/
TMC.2009.174.

26

http://dx.doi.org/10.1117/12.884213
http://wetten.overheid.nl/BWBR0019147/
http://wetten.overheid.nl/BWBR0019147/
http://dx.doi.org/10.1145/368637.368653
http://dx.doi.org/10.1109/TMC.2009.174
http://dx.doi.org/10.1109/TMC.2009.174

	Introduction
	Problem statement
	Motivation
	Applications

	Approach
	Team

	Overview

	Related work
	Toolchains
	Hardware

	Drones and other vehicles
	Requirements
	Drone regulations

	Implementation
	Overview of the components
	Simulations
	Vehicle
	Geometry
	Environment
	Visualization
	Distance sensor
	Servo

	Missions
	Monitor
	Memory map
	Planned missions
	Guided missions

	Experiments
	Setup
	Results

	Conclusions
	Further research

	References

