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Abstract— Good estimations of volume and surface area are
important to biological systems measurement. In this paper we
develop a 3D reconstruction from evenly sampled axial views
in order to enable the volume and surface area measurement.
We develop this system for high throughput applications with
the zebrafish model system. The VAST BioImager is specifically
developed for this purpose and with this system the axial views
can be produced. Silhouettes derived from the axial sequence
are shape priors which can be directly used to solve the
camera calibration problem that is required for the accurate 3D
reconstruction. Nonlinear optimisation algorithms have shown
to be suitable for the further development of the reconstruction
problem. The method proposed in this paper can be included in a
measurement pipeline that is used in all kinds of high throughput
applications in the zebrafish field. From the 3D reconstruction
features can be derived that will contribute to the phenotyping
of zebrafish.

Keywords— VAST BioImager, Zebrafish, 3D model, Shape
carving, Volume and surface area measurement.

I. INTRODUCTION

In modern molecular genetics the zebrafish is a popular
model system. In early development zebrafish are transparent
and therefore easily studied through different microscopies.
Another advantage is that it is easy to obtain large offspring,
e.g. > 200 embryos per lay. Among other characteristics,
this has made the zebrafish suitable for high throughput
studies in the area of toxicology, infectious diseases and
drug targeting. In this manner, on a systematic basis large
amounts of different targets can be evaluated. The zebrafish,
and in particular the zebrafish embryo and larva are studied
with different microscopies, such as traditional bright field
microscope, but more frequently, fluorescent microscope, as
there is an large amount of fluorescent markers and genetically
engineered zebrafish available for research purposes. With
fluorescent tags specific signals can be detected and thus
measured. For high throughput [1], in general 2D imaging
techniques are employed [2], but descriptive measurements
sometimes require 3D imaging techniques. With the confocal
laser scanning microscope (CLSM) 3D images of the zebrafish
can be obtained; however, CLSM is not directly suitable
for high throughput systems. In order to accomplish high
throughput systems for zebrafish, the Vertebrate Automated
Screening Technology (VAST BioImager) has been developed
[3]. A VAST BioImager unit is used for the automated
dispatching of zebrafish embryos/larva to an imaging system,

i.e. a fluorescence microscope or a CLSM. To that end, one-by-
one the zebrafish are loaded into a tiny capillary and through
a pumping system the specimen is put into the field of view
of the imager. The capillary is mounted in a holder that can
be rotated with stepper motors so that the specimen can be
viewed from any viewpoint. In this manner a full revolution
of the object under study, i.e. the zebrafish, can be obtained.
In Fig. 1 (a) examples of such views are depicted.

In order to obtain information on the volume and the
surface area of the object, we have developed the possibility
to produce a 3D reconstruction from a set of views of the
object in addition to any other imaging that might be applied.
The development required studying and assessing a number
of techniques for 3D reconstruction from multiple views of
an identical object. The concept of shape carving [4], a.k.a.
visual hull construction [5], is quite well developed in the
area of computer vision – typically to reconstruct a 3D object
from a range of views of the object that are in fact evenly
spaced sampled around the object. For our purpose, we will
produce a 3D model from the silhouette of the object as it
is observed in the capillary in each of the orientations. The
VAST BioImager can generate different samplings for a set of
axial views and this will be employed in order to obtain our
multiple-view image sequences. The silhouettes are generated
from a segmentation of each individual view and the binary
masks are used in the visual hull construction. In this paper
we will further elaborate how we have realized this. Each
image sequence will generate a 3D model and we intend
to build an understanding of what will be an efficient and
accurate sampling density for the image sequence to produce
an accurate 3D model.

II. RELATED WORK

From the perspective of computer vision, silhouette-based
3D reconstruction is a well studied topic for the last decades.
Simple parallel projections intersection [6] is proposed to con-
fine a bounding volume which is the final 3D reconstruction.
An octree structure is then proposed to refine the 3D volumet-
ric representation [7]. Parent 3D representative cubics whose
projected correspondences are on the border of the silhouettes
will be split into smaller scales until convergence. This method
accelerates the computation and increases the representation
accuracy. With the introduction of Visual Hull (VH) concept



Fig. 1. 3D zebrafish model framework. (a) The original zebrafish images in different poses. (b) The corresponding silhouette. (c) The VAST BioImager
imaging scheme in a revolution. Bold red point: camera center. Bold blue line: camera principle. 2D image: camera image plane. The 3D reconstruction is
generated from the cone-shaped projections intersection by back-projecting each of the silhouettes to the 3D world. (d) The reconstructed 3D zebrafish model.

[5], the silhouette-based 3D reconstruction research has at-
tracted lots of attention [8], [9], [10], [11], [12]. Kutulakos
and Seitz [4] define a unified framework to construct a 3D
model from multi-view silhouettes. Camera projection prop-
erties are included to genuinely model a scene. Better quality
3D reconstruction is obtained by fusing silhouettes and vision
information [13]. Based on the framework of active contours,
several push-pull forces are derived from the object visual hull
and image texture. The best 3D reconstruction corresponds to
the minimum of a fused cost function. A different approach is
taken by introducing a Bayesian probability model [14]. This
approach computes the probability of occurance of a 3D shape
given a set of images and a set of possible 3D surfaces. The
variational-based level set method is employed to solve this
probabilistic maximisation problem. From this starting point,
a more general solution [15] has been developed. A convex
penalizer leads the cost function to be continuously convex,
which can be globally optimized using standard gradient
descent techniques. What should be noted is that camera
calibration is required for those methods, because the predicted
3D object must be accurately projected to the image set. This
can be easily realized in current imaging system according to
[16], [17]. With different view images from some particular
patterns, such as checkerboard with interval black and white
bins, camera properties including focal length and scaling
factor, etc. can be computed by solving a linear function,
which is , however, infeasible in the microscope imaging
scheme. Instead, automated camera calibration can be done
by optimising a cost function in terms of silhouette coherence
which defined as the overlap between projected and original
contours [18].

Compared to previous research, our work differs in several
aspects. First, this is an initial attempt to apply silhouette-based
3D reconstruction technique in a microscope environment.
Second, to our current knowledge, building a well-calibrated
multi-view imaging system is difficult and expensive. For our
work, the existing VAST BioImager provides an elegant ma-

chinery to take images in different views, so that the necessary
priors including initial camera configuration can be obtained.
Third, we use a different measurement [19] to evaluate the
camera configuration. Moreover, the resulting model can be
used for animation purposes, such as the modelling of the
innate immune system in zebrafish [20]. Importantly, the
3D volume and surface area can be acquired, which offers
measurement reference to evaluate the zebrafish development
during fluorescent marking and genetically engineering.

The remainder of this paper is organized as follows: Section
III interprets how the silhouette-based 3D surface recon-
struction algorithm is derived and applied in our work in
details. In Section IV illustrates how many views we need
to construct a full 3D zebrafish embryo surface and some of
the refined reconstructed examples. In Section V, conclusions
are mentioned and several possible future developments are
briefly discussed.

III. 3D ZEBRAFISH MODEL RECONSTRUCTION

The proposed model is depicted in Fig. 1. The axial views
zebrafish embryo images are generated and then segmented
to a binary silhouette sequence. A set of voxels, which are
initialized to be able to cover the original object, are then pro-
jected to each of the masks to calibrate the VAST BioImager
camera. With the optimal camera parameters, an optimal 3D
model including volume and surface can be reconstructed.

A. Pinhole camera model

Figure 1 (c) demonstrates the VAST BioImager imaging
scheme. As other imaging systems, VAST BioImager imaging
unit is equipped with a CCD camera. The standard pinhole
camera model can be used to illustrate the imaging principle.
The mapping between a 3D world point and its corresponding
projective 2D image point X ∈ R3 7−→ x ∈ R2 can be
modelled as x = PX. Basically, the projection matrix P can
be decomposed into several components: P = K ·R · [I |−C̃].
Specifically,



Fig. 2. Camera projection parameterization. Bold red dot: object center. Bold
blue dot: image center. Thick blue line in Z-direction: camera principal line.
α, γ, φ: camera 3D rotations. Each of the camera imaging schemes shown in
Fig. 1 (c) can be modelled like this.

K =

f ∗ kx 0 ux
0 f ∗ ky uy
0 0 1

 (1)

is defined as the intrinsic camera matrix, where f is the focal
length, kx and ky are scaling factors in x and y direction, and
(ux,uy) is the image center. For the reason of simplification,
we do not consider the camera distortion factors. R represents
the three dimensional rotation matrix which has three degree
of freedom separately corresponding to the rotation angles
along the three axis which are parameterized in Fig. 2 as
r = [α, φ, γ]T. Taking the rotation around X-axis as an
example, the rotation model can be formulated by

Rx =

1 0 0
0 cos(φ) sin(φ)
0 − sin(φ) cos(φ)

 . (2)

With the other two directional rotations, the 3D rotation
model can be cascaded to R = RxRyRz. As shown in
Fig. 1 (c), the camera motion makes a full circulation and
the manipulation motor is set up with a fixed step angle. For
the ith camera view, it is easy to make a good estimation of
its translation as C̃i = [0, f · cos(ωi), f · sin(ωi)]T, where,
the ωi is defined as ωi = 2(i − 1)π/n, where n is the
number of axial views. All the parameters are concatenated
in a vector ψ = [f, kx, ky, ux, uy, α, φ, γ, ω1, ..., ωn−1] which
is the actual camera configuration.

B. Silhouette-based 3D reconstruction

In principal, a silhouette-based 3D reconstruction only uses
masks obtained from the axial images to predict a reasonable
object shape. Given an object and a set of camera configura-
tions, multi-view images can be obtained through the standard
camera pinhole model which generates a set of cone-shaped
projections. Assume the original object is unknown, while
the camera configurations and the multi-view silhouettes are
known, the original shape can be reconstructed by back-
projecting all the masks to 3D world coordinate system. The
original object is actually the intersection of all projection
cones.

Mathematically, we use the concept of Visual Hull Theory
(VH) [4] to illustrate this reconstruction problem. Let V be an
object shape and Iso(V) be the object surface. v ∈ V is a voxel
within the shape V . Let Sj be the jth viewpoint silhouette
and Pj (j = 1, ..., n) be the corresponding camera projection
matrix. Following the camera projection model, each voxel
in V should be projected onto the jth camera image plane
as xj = Pjv. The voxel v producing the pixel collection of
xj ∩ Sj 6= ∅ consists the jth estimated 3D shape Vj∗ which
can be formalised as

Vj∗ = {v | (xj = Pjv, v ∈ V) ∩ Sj 6= ∅}. (3)

Given the n projected silhouettes, the optimal object is
acquired from the intersection of all back-projections as

V∗ = ∩
j=1,...,n

Vj∗. (4)

For a more efficient implementation, the final shape should
be generated through iteration. Given an initial V , the n
silhouettes and camera models are considered one by one until
the shape converges. So, it is reasonable to reformulate Eqs.
3 and 4 to:

for t = 1,

V1∗ = V − {v | (x1 = P1v, v ∈ V) ∩ S1 = ∅}; (5)

and for t = 2 to n,

Vt∗ = V(t−1)∗ − {v | (xt = Ptv, v ∈ V(t−1)∗) ∩ St = ∅}.
(6)

In order to avoid misuse of the parameters, we reparame-
terize the subscript as t indicating the tth iteration. After total
of n iterations, the optimal shape Vn∗ can be obtained and
thereby the associated object surface Iso(Vn∗).

C. Camera configuration optimization

According to the state-of-art, a multi-view 3D reconstruc-
tion is very sensitive to camera calibration. The 3D model
reconstruction for zebrafish is even more depending on camera
calibration. This is partially due to the large difference between
camera focal length and object size. The effects of camera
model estimation are depicted in Fig. 3. In many computer



Fig. 3. Camera configuration effects for silhouette-based 3D model re-
construction. Blue area: ground-truth silhouette. Red area: overlap between
the projected and the ground-truth mask. Green surface: reconstructed shape.
Left column: optimal camera configuration gives maximal overlap area and
obtains natural shape. Right column: inaccurate camera configuration gives
small overlap area and obtains poor shape.

vision systems, standard image-based methods [16], [17] are
involved to solve this problem, while those methods are
infeasible in the microscope setup, such as the VAST BioIm-
ager, due to the imaging scale. Automated camera calibration
without the use of any particular pattern is, however, still
possible [18]. The idea is to optimize an energy function
by searching the camera configuration space formulated in
Section III-A. One can try to maximize the overlap between
the projected contours and the ground-truth silhouettes, which
is defined as the energy function.

Instead of the silhouette coherence [18], we use another
criterion to evaluate the energy function. This is replaced to
area coherence [19], expressed as:

f(ψ) =
1

n

∑
j=1:n

C(Sj , xj), (7)

where C(Sj , xj) = Sj ∩ (xj = Pj(ψ)v). When the optimal
estimated 3D reconstruction is projected to the silhouette
sequence, the average of all overlap areas should be the
maximum. This is also shown in Fig. 3. As a result, the
camera parameters optimization problem can be formulated
as a maximization problem:

ψ∗ = max
ψ∈Ψ

f(ψ). (8)

This optimisation problem is hard to solve by an explicit
gradient descent method. However, the entry ψ of the function
can be initialised to be a reasonable estimation. For example,
the term working distance of the system indicates the focal
length, and the image center can be assumed to be the pixel-
wise center. The rotation angles will be initialized as zeros.
With this initial configuration, evolution algorithms and other
derivative-free methods such as the Nelder-Mead simplex
method [21] can be employed to maximize Eq. 8. It is not hard
to imagine that the computation will be expensive for such a
large vector of variables. However, we just need to compute
all possible parameters once and the optimal results can be
used for the rest of the data except for the camera motion ω.
Anyway, even for ω, we already have a first estimation from
the first experiment, in such a manner may largely accelerate
the subsequent performance.

Table 1. Voxel residual (VR) volume statistics (×10−3mm3).

VSD Mean STD SEM
2 951.79 ±140.92 ±49.82
4 383.18 ±35.91 ±12.70
6 338.75 ±26.02 ±9.20
8 316.38 ±20.60 ±7.28
10 309.61 ±21.24 ±7.51
14 305.43 ±21.34 ±7.54
20 298.98 ±21.04 ±7.44
28 296.58 ±20.37 ±7.20
42 293.11 ±20.29 ±7.17
84 289.21 ±19.74 ±6.98

STD: standard deviation.
SEM: standard error of the mean.

Table 2. Surface area (AS ) statistics (×10−2mm2).

VSD Mean STD SEM
2 1041.24 ±52.98 ±18.73
4 473.99 ±27.74 ±9.81
6 427.69 ±19.91 ±7.04
8 406.23 ±17.94 ±6.34
10 402.21 ±17.94 ±6.34
14 398.29 ±19.00 ±6.72
20 391.91 ±17.05 ±6.03
28 389.61 ±16.40 ±5.80
42 386.44 ±16.39 ±5.79
84 382.53 ±15.69 ±5.55

IV. EXPERIMENTS

Based on the pipeline structured in Fig. 1, the system can
be implemented by cascading each individual procedure. The
axial view images are obtained from VAST BioImager. The
silhouettes are generated from a segmentation of each axial
views. To this end, the level-set based method [22] is employed
due to its flexibility and robustness in various applications.
With the masks, the proposed model is performed to calibrate
the camera and then generate the 3D model. To facilitate the
experiments, we have built a database for zebrafish embryo
development. This database contains different staged zebrafish
embryos which are imaged by VAST BioImager within 84
almost evenly sampled views. The step angle between each
pair of neighbouring views is around 4.3 degree, not exact due
to mechanical drift. This problem can be solved as is proposed
in Section III-C. In this paper, we use eight six-day-old live
zebrafish embryos selected from the database as examples.

A. How many views are needed?

A full revolution motion of the camera is needed to construct
an accurate and integral 3D model. It should be noted that the
camera is stable for the VAST VAST BioImager. Instead, the
object rotates based on a fixed axis. For better interpretation,
we allocate the camera around the object in this paper. It is
obvious that the larger the view sampling density (VSD) is, i.e.
the number of views, from the axial views, the more accurate
reconstruction can get. The sampling density of the axial views
ensures the point occurances on the object surface to multi-
viewed observers. Reconstruction errors caused by silhouettes
associated with segmentation noise can be corrected by others



Fig. 4. Figure of merit for the proposed model. Upper row: the voxel residual volume histgram. X direction: views sampling density (VSD). Y direction:
remaining voxel volume. The views are sampled almost uniformly from a full circulation. Lower row: some selected 3D zebrafish embryo reconstructions
with different VSD. The light blue dash lines indicate the correspondences between the VSD and the reconstructed results

in which the noise may not be present. This experiment will
reveal what is an efficient VSD to reconstruct a 3D model.
The performance of the proposed method is shown in Fig.
4. In order to obtain a distinct resolution, the initial shape
candidate is set as 10E6 voxels. We gradually increase the
VSD beginning with 4. It is obvious that the voxel residual
(VR) volume will reduce along with the increasing VSD. The
VR volume is collected and plotted in the upper row of Fig. 4.
The bottom row of Fig. 4 shows some selected reconstructed
effects posed in three different perspectives with different
VSD.

From Fig. 4, one can see that with increasing VSD, the VR
volume decreases and asymptotically stabilises. In Tables 1
and 2, the same trend can also be seen, i.e. the yield beyond
the VSD of 84 is not leading to a particularly better result.
In addition, Table 1 and 2 also show the volume and surface
area measurement references for future work. From the lower
row of Fig. 4, at a VSD of 4, the carved shape is close to
the initial voxels shape , i.e. cube, and the edges are very
sharp, which is reasonable due to the intersection effect of
camera pinhole projections. When the VSD is larger than
10, the reconstructed shape appears natural and the associated

surface is smooth. For a VSD of 10, one still can experience
either flat or steep homogeneous carving scars in some local
regions on the object surface. At a VSD larger than 20,
the reconstruction results are good and not much different.
Interestingly, a VSD such as 84 causes ”surface wrinkles”.
Sophisticated multi-view projections with about every 4.3
degrees recovers a model which tries to satisfy each of the
shape priors so as to introduce more noise. According to this
experiment, accurate 3D reconstruction results are generated
with large VSD. However, with the VSD larger than 20,
volume and surface area variation becomes very small and
the reconstructed shape and surface visualisation is stable.
Considering computation complexity, the conclusion can be
made that a VSD of 20 is sufficient to obtain accurate results
for our 3D zebrafish embryo model reconstruction problem.

B. Reconstructed 3D zebrafish models

In this experiment we have repeated the proposed method
on different zebrafish embryo examples and visualised the re-
constructed 3D models. A Zebrafish embryo has a transparent
torso. What we can observe is actually its frontal part such
as head, some internal structures and black pigmented cells



Fig. 5. Reconstructed and rendered 3D zebrafish models. The first column
comes from the profiles and the second column shows the dorsals. The first
two rows, the middle two rows and the last two rows present three different
individuals respectively.

which are distributed on its backside. As we work with live
zebrafish, the physiology is still active and heart beating as
well as blood circulation are visible in the microscope. This
is one of the reasons of the popularity of the zebrafish model
system for studies such as infection and inflammation.

From column 1 in Fig. 5, the zebrafish 3D shape is fully
reconstructed and the rendered results apparently show the
eyes, ears and spiral cords. We can also see the shape
variations from different individuals, which may help to
construct more general probabilistic shape models. However,
reconstruction imperfection can happen. This has two main
causes: the silhouette-based 3D reconstruction depends on
image segmentation, and the zebrafish caudal visibility from
lateral perspective is difficult. Therefore, the segmentation
results are imperfect, and has a deteriorating effect on the
reconstructed shape. The other cause is the employment of
camera configuration optimisation, which aims to optimise
the criterion of coherence area. This criterion somehow does
not completely consider the 3D shape fidelity and surface
smoothness.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have shown a method for the development
of a 3D model of an object from a sequence of axial views. The
3D model is constructed from silhouettes that are segmented
from the axial views and subsequently shape carving is used.
The VAST BioImager is efficient for providing the axial view
sequence of the zebrafish embryo to which our variation
of shape carving can be applied. The optimization of an
energy function is defined by area coherence and automated
camera calibration accomplishes an accurate 3D model. Future
developments will be directed to further improve the model
construction focusing on removal of imperfections in the seg-
mentation of the axial views. Moreover, the camera calibration

procedures can be improved. These improvements will result
in an even more efficient and accurate 3D reconstruction.
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