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Motivation

Niching methods are the extension of Evolutionary Algorithms (EAs) to multi-modal optimization: they
allow parallel convergence into multiple good solutions by maintaining the diversity of certain properties
within the population. The majority of the EAs Niching methods holds an assumption concerning the
fitness landscape, stating that the peaks are far enough from one another with respect to some threshold
distance, called the niche radius, which is estimated for the given problem and remains fixed during the
course of evolution. Obviously, there are landscapes for which this assumption isn’t applicable, and where
those niching methods are most likely to fail. This is the so-called niche radius problem.

Niching Background: Fundamental Concepts

The fitness sharing approach considers the fitness as a shared resource and by that aims to decrease re-
dundancy in the population. Given dij, the distance between individuals i and j, ρ (traditionally noted as
σsh), the radius of every niche, and αsh, a control parameter usually set to 1 - the sharing function is:

sh(dij) =

{

1 −
(

dij

ρ

)αsh

if dij < ρ

0 otherwise
(1)

Based on this sharing function, the niche count is then defined as following:

mi =

N
∑

j=1

sh(dij) (2)

Given an individual’s raw fitness fi, the shared fitness is then defined by:

fsh
i =

fi

mi
(3)

The dynamic niche sharing method recognizes the q peaks of the forming niches and classifies the individ-
uals accordingly. Introduce the dynamic niche count :

m
dyn
i =

{

nj if individual i is within dynamic niche j

mi otherwise (non-peak individual)
(4)

where nj is the size of the jth dynamic niche, and mi is the standard niche count, as defined in Eq. 2.
The shared fitness is then defined respectively:

f
dyn
i =

fi

m
dyn
i

(5)

The identification of the niches can be done with the Dynamic Peak Identification (DPI) algorithm [2].

Dynamic Niching with Covariance Matrix Adaptation Evolution Strategy

The dynamic niching with CMA-ES algorithm [2] is a niching method which uses the Covariance Matrix
Adaptation Evolution Strategy [1] as its core evolutionary mechanism. The aim of this approach is to find
multiple local optima simultaneously, within one run of the ES. Given q, the estimated/expected number
of peaks, q + p “CMA-sets” are initialized, where a CMA-set is defined as the collection of all the dynamic
variables of the CMA algorithm which uniquely define the search at a given point of time. Such dynamic
variables are the current search point, the covariance matrix, the step size, as well as other auxiliary param-
eters. At every point in time the algorithm stores exactly q + p CMA-sets, which are associated with q + p

search points: q for the peaks and p for the “non-peaks domain”. The (q + 1)th...(q + p)th CMA-sets are
individuals which are randomly re-generated in every generation as potential candidates for niche formation.
Until stopping criteria are met, the following procedure takes place. Each search point samples λ offspring,
based on its evolving CMA-set. After the fitness evaluation of the new λ·(q+p) individuals, the classification
into niches of the entire population is done using the DPI algorithm, and the peaks become the new search
points. Their CMA-sets are inherited from their parents and updated according to the CMA method.

The Niche Radius Problem

The traditional formula for the niche radius for phenotypic sharing in GAs and for ES niching is given by
ρ = r

n
√

q
, where given lower and upper boundary values xk,min, xk,max of each coordinate in the decision

parameters space, r is defined as r = 1
2

√

∑n
k=1(xk,max − xk,min)2.

Hence, by applying this niche radius approach, two assumptions used to be held:

1. The expected/desired number of peaks, q, is given or can be estimated.

2. All peaks are at least in distance 2ρ from each other, where ρ is the fixed radius of every niche.

Niche Radius Adaptation in the CMA-ES Niching Algorithm

Our new algorithm tackles the niche radius problem, in particular the assumption regarding the fitness
landscape: it introduces the concept of an individual niche radius which adapts during the course of evo-
lution. The idea is to couple the niche radius to the global step size σ, whereas the indirect selection of
the niche radius is applied through the demand for λ individuals per niche. This is implemented through a
quasi dynamic fitness sharing mechanism.
The CMA-ES Niching method is used as outlined earlier, with the following modifications. q is given as an
input to the algorithm, but it’s now merely a prediction or a demand for the number of solutions, with no
effect on the nature of the search. A niche radius is initialized for each individual in the population, noted
as ρ0

i . The update step of the niche radius of individual i in generation g + 1 is based on the parent’s radius
and on its step-size:

ρ
g+1
i =

(

1 − c
g+1
i

)

· ρg
parent + c

g+1
i · σg+1

parent (6)

c
g
i is the individual learning coefficient, which is

updated according to the delta of the step size σ
(

∆σ
g+1
i =

∣

∣

∣
σ

g+1
parent − σ

g
parent

∣

∣

∣

)

:

c
g+1
i =

1

5
·
(

1 − exp
{

α · ∆σ
g+1
i

})

(7)

The DPI algorithm is run using the individual

niche radii, for the identification of the peaks
and the classification of the population. Further-
more, introduce:

g (x, λ) = 1+Θ (λ − x)·(λ − x)2

λ
+Θ (x − λ)·(λ − x)2

(8)
where Θ (y) is the Heaviside step function. Given
a fixed λ, g (x, λ) is a parabola with unequal
branches, centered at (x = λ, g = 1); see plot.
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By applying the calculation of the dynamic niche count m
dyn
i (Eq. 4), based on the appropriate radii, we

define the niche fitness of individual i by:

fniche
i =

fi

g
(

m
dyn
i , λ

) (9)

The selection of the next parent in each niche is based on this niche fitness.
A single generation of the method is summarized as Algorithm 1.
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Numerical Results

Table 1 summarizes the unconstrained multimodal test functions. The algorithm is tested on the specified
functions for various dimensions. Each test case includes 100 runs. All runs are performed with a core
mechanism of a (1, 10)-strategy per niche and initial points are sampled uniformly within the initialization
intervals. Initial step sizes, as well as initial niche radii, are set to 1

6 of the intervals. The parameter q is set
based on a-priori knowledge when available, or arbitrarily otherwise; p is set to 1. The default value of α is
−10, but it becomes problem dependent for some cases, and has to be tuned. Each run is stopped after 105

generations ((q + 1) · 106 evaluations).
We consider three measures as the performance criteria: the saturation M.P.R. (maximum peak ratio; see,
e.g., [2]), the global optimum location percentage, and the number of optima found (with respect to the
desired value, q). The results of the simulations are summarized in table 2.
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Test Functions

,�-*.*/ 0 1 23. 465 785 9:5 ;=< 23>*?�< @BAC0 1 DE?*FHG ,�-*.*/ 0 1 2�. 465 7&5 9:5 ;=< 23>*?�< @BAC0 1 DI?*FHG
JLKIMONQP R RHS�S*T U�V3U WXKIMONYP R RHS�S*T RHS�S*V3RHS�S
JLKIMONYZ�S S*[ \�]3^3_ `�]*T Z�Z*[ \*Va_*R WXKIMONbR S S*[ ]�]3^�R RHS�S*T ]3]�[ R�V3RHS�S
JLKIMONQ_3S S*[ P*RH^3\ _3P*T ZaS�[ ^*Va^*R WXKIMONY_�S S*[ U�U�`3Z RHS�S*T ^*UC[ ZCV3RHS�S
cYKEMdNQ_ S*[ ]�^3PCZ RHS�S*T _�[ _*V�` eQKIMONQP S*[ ]CU�Z�\ RHS�S*T P�[ ]3\CV�`
cYKEMdN�R S S*[ UaZ�^3^ _*U3T P�[ _*V3R3R eQKIMON�RHS S*[ `a\3]3^ ^CZCT Z*[ Z*RaV�`
f KEMON�Z R RHS�S*T _CVa_ eQKIMONYZ�S S*[ R \C`3` \�R�T R3[ Z*RaV�`
f KEMONY_ S�[ ^3^*R RHS�S*T P�[ S*Va_ g6KEMONYZ S*[ UaZ�^3^ RHS�S*T P�[ ]3\CV�`
f KEMONbR S S�[ Ua^�P \*U3T Z*[ P*Va_ g6KEMON�RHS S�[ P3]�^ `�P*T Z*[ ZCVa`
h KEMdN�R S*[ ^�P3^C` RHS�S*T `*[ SC`3Va\ iYKIMON�R S*[ ]�\*Ua\ RHS�S*T U3[ ^�P3PCVa^
h KEMdNYZ S*[ ^�S3\3S RHS�S*T RaUC[ ^3\CVaP�\ iYKIMONYZ S*[ ^�S3\3S RHS�S*T \�[ P3PCVa^
h KEMdNY` S*[ ]CUCRH_ RHS�S*T P�]�[ RH\CV�`aS iYKIMONY` S*[ UHP�R3R ]�R�T _�[ P*U�Va^
h KEMdN�RHS S*[ ]�\3_3] RHS�S*T P�\�[ ]*V�`aS iYKIMON�RHS S*[ UaZ�^3^ Ua]*T P�[ _�RaVa^
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Numerical Results

As reflected by those results, our method performs in a satisfying manner. The performance of the new
niching method is not harmed by the introduction of the niche radius adaptation mechanism with respect to
the same multimodal test functions reported in [2], except for the Ackley function in high dimensions. Our
confidence is further reassured by the results on the functions {V , S} with the unevenly spread optima,
which are satisfying (plots are given below).
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Natural Computing Group, Leiden University, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

S (n = 1): Final Population
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V (n = 1): Final Population

Summary and Conclusion

The proposed method is shown to perform in a satisfying manner in the location of the desired optima of
functions which were tested in the past on the predecessor of this method, using a fixed niche radius. More
importantly, the niche radius problem is tackled successfully, as demonstrated on functions with unevenly
spread optima. The function of the learning coefficients has to be tuned (through the parameter α) in some
cases. Although this is an undesired situation, i.e., the adaptation mechanism is problem dependent, this
method makes it possible to locate all desired optima on landscapes which could not be handled by the old
methods of fixed niche radii, or would require the tuning of q parameters.
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