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Variational Quantum Algorithms
Recap: an overview

Source: arXiv:1811.04968

I Current step: extracting (usefull) classical information.
I Next step: update parameters of the quantum circuit.
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Pauli strings and the real vector space Herm
(
C2N

)
an intermezzo

How can we extract classical information?

I We can measure observables O.
I Mathematically speaking, observables are Hermitian matrices (O† = O).
I Set of N -qubit Hermitian matrices denoted Herm(C2N ).

Let us look at the structure of Herm(C2N ).
I Herm(C2N ) is a real vector space with inner product

< A,B >:= Tr(AB†) (Hilbert-Schmidt inner product).

I Interesting subset are the Pauli strings {I,X, Y, Z}⊗N .

Lemma
Pauli strings {I,X, Y, Z}⊗N are a basis for the real vector space Herm(C2N ).
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Pauli strings and the real vector space Herm
(
C2N

)
an intermezzo

Lemma
Pauli strings {I,X, Y, Z}⊗N are a basis for the real vector space Herm(C2N ).

Proof.

I dimC(Mat2N×2N (C)) = 4N .

I dimR(C) = 2.
I =⇒ dimR(Mat2N×2N (C)) = 2 · 4N .

I
(
A ∈ Herm(C2N ) ⇐⇒ A† = A

)
⇒ dimR(Herm(C2N ) = 2 · 4N/2 = 4N .
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I #{I,X, Y, Z}⊗N = 4N .
I Pauli strings are l.i., since orthogonal w.r.t. H-S inner product.
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A standard VQE cost function
what to optimize?

A standard VQE cost function is of the form

fO(θ) = 〈ψ(θ)|O |ψ(θ)〉 , O ∈ Herm(C2N ).

Let us go over some examples.

Estimating the ground state energy of a Hamiltonian
Physics interested in computing the ground state energy of a physical system.
Mathematically speaking: compute the smallest eigenvalue of H ∈ Herm(C2N ).
The corresponding cost function is simply

fH(θ) = 〈ψ(θ)|H |ψ(θ)〉 ,

because we know that λ0(H) = min|φ〉 〈φ|H |φ〉.
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VQE cost functions examples
Approximating the MaxCut of a graph

Let G = (V,E) be a graph.
I The MaxCut of G is the maximal size of a cut-set of a cut of G.

I A cut is a partition of V into two disjoint subsets (S, T ).
I The cut-set of a cut is the set of edges ”crossing the cut”, i.e.,

cut-set of (S, T ) = {(s, t) ∈ E|s ∈ S and t ∈ T}.

Figure: An example of a MaxCut.
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VQE cost functions examples
Approximating the MaxCut of a graph

Turns out: MaxCut(G) can be written as λ0(O) for some O ∈ Herm(C2N ).

I That is, let V = {1, . . . , N} and consider the Hermitian operator

Ocut =
1

2

∑
(i,j)∈E

I + ZiZj .

I Then it turns out that: λ0(Ocut) = |E| − MaxCut(G).

Thus, to approximate MaxCut(G) we use the cost function

fOcut(θ) = 〈ψ(θ)|Ocut |ψ(θ)〉 .
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VQE cost functions examples
Generative modeling, i.e., learning a distribution

Generative modeling: branch of ML that tries to learn a distribution p.
I That is, based on old samples from p, train your computer to generate

new samples from a distribution that is close to p.

We can tackle this using a variational quantum algorithm.
I Quantum state |ψ(θ)〉 together with observale O generate distribution qθ.
I Goal: Find θ such that qθ is close to p.

KL divergence: measure how one distribution is different from a second

fDKL(
~θ) = DKL(p, qθ) =

∑
x

p(x) log
(
p(x)

qθ(x)

)
.
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Evaluating our cost function
We only care about Pauli strings

Let us investigate what kind of observables we have to measure.

I The goal is to esimate the VQE cost function:

fO(θ) = 〈ψ(θ)|O |ψ(θ)〉 , O ∈ Herm(C2N ).

I From the Lemma at the beginning, we learn that we can decompose

O =

4N∑
i=1

hiPi,

where Pi ∈ {I,X, Y, Z}⊗N and hi ∈ R.
I By linearity we find that

fO(θ) = 〈ψ(θ)|O |ψ(θ)〉 = 〈ψ(θ)|
4N∑
i=1

hiPi |ψ(θ)〉 =
4N∑
i=1

hi 〈ψ(θ)|Pi |ψ(θ)〉 .

I Thus, we only have to estimate 〈ψ(θ)|Pi |ψ(θ)〉 for the Pauli strings.
Remark: for relevant problems usually only poly-many strings.
I Area of research to bring this down further (e.g., using commuting strings).
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I The goal is to esimate the VQE cost function:

fO(θ) = 〈ψ(θ)|O |ψ(θ)〉 , O ∈ Herm(C2N ).

I From the Lemma at the beginning, we learn that we can decompose

O =
4N∑
i=1

hiPi,

where Pi ∈ {I,X, Y, Z}⊗N and hi ∈ R.
I By linearity we find that

fO(θ) = 〈ψ(θ)|O |ψ(θ)〉 = 〈ψ(θ)|
4N∑
i=1

hiPi |ψ(θ)〉 =
4N∑
i=1

hi 〈ψ(θ)|Pi |ψ(θ)〉 .

I Thus, we only have to estimate 〈ψ(θ)|Pi |ψ(θ)〉 for the Pauli strings.
Remark: for relevant problems usually only poly-many strings.
I Area of research to bring this down further (e.g., using commuting strings).
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Evaluating our cost function
We are going to have to estimate

How do we actually evaluate our cost function?

fO(θ) = 〈ψ(θ)|O |ψ(θ)〉 , O ∈ Herm(C2N ).

Let O =
∑2N

i=1 λi |ϕi〉 〈ϕi| denote the spectral decomposition.
I Note that fO(θ) = E[X], where X ∈R {λi} with

P(X = λi) = | 〈ϕi | ψ(θ)〉 |2

I As we can only sample from X, the best we can do is estimate E[X].
I How many samples from X do we need? Let’s use Chebyshev’s Inequality!
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Evaluating our cost function
We are going to have to estimate

Let O =
∑2N

i=1 λi |ϕi〉 〈ϕi| denote the spectral decomposition.

Goal: Estimate E = E[X] to within additive precision ε, where X ∈R {λi}
whose probabilities are given by P(X = λi) = | 〈ϕi | ψ(θ)〉 |2.

I Take M samples, denoted X1, . . . , XM , and we compute 1
m

∑M
i=1Xi.

I Chebyshev’s inequality:

P

(∣∣∣∣∣
∑M

i=1Xi

M
− E

∣∣∣∣∣ ≥ ε

)
≤ σ2

Mε2
,

where σ denotes the variance of X.
I Therefore, if we take M = σ2

0.01ε2
, then we find that

P

(∣∣∣∣∣
∑M

i=1Xi

M
− E

∣∣∣∣∣ ≥ ε

)
≤ 0.01.

I Variance is usually bounded, thus we need to do M measurements where

M ∼ 1

ε2
.
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Optimizing the VQE cost function
finding the right parameters

Now that we know how to evaluate our cost function, let us try to optimize it.

To this end, we will employ classical optimization routines.
Broadly speaking, these optimization routines fall into two categories.

1. Gradient-based optimization.
2. Gradient-free optimization.

Let us go over them both, including their pros and cons.
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Optimizing the VQE cost function
gradient-based methods

As the name suggests, gradient-based methods employ the gradient of the cost.

Pros:
I Works incredibly well when your cost function landscape is nicely smooth.
I Convergence properties are very well established.

Cons:
I Unreliable under noisy gradient evaluations.
I Suffers from vanishing and exploding gradients (i.e., when your cost

function landscape is barren or rigid).
I Can take very long if gradient evaluation is expensive.
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Optimizing the VQE cost function
gradient-based methods

As the name suggests, gradient-free methods don’t use the gradient of the cost.
They usually rely on a large number of function evaluations.

Pros:
I Works decently well even when your landscape is barren or rigid.
I Does not require the ability to (efficiently) evaluate the gradient.

Cons:
I Does not converge as quick as gradient-based methods when the

landscape is smooth.
I Requires a lot of function evaluations in general.
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Estimating the gradient of the VQE cost function
To use gradient-based methods, we need gradients

How do we estimate the gradient of fO(θ)? Here are two possible ways.

I The “parameter-shift rule”, which states that for a large family of ansatzes

∂fO(θ)

∂θj
=
fO(~θ +

π
2
ej) + fO(~θ − π

2
ej)

2
,

where ej is the j-th standard basis vector.
Pros: Exact formula for the gradient.
Cons: Requires 2Nparam evaluations of fO.

I Stochastic pertubation techniques that use the approximation

∂fO(θ)

∂θ
≈ fO(θ + c∆) + fO(θ − c∆)

2c∆j
,

where ∆ ∈R {− ± 1}Nparam Rademacher random and c > 0 very small.
Pros: Only requires 2 evaluations of fO.
Cons: At best a finite difference approximation of the gradient.

I Biggest difference: analytic vs numerical approximation.
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The landscape of a VQE cost function
Beware: barren plateaus

What do we know about the landscape of VQE cost functions?

I We know that VQE cost function landscapes contain “barren plateaus”.

I Raises question of parameter initialization: starting at a random point will
most likely cause you to end up in one if these barren plateaus.

I Turns out to be hard, as the structure of the landscapes are largely unknown.

I Number/size of barren plateaus are very dependant on O and ansatz.
I Experiments are a good way to get a feeling for these landscapes.

I Many interesting student projects!
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Optimization of a noisy function
Getting back to the NISQ era

What are the challenges for the classical optimization routine in the NISQ era?

I As we are currently in the NISQ era, our quantum circuits will be noisy.
I A consequence of this is that evaluation/estimations of fO(θ) will be noisy.

Variational quantum algorithms have shown to be quite resillient to this noise.
I Part of the reason: optimization routines can deal with this noise.

Open question: what optimization routines are best in this noisy setting?
I Many interesting student projects!
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