Outline

This assignment consists of 9 questions, each marked out of 1. It constitutes 50% of your total assignment mark (25% of the overall mark for this course).

The deadline the assignment is the beginning of the lecture 20th of March 2020.

1. Consider the following two circuits:

(a) Express C_{1} and C_{2} using standard linear-algebraic notation (i.e., using X, Y, Z, H to denote the operators, tensor products \otimes and standard matrix products). (b) Simplify the expression $C_{1}-C_{2}+\sqrt{2} C_{3}$ using the rules of tensor algebra, and the relations between Pauli operators and the Hadamard operator- note: it simplifies a lot.
2. (a) Draw the circuit diagram for the quantum Fourier transform (QFT) over n-qubits. You can use the gate set which includes the controlled-Z rotations by any angle. Don't forget swaps! (b) what is the gate-complexity of QFT with respect to the gate set which includes the Hadamard, swap and controlled-Z rotations. (c) what is the depth complexity of the QFT algorithm (relative to the drawing you provided)?
3. Define the input and output of the (t-ancilla) quantum phase estimation algorithm.
4. (a) Draw the circuit for quantum phase estimation (QPE) for the unitary U with t-ancilla qubits (in the eigenvalue-carrying register), assuming access to the unitary ctrl- U. You can draw the quantum Fourier transform as single gate. (b) What is the gate-complexity of the quantum phase estimation algorithm (where you include ctrl- U in the gate set), including the cost of QFT? (c) What is the depth-complexity of this circuit (make explicit which part comes from the QFT)?
5. (a) Draw the circuit for the single-qubit quantum phase estimation (QPE) for the time evolution $e^{i k H t}$, assuming access to the controlled time evolution $e^{i k H t}$ as a black box. (b) What is the gate-complexity of the quantum phase estimation algorithm? (c) What is the depth complexity of the quantum part of the algorithm?
6. Give the probability of measuring 0 on the ancilla qubit for single ancilla QPE, assuming the system register is prepared in the state $\sum_{j} a_{j}\left|\lambda_{j}\right\rangle$ (in the eigenbasis of the Hamiltonian)?
7. Draw a circuit to apply $e^{i \frac{\pi}{4} X_{0} \otimes X_{1}}$ to a two-qubit system.
8. (a) Write the first-order Suzuki-Trotter approximation for

$$
\begin{equation*}
e^{i h_{0}\left(X_{0} X_{1}+X_{1} X_{2}\right)+i h_{1}\left(Z_{0}+Z_{1}+Z_{2}\right)} \tag{1}
\end{equation*}
$$

and (b) calculate the error in the case of the first-order Trotter approximation.
9. Draw the circuit which implements the Trotterized unitary from Question 8.

