
Quantum-enhanced Machine Learning 
(with near-term devices)
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1) Background 1: machine learning (ML) 
• what is ML, and basic ML models 

2) QC meets ML (big picture) [for more info: arXiv:1709.02779] 

3) ML and parametrized circuits [for more info: arXiv:1906.07682] 

4)  QeML with quantum feature spaces [based on: arXiv:1804.11326] 
• Support vector machines  
• Explicit and implicit quantum-embedded SVMs 

Contents & Literature
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Machine learning and AI

AI

supervised learning

unsupervised learning

online learning

generative models

reinforcement  
learning

deep learning

statistical learning

non-parametric  
learning 

parametric learning 

local search

Symbolic AI 

computational learning theory
control theory non-convex 

optimization

sequential 
decision 
theory

ML
big data analysis

Haptics 

Vision 

Game AI 
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Three main (cannonical) modes of ML: 

• Supervised learning  
• Unsupervised learning  
• Reinforcement learning

• forest of in-between modes; semi-supervised, active, transductive, on-line…
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Supervised learning: the what (is the objective)

?

,
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Supervised learning: the what (is the objective)

-classification (categorical or discrete label) v.s. regression (contiuous label)

x ∈ S ⊆ ℝn; y ∈ Labels

f : S → Labels

D = {(xi, yi) |xi ∈ S; yi = f(x)}

Basic concepts and math

Data (feature vectors) & Labels:

Label function:

Dataset, “training examples”

Given D, output a good guess for   f .

-classification, prediction, regression….

-need to correctly label unlabeled data

 6



Supervised learning: the what (is the objective)

x ∈ S ⊆ ℝn; y ∈ Labels

P(x, y)

D ∼ P×|D|

Basic concepts and math

Data (feature vectors) & Labels:

Label function:

Dataset, “training examples”

Given D, output a good guess for   P(y |x)

More generally (probabilistic)

Learning about data-label relationships in a bivariate distribution from samples

BTW: Distributions generalize functions 
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Unsupervised learning: the what (is the objective)

?

x ∈ S ⊆ ℝn

P(x)
-discriminative (clustering) , “labeling w/o examples”

-generative (make more cats):  
approximate sampling from P given D

Learning about (all) features in a distribution from samples

D ∼ P×|D|

data:

“world":

training:
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Reinforcement learning: the what (is the objective)

T (s|s0, a)

Learning correct behaviour (policies) by trial-and-error 
(incl. data generation online). E.g. AlphaGo.
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Supervised learning: the how (is it achieved)

Recall: need to “guess”    from   f : S ⊆ ℝn → Labels D = {(xi, yi = f(xi))}

• Hypothesis family:    (c.f. “model/model family”) {f θ | f θ : S ⊆ ℝn → Labels, θ}

• Learning = training   fitting: ≈

argminθ Error_on_D( f θ) + R( f θ)

• “Loss”, “empirical risk”, “accuracy”, e.g.    ∑
(x,y)∈D

| f θ(x) − y |2

• Generalization performance: (no overfitting, Occam’s razor)

R = regularization term
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Supervised learning: the how (is it achieved)

Recall: need to “guess”    from   f : S ⊆ ℝn → Labels D = {(xi, yi = f(xi))}

• Hypothesis family:    (c.f. “model/model family”) {f θ | f θ : S ⊆ ℝn → Labels, θ}

• Learning = training   fitting: ≈

argminθ Error_on_D( f θ) + R( f θ)

• “Loss”, “empirical risk”, “accuracy”, e.g.    ∑
(x,y)∈D

| f θ(x) − y |2

• Generalization performance: (no overfitting, Occam’s razor)

R = regularization term

the same elements will 
be present for unsupervised 

learning
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undertrain overtrain just right

underfit overfit just right

Classification

Regression

Regularization: controling “model complexity” to ensure good generalization
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Machine learning is all about generalization performance,  
that is performance beyond the training set. 

It is not “just” a best fit problem. 

Theory approaches: VC theory, Rademacher complexity… 

In practice: cross-validation

https://en.wikipedia.org/wiki/Cross-validation_(statistics) 13



Supervised learning: the how (is it achieved); examples

• support vector machines (SVM) 
• neural networks 
 

• k-nearest neighbours [classification] 
• decision trees [classification] 
• naïve Bayes 
• (linear) regression [regression] 
• Gaussian process regression
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Supervised learning: the how (is it achieved); examples

Support Vector Machines (SVMs) Neural networks 
(not just SL; many types)

“which half-space”   hyperplanes 
  + important trick

∀
sign(wt . x + b)

usually Lagrangian multipler method

w

specified by n.n.  
(linear+nonlinear layers) 

nomal vector+offset weights + offsets

usually backpropagation 
(chain-rule based (stochastic) gradient descent)

hypothesis  
family

model 
parameters

training/ 
optimization

regularization? 15



When discussing QML, keep an eye on 

• the What  
(what is the objective/goal) 

• the How  
(how is it done: algorithm; does is achieve the goal) 

• the Why  
(why do it on a QC; what is the expected advantage/other motivation)

actually, same questions apply to much of classical ML approaches

the why is tricky tho; makes a good model model is though 
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Big picture take home:

the learning/training is optimization:

but machine learning is more; which model; how it generalizes; good choices…
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A connection… 
variational methods in physics.. incl VQE are very similar

Var. Q chem ML

“Ansatz” model family/hypothesis family 

loss: energy loss: training set error+regul.

explicit, error free ground truth implicit ground truth, errors
optimization learning/training

regularization 
generalization

no regularization 
or generalization

statistical,  
parameteric learning

-ground truth…
 18



Cat v.s. no-cat example

https://towardsdatascience.com/in-ai-the-objective-is-subjective-4614795d179b 19

ground truth & “objective is subjective”



QC meets ML: big picture ideas 

-QC and the optimization bottleneck 

-QC and the high dimension bottleneck 

-QC and the hard model bottleneck 

training is optimization and can be hard (NP-hard) → quantum optimization  

much of ML is linear algebra; quantum computing is good at that, under conditions 

topic of the this and next lecture 
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Supervised Machine learning with Parameterized Quantum Circuits

What: supervised learning for classification 

Using quantum computing… but not for optimization needs

Why? TBD
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Supervised Machine learning with Parameterized Quantum Circuits 

neural networks VQE 
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Machine learning with Parameterized Quantum Circuits 

neural networks VQE 

PQC-based ML
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1) can we train it?
2) does it work?
3) does it do anything interesting? 

why do this?

Motivations: cannot do it classically? Curiosity driven?

Same Q’s for VQE, but there 3) is clear. Here it is not. 

We don’t really understand the model…

Next:  
1) a way to understand some of it. 
2) reasons to do it 
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Background 2: SVMs in detail

http://opencv-python-tutroals.readthedocs.org

D = {(xi, yi)}i xi 2 Rd, yi 2 {�1, 1}

separating hyperplanes 
(linear classifier, not SVM)

SVM: max-margin hyperplanes 

for now, assume linearly separable data
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http://opencv-python-tutroals.readthedocs.org

D = {(xi, yi)}i xi 2 Rd, yi 2 {�1, 1}

A number of equivalent formulations…

 - “functional margin”

 - “geometric margin”
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http://opencv-python-tutroals.readthedocs.org

Hyperplane fully defined  
in terms of support vectors

D = {(xi, yi)}i xi 2 Rd, yi 2 {�1, 1}

SVM: max-margin hyperplanes 

After some work: quadratic problem

“Support vectors”: 
points closest and equidistant  
to hyperplane
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c.f.  Representer theorems

Why bother with dual problem? Representation in  terms of datapoints 

• sparser evaluation (many alpha =0) 

• only inner products matter 

• handy for quantum tricks

Primal problem:

Dual problem:
Lagrangian approach
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Comment: the math should not hide the fact we are 

simply finding a member of the hypothesis  
family  which is minimizing a loss function  

BTW… 
 almost true: SVMs is “optimized” 

to be able to reason about learning performance…
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Why should we care about SVMs:  
what about when data is not linearly separable? 
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Non-separable datasets? 
-slack variables (this lead to QSVM - type 1) 
-feature mapping and the kernel trick

~x
�! �(~x)

�(~x)†.w + b = 0

� : Rd ! RD

c.f.: Cover’s theorem…
 31
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The kernel trick: 

one can “train” and evaluate SVM classifiers in rich 
feature spaces without ever mapping data-points into  
said spaces.  They can even be infinite dimensional
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The kernel trick

Note: in dual… only inner products matter

c.f. Mercer’s theorem

(� = �...)

=
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The kernel trick

Note: in dual… only inner products matter

c.f. Mercer’s theorem 
when is a Kernel “valid”?

(� = �...)

BTW: this thing is called “the kernel”

Note, we really don’t care about the feature map    itself… Φ
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The kernel trick

Kernels can sometimes be evaluated (much) more efficiently directly:

E.g. (stupidly)

(x1, x2, x3) 7!
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The kernel trick

reverse-engineered:

Directly:

Yay, quadratic speedup

See e.g.  Radial basis function kernel 

c.f. Mercer’s theorem

Φ(x) =

K(x, x′ ) = ⟨Φ(x), Φ(x′ )⟩

inf. dim….. 
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To keep in mind: 

-primal v.s. dual:  
in primal, optimize over normal vector explicitly;  
in dual, it is implicit, and the separating hyperplane is expressed in terms 
of data points 

-feature maps:  
by raising dimension non-linearly, we can achieve linear-separability 

-kernel trick: 
in dual formulation, only need kernel evaluation on data points 
for training. 

see axiv:1803.07128 37



Back to Quantum: an SVM reading of PQC-powered ML
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Basic idea: quantum computing offers interesting  
“natively quantum” feature maps and kernels

~x 7! U�(~x)|0i = |�(~x)i

 Nature. vol. 567, pp. 209-212 (2019)

Data is encoded in the circuit parameters (not input state). More general.
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Basic idea: quantum computing offers interesting  
“natively quantum” feature maps and kernels

 Nature. vol. 567, pp. 209-212 (2019)

One thing we can do with this… is evaluate inner products.

†

|h�(~y)|�(~x)i|2
Kernel! 

Can be hard to compute.

Do this quantumly 
(recall QC is good for inner products)
also possible:  
swap tests, hadamard tests

But we can do more…
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U� = H
⌦n

U�H
⌦n

U� · · ·H⌦n
U�

Which feature maps should we construct?

 Nature. vol. 567, pp. 209-212 (2019) 41



Which feature maps should we construct…elaborated
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First type of PQC SVM: implicit (dual) model 

training:

out(x) = sign (
N

∑
i=1

yiα*i K(xi, x) + b)classifying:

Quantum parts: needed in both to evaluate the kernels

 O(N2/poly(ϵ))

only offline; optimization essentially on classical data.
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Fully quantum model: explicit (primal) model 

f(z) : {0, 1}n ! {�1, 1}

 Nature. vol. 567, pp. 209-212 (2019) 44



Intuition:



How does it output a label? What is the achieved classfier?

 Nature. vol. 567, pp. 209-212 (2019)

The algorithm:

The label (output): (approximately)  sign of the expected value f, shifted by b: 

  out(x, θ) ≈ sign(𝔼z∼Q.circ[ f(z)] + b)

out(x, θ) ≈

-sample z many times (“shots”) 
-average, shift, compute sign.
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Comment:

 Nature. vol. 567, pp. 209-212 (2019)

  out(x, θ) ≈ sign(𝔼z∼Q.circ[ f(z)] + b)

out(x, θ) ≈
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Optimize θ to minimize some loss/error/empirical risk on dataset

How does it learn?

Involves evaluation of classifier function many times…

 Nature. vol. 567, pp. 209-212 (2019)

Often: stochastic gradient descent 

Q. chemistry optimization and optimization here very similar
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But what does it do?

 Nature. vol. 567, pp. 209-212 (2019) 
arxiv:1804.11326. p.g. 12.

the feature space is that of  
density operators…

 49



What does it do?
-limitations on the model 
come into play here… 
-not *all hyperplanes* 
reachable… 

-not maximal margin 
attained! 

 Nature. vol. 567, pp. 209-212 (2019)

out(x) ≈ sign( ⃗w . ⃗Φ(x) + b)
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Note the explicit model is much like training a NN/VQE

-but with a connection with a well-understood classical model
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Illustration of quantum decision boundaries

Two slices of quantum kernels (decision boundaries):

 52



Sevak Mardirosian MSc thesis, LIACS, 2019



Quantum advantage, and advantage for (near term) quantum

-for quantum advantage: useful and classically hard

-for advantage for near-term quantum: useful and doable
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Quantum advantage, and advantage for (near term) quantum

-for quantum advantage: useful and classically hard

-useful: remains to be seen;   
• almost all models useful in some settings; 

here when data has complex correlations. 
• Bleeding edge reasearch: 
•    theory for ML is difficult;  
•    QCs just becoming large enough for experiments
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Quantum advantage, and advantage for (near term) quantum

-for quantum advantage: useful and classically hard

-classically hard:  
• trivially there exist “BQP-hard“ kernels (for deep circuits) 
• for “functional problems” no hard separation results 

but; very likely hard. 
• more interestingly; likely hard in shallow circuit regime 
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Quantum advantage, and advantage for (near term) quantum

-for advantage for near-term quantum: useful and doable

doable: makes sense with: ~100 qubits, limited depth, errors
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Quantum advantage, and advantage for (near term) quantum

1)  ~100 qubits - probably yes   is interesting 
2) depth?  
3) noise? 

2100
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10.1126/science.aar3106

n

O(1) 
(indep. from n)

O(logk(n)) O(poly(n)) 

… ……

Recall Quantum depth complexity

-better than classical 
const depth for relational 
problems 

-likely better for sampling  
problems, no matter what  
depth of classical computer

-NOT better than CC for 
decision problems

Hard part of Shor’s algo. “BQP” =  full QC

Ground states  
of complex systems in 
polytime 
(multi-scale entanglement  
renormalization ansatz)

 59



can we have limited depth and classically hard?

†
†

Lm: full exact simulation of output of log-many qubits  
in constant depth, can be done in poly-time

Not log-many!  
No known efficient classical algorithm

…

This is the situation in chemistry with log-local 
Hamiltonians - depth must be at least log.
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1)  ~100 qubits ✓ 
2) depth ✓ 
3) noise? 

Reasons for optimism: 
a) ML as signal-from-noise + source shifting 
b) stochastic hypothesis families and noisy data (distinct from 
mathematical optimization) 
c) brains are noisy :)
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