Quantum-enhanced Machine Learning (with near-term devices)

Contents \& Literature

1) Background 1: machine learning (ML)

- what is ML, and basic ML models

2) QC meets ML (big picture) [for more info: arXiv:1709.02779]
3) ML and parametrized circuits [for more info: arXiv:1906.07682]
4) QeML with quantum feature spaces [based on: arXiv:1804.11326]

- Support vector machines
- Explicit and implicit quantum-embedded SVMs

Machine learning and AI

big data analysis
unsupervised learning
supervised learning
generative models
deep learning online learning
sequential
non-parametric learning
parametric learning computational learning theory statistical learning
non-convex optimization
reinforcement learning
control theory
local search

Vision
Symbolic AI
Haptics

Three main (cannonical) modes of ML:

- Supervised learning
- Unsupervised learning
- Reinforcement learning
- forest of in-between modes; semi-supervised, active, transductive, on-line...

Supervised learning: the what (is the objective)

?

Supervised learning: the what (is the objective)

Data (feature vectors) \& Labels:
$\mathbf{x} \in S \subseteq \mathbb{R}^{n} ; y \in$ Labels
Label function:

$$
f: S \rightarrow \text { Labels }
$$

Dataset, "training examples"

$$
D=\left\{\left(\mathbf{x}_{i}, y_{i}\right) \mid \mathbf{x}_{i} \in S ; y_{i}=f(\mathbf{x})\right\}
$$

-need to correctly label unlabeled data

Given D, output a good guess for f.
-classification (categorical or discrete label) v.s. regression (contiuous label)
-classification, prediction, regression....

Supervised learning: the what (is the objective)

Basic concepts and math

More generally (probabilistic)
BTW: Distributions generalize functions
Data (feature vectors) \& Labels:

$$
\mathbf{x} \in S \subseteq \mathbb{R}^{n} ; y \in \text { Labels }
$$

Label function:

$$
P(\mathbf{x}, y)
$$

Dataset, "training examples"

$$
D \sim P^{\times|D|}
$$

Given D, output a good guess for $P(y \mid \mathbf{x})$

Learning about data-label relationships in a bivariate distribution from samples

Unsupervised learning: the what (is the objective)

Learning about (all) features in a distribution from samples

Reinforcement learning: the what (is the objective)

Learning correct behaviour (policies) by trial-and-error (incl. data generation online). E.g. AlphaGo.

Supervised learning: the how (is it achieved)

Recall: need to "guess" $f: S \subseteq \mathbb{R}^{n} \rightarrow$ Labels from $D=\left\{\left(\mathbf{x}_{i}, y_{i}=f\left(\mathbf{x}_{i}\right)\right)\right\}$

- Hypothesis family: $\left\{f^{\theta} \mid f^{\theta}: S \subseteq \mathbb{R}^{n} \rightarrow\right.$ Labels, $\left.\theta\right\}$ (c.f. "model/model family")
- Learning $=$ training \approx fitting:
$\operatorname{argmin}_{\theta}$ Error_on_D $_{-}\left(f^{\theta}\right)+R\left(f^{\theta}\right)$
$R=$ regularization term
. "Loss", "empirical risk", "accuracy", e.g. $\sum_{(\mathbf{x}, y) \in D}\left|f^{\theta}(\mathbf{x})-y\right|^{2}$
- Generalization performance: (no overfiting, Occam's razor)

Supervised learning: the how (is it achieved)

Recall: need to "guess" $f: S \subseteq \mathbb{R}^{n} \rightarrow$ Labels from $D=\left\{\left(\mathbf{x}_{i}, y_{i}=f\left(\mathbf{x}_{i}\right)\right)\right\}$

- Hypothesis family: $\left\{f^{\theta} \mid f^{\theta}: S \subseteq \mathbb{R}^{n} \rightarrow\right.$ Labels, $\left.\theta\right\}$ (c.f. "model/model family")
- Learning $=$ training \approx fitting:
$\operatorname{argmin}_{\theta}$ Error_on_D($\left.f^{\theta}\right)+R\left(f^{\theta}\right)$
$R=$ regularization term
- "Loss", "empirical risk", "accuracy", e.g. $\sum_{(\mathbf{x}, y) \in D}\left|f^{\theta}(\mathbf{x})-y\right|^{2}$
- Generalization performance: (no overfitting, Occam's razor)

Regularization: controling "model complexity" to ensure good generalization

Machine learning is all about generalization performance, that is performance beyond the training set.

It is not "just" a best fit problem.

Theory approaches: VC theory, Rademacher complexity...

In practice: cross-validation

Supervised learning: the how (is it achieved); examples

- support vector machines (SVM)
- neural networks
- k-nearest neighbours [classification]
- decision trees [classification]
- naïve Bayes
- (linear) regression [regression]
- Gaussian process regression

Supervised learning: the how (is it achieved); examples

When discussing QML, keep an eye on

- the What
(what is the objective/goal)
- the How
(how is it done: algorithm; does is achieve the goal)
- the Why
(why do it on a QC; what is the expected advantage/other motivation)
actually, same questions apply to much of classical ML approaches
the why is tricky tho; makes a good model model is though

Big picture take home:

 the learning/training is optimization: $\quad \operatorname{argmin}_{\theta}$ Err_training_set $(\theta)+\operatorname{Reg}(\theta)$
but machine learning is more; which model; how it generalizes; good choices...

A connection...
 variational methods in physics.. incl VQE are very similar

Var. Q chem	ML
"Ansatz"	model family/hypothesis family
loss: energy	loss: training set error+regul.
explicit, error free ground truth	implicit ground truth, errors
optimization	learning/training

Cat v.s. no-cat example

ground truth \& "objective is subjective"

QC meets ML: big picture ideas

-QC and the optimization bottleneck
training is optimization and can be hard (NP-hard) \rightarrow quantum optimization
-QC and the high dimension bottleneck
much of ML is linear algebra; quantum computing is good at that, under conditions
-QC and the hard model bottleneck
topic of the this and next lecture

Supervised Machine learning with Parameterized Quantum Circuits

What: supervised learning for classification

Using quantum computing... but not for optimization needs

Why? TBD

Supervised Machine learning with Parameterized Quantum Circuits

neural networks

VQE

Machine learning with Parameterized Quantum Circuits

neural networks

VQE

PQC-based ML

1) can we train it?
2) does it work?
3) does it do anything interesting? why do this?

Same Q's for VQE, but there 3) is clear. Here it is not.
Motivations: cannot do it classically? Curiosity driven?
We don't really understand the model...

Next:

1) a way to understand some of it.
2) reasons to do it

Background 2: SVMs in detail

$$
D=\left\{\left(x_{i}, y_{i}\right)\right\}_{i} \quad x_{i} \in \mathbb{R}^{d}, y_{i} \in\{-1,1\}
$$

separating hyperplanes
(linear classifier, not SVM)

SVM: max-margin hyperplanes
for now, assume linearly separable data

$$
D=\left\{\left(x_{i}, y_{i}\right)\right\}_{i} \quad x_{i} \in \mathbb{R}^{d}, y_{i} \in\{-1,1\}
$$

A number of equivalent formulations...
$y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)$ - "functional margin"
$\frac{y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)}{\|\mathbf{w}\|}$ - "geometric margin"

$$
\underset{\mathbf{w}, b}{\arg \max } \min _{i \in\{1, \ldots, N\}} \frac{y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)}{\|\mathbf{w}\|}
$$

$$
D=\left\{\left(x_{i}, y_{i}\right)\right\}_{i} \quad x_{i} \in \mathbb{R}^{d}, y_{i} \in\{-1,1\}
$$

After some work: quadratic problem

$$
\underset{\mathbf{w}, b}{\arg \min } \frac{1}{2}\|\mathbf{w}\|^{2}
$$

such that $y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1, \quad i=1, \ldots, N$.

SVM: max-margin hyperplanes
"Support vectors": points closest and equidistant to hyperplane

Hyperplane fully defined in terms of support vectors

Lagrangian approach

Primal problem:
$\underset{\mathbf{w}, b}{\arg \min } \frac{1}{2}\|\mathbf{w}\|^{2}$

$$
\text { such that } \alpha_{i} \geq 0, \quad \text { for } i=0, \ldots, N
$$ such that $y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1, \quad i=1, \ldots, N$.

Dual problem:

$$
\underset{\alpha}{\arg \max } \sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(\mathbf{x}_{i}\right)^{\top} \mathbf{x}_{j}
$$

$$
\text { and } \sum_{i=1}^{N} \alpha_{i} y_{i}=0
$$

$$
\mathbf{w}=\sum_{i=1}^{N} \alpha_{i}^{*} y_{i} \mathbf{x}_{i}
$$

Why bother with dual problem? Representation in terms of datapoints

- sparser evaluation (many alpha $=0$) $\quad\left(\mathbf{w}^{*}\right)^{\top} \mathrm{x}+b^{*}=\left(\sum_{i=1}^{N} \alpha_{i} y_{i}\left(\mathrm{x}_{\mathrm{i}}\right)^{\top} \mathrm{x}\right)+b^{*}$.
- only inner products matter

$$
\alpha_{i} \alpha_{j} y_{i} y_{j}\left(\mathbf{x}_{i}\right)^{\top} \mathbf{x}_{j},
$$

- handy for quantum tricks

Comment: the math should not hide the fact we are
simply finding a member of the hypothesis family which is minimizing a loss function

BTW...
almost true: SVMs is "optimized"
to be able to reason about learning performance...

Why should we care about SVMs: what about when data is not linearly separable?

Non-separable datasets?
-slack variables (this lead to QSVM - type 1)
-feature mapping and the kernel trick

c.f.: Cover's theorem...

The kernel trick:

one can "train" and evaluate SVM classifiers in rich feature spaces without ever mapping data-points into said spaces. They can even be infinite dimensional

The kernel trick

Note: in dual... only inner products matter

$$
K\left(\mathrm{x}_{i}, \mathrm{x}_{j}\right)=\left\langle\phi\left(\mathrm{x}_{i}\right), \phi\left(\mathrm{x}_{j}\right)\right\rangle(\phi=\Phi \ldots)
$$

$$
\underset{\alpha}{\arg \max } \sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(\mathbf{x}_{i}\right)^{\top} \mathbf{x}_{j},
$$

$$
\begin{aligned}
& \underset{\alpha}{\arg \max }
\end{aligned} \sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle\phi\left(\mathbf{x}_{i}\right), \phi\left(\mathbf{x}_{j}\right)\right\rangle, \underset{\alpha}{\arg \max } \sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) .
$$

The kernel trick

Note: in dual... only inner products matter $K\left(\mathrm{x}_{i}, \mathrm{x}_{j}\right)=\left\langle\phi\left(\mathrm{x}_{i}\right), \phi\left(\mathrm{x}_{j}\right)\right\rangle \quad(\phi=\Phi \ldots)$ $\underset{\alpha}{\arg \max } \sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(\mathrm{X}_{\mathrm{i}}\right)^{\top} \mathrm{x}_{j}$, BTW: this thing is called "the kernel" $\left.\left.\quad \mathrm{x}_{\mathrm{i}}\right), \phi\left(\mathrm{x}_{j}\right)\right\rangle$

Note, we really don't care about the feature map Φ itself...
c.f. Mercer's theorem when is a Kernel "valid"?

The kernel trick

Kernels can sometimes be evaluated (much) more efficiently directly:

$$
\begin{aligned}
& \text { E.g. (stupidly) } \\
& \left.\qquad \begin{array}{l}
\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right) \mapsto \phi(\mathrm{x})=\left(\begin{array}{llllllll}
x_{1} x_{1} & x_{1} x_{2} & x_{1} x_{3} & x_{2} x_{1} & x_{2} x_{2} & x_{2} x_{3} & x_{3} x_{1} & x_{3} x_{2}
\end{array} x_{3} x_{3}\right.
\end{array}\right)^{\top} \\
& \qquad\langle\phi(\mathrm{x}), \phi(\mathrm{z})\rangle=\sum_{i=1}^{d} \sum_{j=1}^{d} x_{i} z_{i} x_{j} z_{j} \quad \text { Runtime for } \phi(\mathrm{x}): \mathcal{O}\left(d^{2}\right)
\end{aligned}
$$

The kernel trick

$\phi(\mathbf{x})=\left(\begin{array}{lllllllll}x_{1} x_{1} & x_{1} x_{2} & x_{1} x_{3} & x_{2} x_{1} & x_{2} x_{2} & x_{2} x_{3} & x_{3} x_{1} & x_{3} x_{2} & x_{3} x_{3}\end{array}\right)^{\top}$
reverse-engineered: $\quad K(\mathbf{x}, \mathbf{z})=\left(\mathbf{x}^{\top} \mathbf{z}\right)^{2}=\left(\sum_{i=1}^{d} x_{i} z_{i}\right)\left(\sum_{i=1}^{d} x_{i} z_{i}\right)=\sum_{i=1}^{d} \sum_{j=1}^{d} x_{i} z_{i} x_{j} z_{j}=\langle\boldsymbol{\phi}(\mathbf{x}), \phi(\mathbf{z})\rangle$.

Directly:

Let $\mathbf{x}=\left(x_{1}, \ldots, x_{d}\right)^{\top}, \mathbf{z}=\left(z_{1}, \ldots, z_{d}\right)^{\top}$ and

$$
K(\mathbf{x}, \mathbf{z})=\left(\mathbf{x}^{\top} \mathbf{z}\right)^{2}
$$

Runtime: $\mathcal{O}(d)$.
Yay, quadratic speedup

See e.g. Radial basis function kernel

$$
\begin{aligned}
& K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left(-\frac{\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|^{2}}{2 \sigma^{2}}\right) \\
& K\left(x, x^{\prime}\right)=\left\langle\Phi(x), \Phi\left(x^{\prime}\right)\right\rangle
\end{aligned}
$$

$$
\Phi(x)=e^{-x^{2} n \sigma^{2}}\left[1, \sqrt{\frac{1}{1!\sigma^{2}}} x, \sqrt{\frac{1}{2!\sigma^{4}}} x^{2}, \sqrt{\frac{1}{3!\sigma^{6}}} x^{3}, \ldots .\right]^{T}
$$

inf. dim.....
c.f. Mercer's theorem

To keep in mind:

-primal v.s. dual:
in primal, optimize over normal vector explicitly;
in dual, it is implicit, and the separating hyperplane is expressed in terms of data points
-feature maps:
by raising dimension non-linearly, we can achieve linear-separability
-kernel trick:
in dual formulation, only need kernel evaluation on data points for training.

Back to Quantum: an SVM reading of PQC-powered ML

Basic idea: quantum computing offers interesting "natively quantum" feature maps and kernels

Data is encoded in the circuit parameters (not input state). More general.

Basic idea: quantum computing offers interesting "natively quantum" feature maps and kernels

One thing we can do with this... is evaluate inner products.

Kerne!!

$|\langle\Phi(\vec{y}) \mid \Phi(\vec{x})\rangle|^{2}$
Can be hard to compute.

Do this quantumly
(recall QC is good for inner products) also possible:
swap tests, hadamard tests

But we can do more...

Which feature maps should we construct?

$$
\begin{aligned}
& U_{\Phi(\vec{x})}=\exp \left(i \sum_{S \subseteq[n]} \phi_{S}(\vec{x}) \prod_{i \in S} Z_{i}\right) \\
& \phi_{\{i\}}(\vec{x})=x_{i} \text { and } \phi_{\{1,2\}}(\vec{x})=\left(\pi-x_{1}\right)\left(\pi-x_{2}\right) \\
& e^{i \phi_{\{l, m\}}(\vec{x}) Z_{l} Z_{m}}=\boldsymbol{\omega}^{-\infty} \\
& \mathcal{U}_{\Phi}=H^{\otimes n} U_{\Phi} H^{\otimes n} U_{\Phi} \cdots H^{\otimes n} U_{\Phi}
\end{aligned}
$$

Which feature maps should we construct...elaborated

- Dimension of feature space $=2^{\text {\#qubits }}$; \# Quits $=N=$ initial dimension
- Define "submaps" $\phi_{S} \quad S=-$ individual vector entries; $S \subseteq\{1 \ldots N\}$ - Pairs ${ }^{-}$.... can be generalized \therefore correlators (2 or k-local)
$\phi_{s}: \mathbb{R}$ or $\mathbb{R}^{2} \rightarrow$ "angles 4

$$
\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right] \rightarrow \phi_{3} \rightarrow \theta \rightarrow \underbrace{\exp \left(i z_{1} z_{3} \theta\right)}_{v_{s}(\vec{x})}
$$

- $\bigcup_{\oint(\bar{x})}:=\prod_{s} U_{S}(\bar{x}) \ldots \quad$ All diagonal...
- Feature map: $U_{\Phi}=\left(H^{\otimes N} U_{\Phi(x)}\right)^{\otimes m}$

First type of PQC SVM: implicit (dual) model
training:

$$
\underset{\alpha}{\arg \max } \sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{j} y_{j} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)
$$

classifying:

$$
\operatorname{out}(\mathbf{x})=\operatorname{sign}\left(\sum_{i=1}^{N} y_{i} \alpha_{i}^{*} K\left(\mathbf{x}_{i}, \mathbf{x}\right)+b\right)
$$

Quantum parts: needed in both to evaluate the kernels only offline; optimization essentially on classical data.

$$
O\left(N^{2} / \operatorname{poly}(\epsilon)\right)
$$

Fully quantum model: explicit (primal) model

Intuition:

How does it output a label? What is the achieved classfier?

The label (output): (approximately) sign of the expected value f, shifted by b :

$$
\operatorname{out}(\mathbf{x}, \theta) \approx \operatorname{sign}\left(\mathbb{E}_{z \sim Q . \operatorname{circ}}[f(z)]+b\right)
$$

$\operatorname{out}(\mathbf{x}, \theta) \approx \operatorname{sign}\left(\langle\Phi(\vec{x})| W^{\dagger}(\vec{\theta}) \mathbf{f} W(\vec{\theta})|\Phi(\vec{x})\rangle+b\right)$

The algorithm:
-sample z many times ("shots")
-average, shift, compute sign.

Comment:

$$
\begin{aligned}
& \operatorname{out}(\mathbf{x}, \theta) \approx \operatorname{sign}\left(\mathbb{E}_{z \sim Q . \operatorname{circ}}[f(z)]+b\right) \\
& \operatorname{out}(\mathbf{x}, \theta) \approx \operatorname{sign}\left(\langle\Phi(\vec{x})| W^{\dagger}(\vec{\theta}) \mathbf{f} W(\vec{\theta})|\Phi(\vec{x})\rangle+b\right)
\end{aligned}
$$

"measure each qubit in conp bacis, conpute $f(\vec{i})^{\prime}=$ observable

$$
f:=\sum_{i} f(i)|\vec{i} \times i|
$$

"measure each qubit in conp basis, conpute $f(\vec{z})^{\prime}:=$ a realization of measurement of f. Averacina yiecos the expected vacue.

How does it learn?
Optimize θ to minimize some loss/error/empirical risk on dataset
Involves evaluation of classifier function many times...
Often: stochastic gradient descent
Q. chemistry optimization and optimization here very similar

But what does it do?

SuM clasifier: $\operatorname{sign}(\vec{n} \cdot \vec{x}+b)$
HERE: $\quad \operatorname{SICN}(\underbrace{\left.\langle\phi(x)| W^{+}(\theta)+W(\theta) \mid \phi(x)\right)}_{\text {inner product? }}+b)$

$$
\langle\phi(x)| w^{+} f w|\phi(x)\rangle=\operatorname{Tr}\left[\frac{w^{+} f w}{A} \overparen{B}{ }_{|\phi(x) x \phi(x)|}\right]=(A, B)_{F r}
$$

Let. $(\vec{w})_{\alpha}=\operatorname{Tr}\left[w^{t} f W P_{\alpha}\right] ; P_{\alpha}-P_{\text {ali }}$ string $\alpha \in\left[0 \ldots 4^{n-1}\right]$

$$
\begin{gathered}
(\vec{\phi}(\vec{x}))_{\alpha}=\operatorname{Tr}\left(|\phi(x) x \phi(x)| P_{\alpha}\right] \\
\operatorname{out}(\vec{x}) \hat{=} \operatorname{sigw}(\vec{\omega} \cdot \vec{\phi}(\vec{x})+b)
\end{gathered}
$$

the feature space is that of density operators...

What does it do?

$$
\begin{aligned}
& {[\vec{\omega}(\theta)]_{\alpha}=\operatorname{tr}\left[W^{\dagger}(\vec{\theta}) \mathbf{f} W(\vec{\theta}) P_{\alpha}\right]} \\
& {[\vec{\phi}(\vec{x})]_{\alpha}=\left\langle\Phi \left(\vec{x}| | P_{\alpha}|\Phi(\vec{x})\rangle\right.\right.} \\
& \operatorname{out}(\overrightarrow{\mathbf{x}}) \approx \operatorname{sign}(\vec{w} \cdot \vec{\Phi}(\overrightarrow{\mathbf{x}})+b)
\end{aligned}
$$

-limitations on the model come into play here... -not *all hyperplanes* reachable...
-not maximal margin attained!

Because $W(\theta) \& \& A r e$ Restricted.

Note the explicit model is much like training a NN/VQE

-but with a connection with a well-understood classical model

Illustration of quantum decision boundaries

Two slices of quantum kernels (decision boundaries):

qubits	v－depth	epochs	shots	Acc（on training）	Acc（on testing）
3	4	400	2000	89%	60%
3	4	600	2000	88%	55%
3	4	800	2000	91%	64%
3	4	1000	2000	91%	64%

Table 5．4：results of Wine dataset on 3－qubits

qubits	v－depth	epochs	shots	Acc（on training）	Acc（on testing）
3	4	400	2000	96%	88%
3	4	600	2000	97%	90%
3	4	800	2000	97%	89%

Table 5．8：results of MNIST dataset on 3－qubits

qubits	v－depth	epochs	shots	Acc（on training）	Acc（on testing）
2	4	400	2000	97%	88%
2	4	600	2000	97%	89%
2	4	800	2000	99%	91%

Table 5．5：results of breast cancer dataset on 2－qubits

qubits	v－depth	epochs	shots	Acc（on training）	Acc（on testing）
3	4	400	2000	92%	71%
3	4	600	2000	93%	73%

Table 5．6：results of Cancer dataset on 3－qubits

Quantum advantage, and advantage for (near term) quantum
-for quantum advantage: useful and classically hard
-for advantage for near-term quantum: useful and doable

Quantum advantage, and advantage for (near term) quantum
-for quantum advantage: useful and classically hard
-useful: remains to be seen;

- almost all models useful in some settings; here when data has complex correlations.
- Bleeding edge reasearch:
- theory for ML is difficult;
- QCs just becoming large enough for experiments

Quantum advantage, and advantage for (near term) quantum
-for quantum advantage: useful and classically hard
-classically hard:

- trivially there exist "BQP-hard" kernels (for deep circuits)
- for "functional problems" no hard separation results but; very likely hard.
- more interestingly; likely hard in shallow circuit regime

Quantum advantage, and advantage for (near term) quantum

-for advantage for near-term quantum: useful and doable

doable: makes sense with: ~100 qubits, limited depth, errors

Quantum advantage, and advantage for (near term) quantum

1) ~ 100 qubits - probably yes 2^{100} is interesting
2) depth?
3) noise?

Recall Quantum depth complexity

can we have limited depth and classically hard?

Lm: full exact simulation of output of log-many qubits in constant depth, can be done in poly-time

This is the situation in chemistry with log-local Hamiltonians - depth must be at least log.

Not log-many!
No known efficient classical algorithm

1) ~ 100 qubits \checkmark
2) depth \checkmark
3) noise?

Reasons for optimism:
a) ML as signal-from-noise + source shifting
b) stochastic hypothesis families and noisy data (distinct from mathematical optimization)
c) brains are noisy :)

