
Quantum-enhanced Machine Learning 
(with near-term devices)



1) Background 1: machine learning (ML) 
• what is ML, and basic ML models 

2) QC meets ML (big picture) [for more info: arXiv:1709.02779] 

3) ML and parametrized circuits [for more info: arXiv:1906.07682] 

4)  QeML with quantum feature spaces [based on: arXiv:1804.11326] 
• Support vector machines  
• Explicit and implicit quantum-embedded SVMs 

Contents & Literature
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Machine learning and AI

AI

supervised learning

unsupervised learning

online learning

generative models

reinforcement  
learning

deep learning

statistical learning

non-parametric  
learning 

parametric learning 

local search

Symbolic AI 

computational learning theory
control theory non-convex 

optimization

sequential 
decision 
theory

ML
big data analysis

Haptics 

Vision 

Game AI 



Three main (cannonical) modes of ML: 

• Supervised learning  
• Unsupervised learning  
• Reinforcement learning

• forest of in-between models; semi-supervised, active, transductive, on-line…



Supervised learning: the what (is the objective)

?

,



Supervised learning: the what (is the objective)

-classification (categorical or discrete label) v.s. regression (contiuous label)

x ∈ S ⊆ ℝn; y ∈ Labels

f : S → Labels

D = {(xi, yi) |xi ∈ S; yi = f(x)}

Basic concepts and math

Data (feature vectors) & Labels:

Label function:

Dataset, “training examples”

Given D, output a good guess for   f .

-classification, prediction, regression….

-need to correctly label unlabeled data



Supervised learning: the what (is the objective)

x ∈ S ⊆ ℝn; y ∈ Labels

P(x, y)

D ∼ P×|D|

Basic concepts and math

Data (feature vectors) & Labels:

Label function:

Dataset, “training examples”

Given D, output a good guess for   P(y |x)

More generally (probabilistic)

Learning about data-label relationships in a bivariate distribution from samples

BTW: Distributions generalize functions 



Unsupervised learning: the what (is the objective)

?

x ∈ S ⊆ ℝn

P(x)
-discriminative (clustering) , “labeling w/o examples”

-generative (make more cats):  
approximate sampling from P given D

Learning about (all) features in a distribution from samples

D ∼ P×|D|

data:

“world":

training:



Reinforcement learning: the what (is the objective)

T (s|s0, a)

Learning correct behaviour (policies) by trial-and-error 
(incl. data generation online). E.g. AlphaGo.



Supervised learning: the how (is it achieved)

Recall: need to “guess”    from   f : S ⊆ ℝn → Labels D = {(xi, yi = f(xi))}

• Hypothesis family:    (c.f. “model/model family”) {f θ | f θ : S ⊆ ℝn → Labels, θ}

• Learning = training   fitting: ≈

argminθ Error_on_D( f θ) + R( f θ)

• “Loss”, “empirical risk”, e.g.    ∑
(x,y)∈D

| f θ(x) − y |2

• Generalization performance: (no overfitting, Occam’s razor)

R = regularization



Supervised learning: the how (is it achieved)

Recall: need to “guess”    from   f : S ⊆ ℝn → Labels D = {(xi, yi = f(xi))}

• Hypothesis family:    (c.f. “model/model family”) {f θ | f θ : S ⊆ ℝn → Labels, θ}

• Learning = training   fitting: ≈

argminθ Error_on_D( f θ) + R( f θ)

• “Loss”, “empirical risk”, e.g.    ∑
(x,y)∈D

| f θ(x) − y |2

• Generalization performance: (no overfitting, Occam’s razor)

R = regularization

the same elements will 
be present for unsupervised 

learning



undertrain overtrain just right

underfit overfit just right

Classification

Regression

Regularization: controling “model complexity” to ensure good generalization



Supervised learning: the how (is it achieved); examples

• support vector machines (SVM) 
• neural networks 
 

• k-nearest neighbours [classification] 
• decision trees [classification] 
• naïve Bayes 
• (linear) regression [regression] 
• Gaussian process regression



Supervised learning: the how (is it achieved); examples

Support Vector Machines (SVMs) Neural networks 
(not just SL; many types)

“which half-space”   hyperplanes 
  + important trick

∀
sign(wt . x + b)

usually Lagrangian multipler method

w

specified by n.n.  
(linear+nonlinear layers) 

nomal vector+offset weights + offsets

usually backpropagation 
(chain-rule based (stochastic) gradient descent)

hypothesis  
family

model 
parameters

training/ 
optimization

regularization?



When discussing QML, keep an eye on 

• the What  
(what is the objective/goal) 

• the How  
(how is it done: algorithm; does is achieve the goal) 

• the Why  
(why do it on a QC; what is the expected advantage/other motivation)

actually, same questions apply to much of classical ML approaches

the why is tricky tho; makes a good model model is though 
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Big picture take home:

the learning/training is optimization:

but machine learning is more; which model; how it generalizes; good choices…



A connection… 
variational methods in physics.. incl VQE are very similar

Var. Q chem ML

“Ansatz” “model”/hypothesis family 

loss: energy loss: training set error+regul.

explicit, error free ground truth implicit ground truth, errors
optimization learning/training

regularization 
generalization

no regularization 
or generalization

statistical,  
parameteric learning

-ground truth…



Cat v.s. no-cat example

https://towardsdatascience.com/in-ai-the-objective-is-subjective-4614795d179b



QC meets ML: big picture ideas 

-QC and the optimization bottleneck 

-QC and the high dimension bottleneck 

-QC and the hard model bottleneck 

training is optimization and can be hard (NP-hard) → quantum optimization  

much of ML is linear algebra; quantum computing is good at that, under conditions 

topic of the next two lectures 



Supervised Machine learning with Parameterized Quantum Circuits

What: supervised learning for classification 

Using quantum computing… but not for optimization needs

Why? TBD



Supervised Machine learning with Parameterized Quantum Circuits 

neural networks VQE 



Machine learning with Parameterized Quantum Circuits 

neural networks VQE 

PQC-based ML



1) can we train it?
2) does it work?
3) does it do anything interesting? 

why do this?

Motivations: cannot do it classically? Curiosity driven?

Same Q’s for VQE, but there 3) is clear. Here it is not. 

We don’t really understand the model…

Next:  
1) a way to understand some of it. 
2) reasons to do it 



Background 2: SVMs in detail

http://opencv-python-tutroals.readthedocs.org

D = {(xi, yi)}i xi 2 Rd, yi 2 {�1, 1}

separating hyperplanes 
(linear classifier, not SVM)

SVM: max-margin hyperplanes 

for now, assume linearly separable data



http://opencv-python-tutroals.readthedocs.org

D = {(xi, yi)}i xi 2 Rd, yi 2 {�1, 1}

A number of equivalent formulations…

 - “functional margin”

 - “geometric margin”



http://opencv-python-tutroals.readthedocs.org

Hyperplane fully defined  
in terms of support vectors

D = {(xi, yi)}i xi 2 Rd, yi 2 {�1, 1}

SVM: max-margin hyperplanes 

After some work: quadratic problem

“Support vectors”: 
points closest and equidistant  
to hyperplane



c.f.  Representer theorems

Why bother with dual problem? Representation in  terms of datapoints 

• sparser evaluation 

• only inner products matter 

• handy for quantum tricks

Primal problem:

Dual problem:
Lagrangian approach



Comment: the math should not hide the fact we are simply 

finding a member of the hypothesis family  
which is minimizing a loss function  

NB: almost true: SVMs is “optimized” 
to be able to reason about learning performance…



Why should we care about SVMs:  
what about when data is not linearly separable? 



Non-separable datasets? 
-slack variables (this lead to QSVM - type 1) 
-feature mapping and the kernel trick

~x
�! �(~x)

�(~x)†.w + b = 0

� : Rd ! RD

c.f.: Cover’s theorem…



The kernel trick: 

one can “train” and evaluate SVM classifiers in rich 
feature spaces without ever mapping data-points into  
said spaces.  They can even be infinite dimensional



The kernel trick

Note: in dual… only inner products matter

c.f. Mercer’s theorem

(� = �...)

=



The kernel trick

Note: in dual… only inner products matter

c.f. Mercer’s theorem

(� = �...)

BTW: this thing is called “the kernel”

Note, we really don’t care about the feature map    itself… Φ



The kernel trick

Kernels can sometimes be evaluated (much) more efficiently directly:

E.g. (stupidly)

(x1, x2, x3) 7!



The kernel trick

reverse-engineered:

Directly:

Yay, quadratic speedup

See e.g.  Radial basis function kernel 

c.f. Mercer’s theorem

Φ(x) =

K(x, x′ ) = ⟨Φ(x), Φ(x′ )⟩

inf. dim….. 



To keep in mind: 

-primal v.s. dual:  
in primal, optimize over normal vector explicitly;  
in dual, it is implicit, and the separating hyperplane is expressed in terms 
of data points 

-feature maps:  
by raising dimension non-linearly, we can achieve linear-separability 

-kernel trick: 
in dual formulation, only need kernel evaluation on data points 
for training. 

see axiv:1803.07128



Back to Quantum: an SVM reading of PQC-powered ML



Basic idea: quantum computing offers interesting  
“natively quantum” feature maps and kernels

~x 7! U�(~x)|0i = |�(~x)i

 Nature. vol. 567, pp. 209-212 (2019)

Data is encoded in the circuit parameters (not input state). More general.



Basic idea: quantum computing offers interesting  
“natively quantum” feature maps and kernels

 Nature. vol. 567, pp. 209-212 (2019)

One thing we can do with this… is evaluate inner products.

†

|h�(~y)|�(~x)i|2
Kernel! 

Can be hard to compute.

Do this quantumly 
(recall QC is good for inner products)
also possible:  
swap tests, hadamard tests

But we can do more



U� = H
⌦n

U�H
⌦n

U� · · ·H⌦n
U�

Which feature maps should we construct?

 Nature. vol. 567, pp. 209-212 (2019)



Which feature maps should we construct…elaborated



First type of PQC SVM: implicit (dual) model 

training:

out(x) = sign (
N

∑
i=1

yiα*i K(xi, x) + b)classifying:

Quantum parts: needed in both to evaluate the kernels

 O(N2/poly(ϵ))

only offline; optimization essentially on classical data.



Fully quantum model: explicit (primal) model 

f(z) : {0, 1}n ! {�1, 1}

 Nature. vol. 567, pp. 209-212 (2019)



How does it output a label? What is the achieved classfier?

 Nature. vol. 567, pp. 209-212 (2019)

The algorithm:

The label (output): (approximately)  sign of the expected value f, shifted by b: 

  out(x, θ) ≈ sign(𝔼z∼Q.circ[ f(z)] + b)

out(x, θ) ≈

-sample z many times (“shots”) 
-average, shift, compute sign.



Comment:

 Nature. vol. 567, pp. 209-212 (2019)

  out(x, θ) ≈ sign(𝔼z∼Q.circ[ f(z)] + b)

out(x, θ) ≈



Optimize θ to minimize some loss/error/empirical risk on dataset

How does it learn?

Involves evaluation of classifier function many times…

 Nature. vol. 567, pp. 209-212 (2019)

Often: stochastic gradient descent 

Q. chemistry optimization and optimization here very similar



But what does it do?

 Nature. vol. 567, pp. 209-212 (2019) 
arxiv:1804.11326. p.g. 12.

the feature space is that of  
density operators…



What does it do?
-limitations on the model 
come into play here… 
-not *all hyperplanes* 
reachable… 

-not maximal margin 
attained! 

 Nature. vol. 567, pp. 209-212 (2019)

out(x) ≈ sign( ⃗w . ⃗Φ(x) + b)



Note the explicit model is much like training a NN/VQE
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-but with a connection with a well-understood classical model



Illustration of quantum decision boundaries

Two slices of quantum kernels:
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Quantum advantage, and advantage for (near term) quantum

-for quantum advantage: useful and classically hard

-for advantage for near-term quantum: useful and doable
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Quantum advantage, and advantage for (near term) quantum

-for quantum advantage: useful and classically hard

-useful: remains to be seen;   
• almost all models useful in some settings; 

here when data has complex correlations. 
• Bleeding edge reasearch: 
•    theory for ML is difficult;  
•    QCs just becoming large enough for experiments
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Quantum advantage, and advantage for (near term) quantum

-for quantum advantage: useful and classically hard

-classically hard:  
• trivially there exist “BQP-hard“ kernels (for deep circuits) 
• for “functional problems” no hard separation results 

but; very likely hard. 
• more interestingly; likely hard in shallow circuit regime 
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Quantum advantage, and advantage for (near term) quantum

-for advantage for near-term quantum: useful and doable

doable: makes sense with: ~100 qubits, limited depth, errors



 55

Quantum advantage, and advantage for (near term) quantum

1)  ~100 qubits - probably yes   is interesting 
2) depth?  
3) noise? 

2100



10.1126/science.aar3106

n

O(1) 
(indep. from n)

O(logk(n)) O(poly(n)) 

… ……

Recall Quantum depth complexity

-better than classical 
const depth for relational 
problems 

-likely better for sampling  
problems, no matter what  
depth of classical computer

-NOT better than CC for 
decision problems

Hard part of Shor’s algo. “BQP” =  full QC

Ground states  
of complex systems in 
polytime 
(multi-scale entanglement  
renormalization ansatz)



can we have limited depth and classically hard?

†
†

Lm: full exact simulation of output of log-many qubits  
in constant depth, can be done in poly-time

Not log-many!  
No known efficient classical algorithm

…

This is the situation in chemistry with log-local 
Hamiltonians - depth must be at least log.



1)  ~100 qubits ✓ 
2) depth ✓ 
3) noise? 

Reasons for optimism: 
a) ML as signal-from-noise + source shifting 
b) stochastic hypothesis families and noisy data (distinct from 
mathematical optimization) 
c) brains are noisy :)


