Quantum-enhanced unsupervised (generative) learning
(with near-term devices)



Machine Learning: the WHAT

Supervised learning Unsupervised learning
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-generative models
-clustering (discriminative)

Learning P(labels|data) given -feature extraction
samples from P(data,labels)
(also regression) Learning structure in P(data)

give samples from P(data)



Generative models

“What | cannot create, | do not understand”
R. Feynman

xeSCR”?

(algorithmically) generate new samples X
P(x) (approximately) distributed according to P

D = {x;} ~ pXI

2014 2017

arXiv:1710.10196
arXiv:1802.07228


https://arxiv.org/abs/1710.10196

Name one thing in this photo

source: twitter



Why care about generative models

medicinal
+ generating new data; e.g. newVdrugs

» completing missing data; image recovery
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 modality translation

» ...modelling reality...predict the future?

photo —>Monet

arxiv.org/pdf/1703.10593.pdf
arxiv.org/pdf/1804.07723.pdf


http://arxiv.org/pdf/1703.10593.pdf

Full generative problems strictly more general than supervised learning

let Z =X XY

SL: Given D ~ P(X, Y), approximate P(Y | X)
UL: Given D ~ P(X, Y), approximate P(X, Y)

Given access to P(X, Y'), the conditional can be derived....

(Also: distributions generalize functions)
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Full generative problems strictly more general than supervised learning

let Z =X XY

SL: Given D ~ P(X, Y), approximate P(Y | X)
UL: Given D ~ P(X, Y), approximate P(X, Y)

Given access to P(X, Y'), the conditional can be derived....

In generative models we find parameters that explain (‘cause”) all of the data

In discriminative models we find parameters that explain only the (for SL) relevant aspects of data



How do we do it?

xeSCR”?

P(x) (algorithmically) generate new samples X
(approximately) distributed according to P

D = {x;} ~ pxIP

How (1): parametrized distribution family {d?(x)}

Find @ such that d(x) ~ P, (X)

Hard because we need to efficiently:

* represent

* sample from

* |earn

complex and high dimensional probability distribution



How (2): the training and the metrics

o have parametrized distribution family {d?(x)}
+ How do we find @ such that d%(x) ~ P, . (X) D = {x;}

Rather: what does “~” mean given that we have samples only!

1) Maximum likelihood estimation (MLE):

Likelihood L(0, D) = H d%(x)

xeD

Find 0,,,, = argming{ —log L(0, D)}

*optimizing negative log-likelyhood is equivalent to optimizing the
so called Kullback-Leibler divergence (a.k.a. relative entropy, a measure of distinction between distributions)
between the source and target distribution



How (2): the training and the metrics
o have parametrized distribution family {d?(x)}

+ How do we find @ such that d?(x) =~ P, . (X) D = {x;}

Rather: what does “~" mean given that we have samples only!

1) Maximum likelihood estimation (MLE):

Likelihood L(0, D) = H d%(x)

xeD

Find 0,,,, = argming{ —log L(0, D)}

Updates can go via (approximate) gradient descent...
or derivative-free methods



How (2): the training and the metrics
e have parametrized distribution family {d?(x)}

+ How do we find @ such that d°(x) =~ P, (X) D= {x}

Other options (2)

2) Maximum a-posteriori (MAP):

P(D|6)P(6
P(9| D) = (D|0)P(O) ¢
P(D)
Ovap = argmax, P(D|0)P(0) Vladimir Vapnik

= argmax, log P(D|0)P(0)
= argmaxy log P(D|0) +log P(0)

L/W\—/v\)

MLt => MAP s MLE
UNDER.  NiFoRM PRIOR

http://yann.lecun.com/ex/fun/index.html#allyourbayes



How (2): the training and the metrics

e have parametrized distribution family { 2%(x)}

+ How do we find @ such that d(x) =~ P, (X) D= {x}

A number of options

3) Full Bayes:

P(D|0)P(6)

P@O|D) = 0

4) Adversarial methods (can be MLE)

All in general intractable, exaclty

...some require values we may not be able to compute (d%(x))

more on this in a second....



But which parametrized distribution family {d?(x)}?

How to specify distributions in general...

by characterizing the probabilities:

X
f:[N] - R*;dx) = /) ¢.f. sqashing functions in ML

2, S

by characterizing a generating process

e.g. the stationary distribution of a Markov chain




But which parametrized distribution family {d?(x)}?
Boltzmann machines

-energy based models
-stochastic recurrent NNs
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But which parametrized distribution family {d?(x)}?

Boltzmann machines
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But which parametrized distribution family {d?(x)}?

Boltzmann machines
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But which parametrized distribution family {d%(x)}?

Boltzmann Machines (BM)

How do we use this? Run? Train?

Powerful but heavily intractable
Cannot run:
CS: Low-temperature sampling NP-hard

Phys: Need to compute the partition function

Cannot train:
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Training requires conditional Gibbs sampling: intractable

Even approximating log-likelihood too hard
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But which parametrized distribution family {d%(x)}?

Enter Restricted Boltzmann Machines (RBM) More tractable!

Bipartite nature makes things conditionally factorize, e.g.

m
m
cit+ Y, wijvj )

P(v) = %Hebﬂ’j ﬁ (1 +e =1
J i=1

This allows for more tractable training algorithms

0log p(v
sz‘j( ) - <,U7:h’j>data B <U’ihj>model
Stil “model “is hard. % % i sC sy D DEMTTE Conm'

See “contrastive divergence’... approximation...

See “introduction to restricted boltzmann machines”, 10.1007/978-3-642-33275-3_2



RBM is universal (Freund, Haussler, '94) (analog of Cybenko theorem)

RBM vs BM is analogous to NN vs deep NN

What we mean by deep BM (DBM):

FIXUP

st RBM i (ess  FowerTuL

DM ¢ ESENTMUy ERIKENT To M

https://arxiv.org/pdf/1701.05039.pdf



RBM vs (D)BM (summary)

BM and RBM both energy models: distribution specified via an (bipartite) Ising model over
“visibe” and “hidden” units, by marginalizing over the hidden units

Both universal, but BM significantly more expressive for same number of units
(has to do with the independence of hidden variables)

Training much less costly in RBM case (but still very expensive)

In both cases, to even *run* the model, you need to use a sampler,
e.g. Markov Chain Monte Carlo



QC/QM meets (R)BM

Quantum-applied BMs:

(R)BMs can be used to parametrize quantum states (wavefunctions) [Carleo, Troyer "16]
(weights allowed to be complex-valued)

Quantum-enhanced BMs:

Quantum computers can help train (R)BMs: key step in training is (approximate) sampling from
Gibbs (Boltzmann, P(v,h)) distribution; QCs help get those: Quantum walks; Q. semidefinite programs; Annealing.
Quantum Approximate Optimization algorithms

QM can generalize (R)BM: move away from classical Ising H

arxiv:1606.02318
arxiv:1601.02036



QC/QM meets (R)BM

Quantum-enhanced BMs:

Quantum computers can help train (R)BMs: key step in training is (approximate) sampling from
Gibbs (Boltzmann, P(v,h)) distribution; QCs help get those: Quantum walks; Q. semidefinite programs; Annealing.
Quantum Approximate Optimization algorithms

QM can generalize (R)BM: move away from classical Ising H

In all cases. The physical intuition is: encode distribution in density matrices: mixed states.

In the quantum world... already pure states encode (many) distributions!

arxiv:1606.02318
arxiv:1601.02036



Next: quantum circuit Born machine

Boltzmann machine = distribution is a (marginalized) Boltzmann distribution
(distr which maximizes the entropy, subject to mean energy condition)
statistical mechanics

Born machine = distribution governed by the Born rule of quantum mechanics

Poilly)) = |{ilw)|* = Trl | i)(i] ly)(w]]

Po(i|p) = Tr[P;p]

Advantage: sampling (inference) is (quantum) easy (no nasty MCMC or similar)



Hypothesis family: parametrized circuit+
computational basis measurement

U@)) = RA6'HR(OI)R.(6))

0)+ o HZH R

. . . 1
Plus: evaluation is easy, does not involve 0) & HAH measud | gy !
. o o5 —— | — |
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two-sample test

"Minus™: “implicit” model. No direct access to AGII | |
likeihood, no way to compute dy(x), Cassicat losssarsdient | |
for a Chosen X optimizer < I :classicaldata:
e

distance-

loss

Almost the same circuit as the feature map
from previous lecture

arxiv.org:1804.04168



How to measure distances between distributions based on sampling... deep waters.

MLE optimization/KL optimization?

L =~ m(z)log (po(2)) = —Egen(log(pe(2))

oL w(z) , _
85L ~ Zz: PO(Z) (pO (Z) —p;(z))
Intractable

Here: Squared maximum mean discrepancy (MMD)

2

L= = JENPO[K(x,y)]—Z E [Kxyl+ E [K(xyl

X~pg,y X~pg,y~T X~T,y~T

> pex)p(x) = Y 7))

arxiv.org:1804.04168



Squared maximum mean discrepancy (MMD)

MMD(P, Q) = |[Ex~pl@(X)] — Ey~o[@(X)]|l2.

Feature map

Key point: express
differences of distributions
JUST in terms of expected
values (first moment)

Easier to measure. If

D is powerful enough...
zero iff same distribution.

2

L=

Z Po(xX)d(x) — Z 7(X)p(x) E_[Kxyl-2 B [Kxyl+ E_[KGxy]

X~Pg,y X~T,Y~T

Everything boils down to sampling and estimating the mean...

K(x,y) = ¢(x)"¢(»)

- -

k(z,2") = exp(—||lz — 2'[?/(2 0?))



Gradients also can be expressed in terms of samples + parameter shift rule.

oL
— = E [Kx]- E [Kxy]- E [Kxy]+ E [KxYy)]
66’;’ X~Dg+ ,y~Po X~Pg-y~D6 X~Pg+ Y~ X~Pg—y~T

For parameter shift rule, recall 7.3.1 of
http://liacs.leidenuniv.nl/~dunjkov/aQa/aQa-Lecture-3-vqe 1.pdf



http://liacs.leidenuniv.nl/~dunjkov/aQa/aQa-Lecture-3-vqe1.pdf

Some results (bottom line it works)
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Figure 5. Losses as a function of training step for circuit depth d =
1,..., 10. (a) The MMD loss Eq. (1), and (b) the corresponding KL
divergence. Here, we use L-BFGS-B optimizer with exact gradient.

https://arxiv.org/pdf/1804.04168.pdf



Quantum supremacy of IQP sampling

Theorem 3.2 ([35]). Assume it is # P-hard to approzimate |Z|?> up to a relative error
1/4+0(1) for 1/24 fraction of instances over the choice of the weights and biases, J;j, bg. If
it 1s possible to classically sample from the output probability distribution of any IQP circuit
in polynomial time, up to an additive error of 1/384 in total variation distance, then there
is a BPPNF algorithm to solve any problem in P*F, and hence the polynomial hierarchy
collapses to the third level)



The "quantum supremacy" business..

Complexity theory (of decision problems)




The "quantum supremacy" business..

Complexity theory (of decision problems)
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The "quantum supremacy" business..

Complexity theory (of decision problems)
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The "quantum supremacy" business..

Sampling problems v.s. decision problems

BQP contains Factoring. Assume BQP in P
Factoring is then in P. Unlikely but no other consequences



The "quantum supremacy" business..

Sampling problems v.s. decision problems

BQP contains Factoring. Assume BQP in P
Factoring is then in P. Unlikely but no other consequences

Surprisingly: If we can sample from IQP circuits, PH collapses to 3rd level

Even though Sampling is not decision stuffl and PH is about that...



The "quantum supremacy" business..

Sampling problems v.s. decision problems

BQP contains Factoring. Assume BQP in P
Factoring is then in P. Unlikely but no other consequences

Surprisingly: If we can sample from IQP circuits, PH collapses to 3rd level

Even though Sampling is not decision stuffl and PH is about that...

Surprisingly: Even if the sampling is with multiplicative error and even additive error (worst case)

Open: Average case hardness for additive error; has unproven conjectures atop of PH collapse



Instantaneous Quantum Polynomial-time

0y — H H A 0y — H H — D —-A

0) —HH HHA 0) —H H DA
D D

0y — H H— A 0y — H H — De — A

Figure 1: A standard IQP circuit, and an IQP circuit with depolarising noise. D is a circuit made up of poly(n)
diagonal gates.

These are our QML circuits...

https://arxiv.org/pdf/1610.01808.pdf



The framework of Generative Adversarial Nets

Elements of Generative models:

a) model
(something that can generate samples from distributions / specification of distribution)

b) distance measure (metric, divergence)
(something to tell you how “far we are from real data”, to define the loss)

c) computational method to to minimize loss

Goodfellow et al. NIPS, ‘14



The framework of Generative Adversarial Nets

Elements of Generative models:

a) model
(something that can generate samples from distributions / specification of distribution)

b) distance measure (metric, divergence)
(something to tell you how “far we are from real data”, to define the loss)

c) computational method to to minimize loss

Both b) and c) can be very problematic (involving likelihoods).
How to choose metric...

Goodfellow et al. NIPS, ‘14



The framework of Generative Adversarial Nets

Generative models about distribution P(X)...
when are we faking it well?

Mebbe: When an expert cannot tell real from fake... . T o ‘ﬁs\ e
style imageig: ~ - transfer image ™% g Ny, S S

2

Lost Van Gogh?

Who is the relevant expert?
How about ML itself?

https://www.groundai.com/project/automated-deep-photo-style-transfer/1



The framework of Generative Adversarial Nets

real-world
Kdata/images j

D(G(r))

Generator
/!

“randomness”

' G



The framework of Generative Adversarial Nets

real-world
\data/images J

~ Generator D(G(l‘))

“randomness”

' G



The framework of Generative Adversarial Nets

real-world
Kdata/images j

~ Generator D(G(I‘))

“randomness”

' G




The framework of Generative Adversarial Nets

real-world
Kdata/images j

D(G(r))

Generator
/!

“randomness”

' G

Google “Meow generator’...



The framework of Generative Adversarial Nets

Training

Phase: training discriminator

/

“randomness”
v

real-world

Kdata/images J
—>
Generator

D(G(r))

Train using e.g.
backprop

Makes D an expert counterfeit sensor against current G



The framework of Generative Adversarial Nets

Training
Phase: training generator

real-world
Kdata/images J

D(G(r))

Generator
/!

“randomness”

' G

Train using e.g.
backprop
Makes G an expert counterfeiter against current D



The framework of Generative Adversarial Nets

NB: The entire purpose of this is just to train the generator

Generator
/!

“randomness”

' G



The framework of Generative Adversarial Nets

Phases are iterated

Sequential solution to a minimax game; V(D,G) is success of D

minmax V (D, G) =
G D

]E:nrvpdam(m) [log D(m)]

+Eznp. (=) [l0g(1 — D(G(2)))]-

Train D

Train G

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our
experiments.

for number of training iterations do

for % steps do

e Sample minibatch of m noise samples {z("), ..., 2™} from noise prior py(z).
e Sample minibatch of m examples {x(!) ..., (™} from data generating distribution
Pdata (:l:)

e Update the discriminator by ascending its stochastic gradient:

Vo, 2 3 [log D (2) +10g (1- D (6 (=9)))].

end for
e Sample minibatch of m noise samples {2'*/,... 2z TOM NOISe Prior py(z).
e Update the generator by descending its stochastic gradient:

m

V()g% glog (1 - D (G (z(i)))) .

end for

The gradient-based updates can use any standard gradient-based Iearning rule.” We used momen-
tum in our experiments.




The framework of Generative Adversarial Nets

Theory says it works:

The Nash equilibrium is achieved at:

¢ pdata(x) = pG(x)
o D(x) = 1/2 (random guess)

min max V (D, G) = Egrpy (@) 108 D(@)] + Exnp () log(1 — D(G(2)))]:

C(G) = m;%x V(G,D)

Theorem 1. The global minimum of the virtu;zl tra_ining criterion C(QG) is achiveved _if and only if
Pg = Pdata- At that point, C(G) achieves the value — log 4.

Proposition 2. If G and D have enough capacity, and at each step of Algorithm 1, the discriminator
is allowed to reach its optimum given G, and p, is updated so as to improve the criterion

Eapy 108 D (@)] + Eqnp, [log(1 — D(@))]
then pg converges to Pdata



The framework of Generative Adversarial Nets

Practice says it sometimes works.

Advantages:

Works with models where sampling is easy (to train feed-forward NN with noise input)
No need to compute Maximum Likelihood estimation

Could be robust to overfitting

Empirical success

Deep directed Deep undirected Generative - )
. . Adversarial models
graphical models graphical models autoencoders

Inference needed Enforced tradeoff

during training.

between mixing

Synchronizing the

Traini Inference needed MCMC needed to and power of discriminator with
Taming during training. approximate P i . the generator.
P reconstruction .
partition function . Helvetica.
. generation
gradient.
Leamefi Variational MCMC-based Leame.d
Inference approximate e ) . ] approximate
. inference inference .
inference inference
Sampling | No difficulties Requires Markov | Requires Markov: | i, gigficulties
chain chain
Not explicitly Not explicitly
Intractable, may be | Intractable, may be | represented, may be | represented, may be
Evaluating p(z) | approximated with approximated with approximated with approximated with
AlS AlS Parzen density Parzen density
estimation estimation
Models need to be
designed to work
with the desired . Any differentiable Any differentiable
- Careful design . L
Model desi inference scheme ceded to ensure function is function is
odel design — some inference nmultie le :’: zLallr'tiee theoretically theoretically
schemes support ple propertie: permitted permitted

similar model
families as GANs

Table 2: Challenges in generative modeling: a summary of the difficulties encountered by different approaches
to deep generative modeling for each of the major operations involving a model.

https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf



From GANs to Q. GANS

Note GANSs is a framework which can in principle work with (almost)
any pair of supervised learner and a generator.

Any part can be made quantum




The entire formalism generalizes to quantum systems

N measurement...of density operators (mixed states)

specification of density operator (mixed states)...

Fixed-point theorems can be proven in a vastly generalized setting, and they are actually simpler.
(theory of optimal measurements was developed by Helstrom in '76)

Quantum cases allow speed-ups, applications in many-body physics and chemistry

Lloyd, Dallaire-Demers, Killoran
https://arxiv.org/abs/1804.09139
https://arxiv.org/pdf/1804.08641



QML — the rest

Fun with variational circuits

quantum convolutional NNs
data reuploading

quantum transfer learning
quantum reinforcement learning

Then there is all the rest...



Machine learning is not one thing.
Al is not even a few things.

big data analysis unsupervised learning

M L supervised learning

: generative models
deep learning

non-parametric online learning
learning

computational learning theory

parametric learning

statistical learning non-convex

optimization

reinforcement
learning

control theory

local search

Symbolic Al

sequential
decision
theory



Quantum-enhanced ML

big data analysis

M : Quantum Ipervised learning
linear algebra

supervised learni:

\ve models
Shallo.w ql'ltantum N SR——
non-parametiiic e ¢ decision
learning Quantum oracletheory
parametQ afitm \diabatic QC/ identification
co ) ) )
COILT tl}m optimization Quantum

walks & search

Symnoiic Ai
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And then there's Quantum-applied ML!

QKD parameter v
control Hybrid computation dig -
Al
Quantum network (Al)
QI P optimization
NISQ optimization order
Efficient : ;
decoders QAOA & VQE parameters
Adaptive error Groundi®
correction Circuit. cortrolly Ana
S optimization of
Experiment Metrology qubits
synthesis
high-energy
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