
Quantum-enhanced unsupervised (generative) learning 
(with near-term devices)



Learning P(labels|data) given 
samples from P(data,labels) 
(also regression) 

-generative models 
-clustering (discriminative) 
-feature extraction 

Machine Learning: the WHAT

or

Learning structure in P(data)  
give samples from P(data) 

?



“What I cannot create, I do not understand” 
R. Feynman

D = {xi} ∼ P×|D|

x ∈ S ⊆ ℝn

P(x)
(algorithmically) generate new samples    
(approximately) distributed according to P

x

arXiv:1710.10196
arXiv:1802.07228

2014 2017

Generative models

https://arxiv.org/abs/1710.10196


source: twitter

Name one thing in this photo



Why care about generative models

• generating new data; e.g. new drugs  

• completing missing data; image recovery 

• modality translation 

• …modelling reality…predict the future?

arxiv.org/pdf/1703.10593.pdf 
arxiv.org/pdf/1804.07723.pdf

medicinal

http://arxiv.org/pdf/1703.10593.pdf


Full generative problems strictly more general than supervised learning

Let   Z = X × Y

SL: Given   approximate  D ∼ P(X, Y ), P(Y |X)

UL: Given   approximate  D ∼ P(X, Y ), P(X, Y )

Given access to  the conditional can be derived….P(X, Y ),

(Also: distributions generalize functions)



Let   Z = X × Y

SL: Given   approximate  D ∼ P(X, Y ), P(Y |X)

UL: Given   approximate  D ∼ P(X, Y ), P(X, Y )

Given access to  the conditional can be derived….P(X, Y ),

In generative models we find parameters that explain (“cause”) all of the data

In discriminative models we find parameters that explain only the (for SL) relevant aspects of data

Full generative problems strictly more general than supervised learning



D = {xi} ∼ P×|D|

x ∈ S ⊆ ℝn

P(x) (algorithmically) generate new samples    
(approximately) distributed according to P

x

How (1): parametrized distribution family  {dθ(x)}

Find   such that  θ dθ(x) ≈ Pdata(x)

Hard because we need to efficiently: 
• represent 
• sample from 
• learn 
complex and high dimensional probability distribution

How do we do it?



• How do we find   such that  θ dθ(x) ≈ Pdata(x)

How (2): the training and the metrics 

• have parametrized distribution family  {dθ(x)}

Rather: what does “ ” mean given that we have samples only!≈

1) Maximum likelihood estimation (MLE): 

Likelihood  L(θ, D) = ∏
x∈D

dθ(x)

 D = {xi}

Find  θopt = argminθ{−log L(θ, D)}

*optimizing negative log-likelyhood is equivalent to optimizing the  
so called Kullback–Leibler divergence (a.k.a. relative entropy, a measure of distinction between distributions)  
between the source and target distribution 



• How do we find   such that  θ dθ(x) ≈ Pdata(x)

How (2): the training and the metrics 

• have parametrized distribution family  {dθ(x)}

Rather: what does “ ” mean given that we have samples only!≈

1) Maximum likelihood estimation (MLE): 

Likelihood  L(θ, D) = ∏
x∈D

dθ(x)

 D = {xi}

Find  θopt = argminθ{−log L(θ, D)}

Updates can go via (approximate) gradient descent… 
 or derivative-free methods



Other options (2)

2) Maximum a-posteriori (MAP):

P(θ |D) =
P(D |θ)P(θ)

P(D)

θMAP = argmaxθ P(D |θ)P(θ)

= argmaxθ log P(D |θ)P(θ)

= argmaxθ log P(D |θ) + log P(θ)

• How do we find   such that  θ dθ(x) ≈ Pdata(x)

How (2): the training and the metrics 

• have parametrized distribution family  {dθ(x)}

 D = {xi}

Vladimir Vapnik

http://yann.lecun.com/ex/fun/index.html#allyourbayes



A number of options

3) Full Bayes:

P(θ |D) =
P(D |θ)P(θ)

P(D)

4) Adversarial methods (can be MLE)

All in general intractable, exaclty

• How do we find   such that  θ dθ(x) ≈ Pdata(x)

How (2): the training and the metrics 

• have parametrized distribution family  {dθ(x)}

 D = {xi}

…some require values we may not be able to compute ( )dθ(x)
more on this in a second….



But which parametrized distribution family  ?{dθ(x)}

How to specify distributions in general…

by characterizing the probabilities: 

 f : [N] → ℝ+; d(x) =
f(x)

∑x f(x)
c.f. sqashing functions in ML

by characterizing a generating process 

e.g. the stationary distribution of a Markov chain 



But which parametrized distribution family  ?{dθ(x)}

Boltzmann machines

-energy based models 
-stochastic recurrent NNs
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But which parametrized distribution family  ?{dθ(x)}

Boltzmann Machines (BM)

Powerful but heavily intractable

CS: Low-temperature sampling NP-hard 
Phys: Need to compute the partition function

Training requires conditional Gibbs sampling: intractable

Cannot run:

Cannot train:

Even approximating log-likelihood too hard

How do we use this? Run? Train?



But which parametrized distribution family  ?{dθ(x)}

Enter Restricted Boltzmann Machines (RBM) More tractable!

Bipartite nature makes things conditionally factorize, e.g. 

P(v) =

See “introduction to restricted boltzmann machines”, 10.1007/978-3-642-33275-3_2

Still “model “ is hard.  
See “contrastive divergence”… approximation…

This allows for more tractable training algorithms



RBM is universal (Freund, Haussler, ’94) (analog of Cybenko theorem) 

RBM vs BM is analogous to NN vs deep NN

https://arxiv.org/pdf/1701.05039.pdf

What we mean by deep BM (DBM):

FIXUP



RBM vs (D)BM (summary)

BM and RBM both energy models: distribution specified via an (bipartite) Ising model over 
“visibe” and “hidden” units, by marginalizing over the hidden units  

Both universal, but BM significantly more expressive for same number of units 
(has to do with the independence of hidden variables)

Training much less costly in RBM case (but still very expensive)  

In both cases, to even *run* the model, you need to use a sampler,  
e.g. Markov Chain Monte Carlo



QC/QM meets (R)BM

(R)BMs can be used to parametrize quantum states (wavefunctions) [Carleo, Troyer ’16] 
(weights allowed to be complex-valued)

Quantum computers can help train (R)BMs: key step in training is (approximate) sampling from  
Gibbs (Boltzmann, P(v,h)) distribution; QCs help get those:  Quantum walks; Q. semidefinite programs; Annealing.  
Quantum Approximate Optimization algorithms

QM can generalize (R)BM: move away from classical Ising

arxiv:1606.02318 
arxiv:1601.02036 

Quantum-applied BMs:

Quantum-enhanced BMs:



QC/QM meets (R)BM

Quantum computers can help train (R)BMs: key step in training is (approximate) sampling from  
Gibbs (Boltzmann, P(v,h)) distribution; QCs help get those:  Quantum walks; Q. semidefinite programs; Annealing.  
Quantum Approximate Optimization algorithms

QM can generalize (R)BM: move away from classical Ising

In all cases. The physical intuition is: encode distribution in density matrices: mixed states.

In the quantum world… already pure states encode (many) distributions!

arxiv:1606.02318 
arxiv:1601.02036 

Quantum-enhanced BMs:



Next: quantum circuit Born machine

Boltzmann machine ➡ distribution is a (marginalized) Boltzmann distribution
(distr which maximizes the entropy, subject to mean energy condition)

Born machine ➡ distribution governed by the Born rule of quantum mechanics

statistical mechanics

PO(i | |ψ⟩) = |⟨i |ψ⟩ |2 = Tr[ | i⟩⟨i | |ψ⟩⟨ψ | ]

PO(i |ρ) = Tr[Piρ]

Advantage: sampling (inference) is (quantum) easy (no nasty MCMC or similar)



arxiv.org:1804.04168

Hypothesis family: parametrized circuit+ 
computational basis measurement

Plus: evaluation is easy, does not involve 
hard sampling procedures

“Minus”: “implicit” model. No direct access to 
likeihood, no way to compute    
for a chosen x

dθ(x),

distance- 
loss

Almost the same circuit as the feature map 
from previous lecture



arxiv.org:1804.04168

How to measure distances between distributions based on sampling… deep waters.

MLE optimization/KL optimization?

Intractable

Here: Squared maximum mean discrepancy (MMD)



Squared maximum mean discrepancy (MMD)

�(~x)†.w + b = 0

~x
�! �(~x)

Feature map

Key point: express  
differences of distributions 
JUST in terms of expected 
values (first moment)

Easier to measure. If 
  is powerful enough… 
zero iff same distribution.
Φ

Everything boils down to sampling and estimating the mean…



Gradients also can be expressed in terms of samples + parameter shift rule.

For parameter shift rule, recall  7.3.1 of 
 http://liacs.leidenuniv.nl/~dunjkov/aQa/aQa-Lecture-3-vqe1.pdf

http://liacs.leidenuniv.nl/~dunjkov/aQa/aQa-Lecture-3-vqe1.pdf


https://arxiv.org/pdf/1804.04168.pdf

Some results (bottom line it works)



Quantum supremacy of IQP sampling



The "quantum supremacy" business..

Complexity theory (of decision problems)
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Complexity theory (of decision problems)





Sampling problems v.s. decision problems

The "quantum supremacy" business..

BQP contains Factoring. Assume BQP in P. 
Factoring is then in P. Unlikely but no other consequences 
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Surprisingly: If we can sample from IQP circuits, PH collapses to 3rd level 

Even though Sampling is not decision stuff! and PH is about that…



Sampling problems v.s. decision problems

The "quantum supremacy" business..

BQP contains Factoring. Assume BQP in P. 
Factoring is then in P. Unlikely but no other consequences 

Surprisingly: If we can sample from IQP circuits, PH collapses to 3rd level 

Surprisingly: Even if the sampling is with multiplicative error  and even additive error (worst case)

Open: Average case hardness for additive error; has unproven conjectures atop of PH collapse

Even though Sampling is not decision stuff! and PH is about that…



https://arxiv.org/pdf/1610.01808.pdf

Instantaneous Quantum Polynomial-time

These are our QML circuits… 



The framework of Generative Adversarial Nets 

Goodfellow et al. NIPS, ‘14

Elements of Generative models:  

a) model  
(something that can generate samples from distributions / specification of distribution) 

b) distance measure (metric, divergence) 
(something to tell you how “far we are from real data”, to define the loss) 

c) computational method to to minimize loss



The framework of Generative Adversarial Nets 

Goodfellow et al. NIPS, ‘14

Elements of Generative models:  

a) model  
(something that can generate samples from distributions / specification of distribution) 

b) distance measure (metric, divergence) 
(something to tell you how “far we are from real data”, to define the loss) 

c) computational method to to minimize loss

Both b) and c) can be very problematic (involving likelihoods).  
How to choose metric… 



The framework of Generative Adversarial Nets 

Generative models about distribution P(X)… 
when are we faking it well? 

Lost Van Gogh?

https://www.groundai.com/project/automated-deep-photo-style-transfer/1

Mebbe: When an expert cannot tell real from fake… 

Who is the relevant expert?  
How about ML itself? 



The framework of Generative Adversarial Nets 

real-world 

data/images

Generator

Discriminator 
(e.g neural net)

“Real"

“Fake”

Loss

D D(x)

D(G(r))

G
“randomness” 

r
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The framework of Generative Adversarial Nets 

real-world 

data/images

Generator

Discriminator 
(e.g neural net)

“Real"

“Fake”

Loss

D D(x)

D(G(r))

G
“randomness” 

r

Google “Meow generator”…



The framework of Generative Adversarial Nets 

real-world 

data/images

Generator

Discriminator 
(e.g neural net)

“Real"

“Fake”

Loss

D D(x)

D(G(r))

G
“randomness” 

r

Training 
Phase: training discriminator

Train using e.g.  
backprop

Makes D  an expert counterfeit sensor against current G
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real-world 

data/images

Generator

Discriminator 
(e.g neural net)

“Real"

“Fake”

Loss

D D(x)

D(G(r))

G
“randomness” 

r

Training 
Phase: training generator

Train using e.g.  
backprop

Makes G  an expert counterfeiter against current D



The framework of Generative Adversarial Nets 

real-world 

data/images

Generator

Discriminator 
(e.g neural net)

“Real"

“Fake”

Loss

D D(x)

D(G(r))

G
“randomness” 

r

NB: The entire purpose of this is just to train the generator



The framework of Generative Adversarial Nets 

Phases are iterated

Sequential solution to a minimax game; V(D,G) is success of D

Train D

Train G



The framework of Generative Adversarial Nets 

Theory says it works:

The Nash equilibrium is achieved at: 

•  
• D(x) = 1/2 (random guess)

pdata(x) = pG(x)



The framework of Generative Adversarial Nets 

Practice says it sometimes works.

Advantages: 

• Works with models where sampling is easy (to train feed-forward NN with noise input) 
• No need to compute Maximum Likelihood estimation 
• Could be robust to overfitting  
• Empirical success

https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf



From GANs to Q. GANS

Note GANs is a framework which can in principle work with  (almost) 
any pair of supervised learner and a generator.

Any part can be made quantum



Lloyd, Dallaire-Demers, Killoran

https://arxiv.org/pdf/1804.08641
https://arxiv.org/abs/1804.09139

The entire formalism generalizes to quantum systems

measurement…of density operators (mixed states)

specification of density operator (mixed states)…

Fixed-point theorems can be proven in a vastly generalized setting, and they are actually simpler. 
(theory of optimal measurements was developed by Helstrom in ’76) 

Quantum cases allow speed-ups, applications in many-body physics and chemistry



QML — the rest

Fun with variational circuits

quantum convolutional NNs 
data reuploading 
quantum transfer learning 
quantum reinforcement learning

Then there is all the rest…
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Machine learning is not one thing. 
AI is not even a few things.

AI

supervised learning

unsupervised learning

online learning

generative models

reinforcement  
learning

deep learning

statistical learning

non-parametric  
learning 

parametric learning 

local search

Symbolic AI 

computational learning theory
control theory 

non-convex 
optimization

sequential 
decision 
theory

ML
big data analysis
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Quantum-enhanced ML

AI

supervised learning

unsupervised learning

online learning

generative models

reinforcement  
learning

deep learning

statistical learning

non-parametric  
learning 

parametric learning 

local search

Symbolic AI 

computational learning theory
control theory non-convex 

optimization

sequential 
decision 
theory

ML
big data analysis

Quantum  
linear algebra

Shallow quantum  
circuits

Quantum oracle 
identification

Quantum  
walks & search

Adiabatic QC/ 
Quantum optimization

Quantum  
COLT



control and 
optimization of 

qubits

high-energy

QIP 

Q. Phys

phase  
diagrams

order  
parameters

Metrology

NISQ optimization, 
QAOA & VQE

Adaptive error 
correction

Experiment 
synthesis

Circuit  
synthesis

Quantum network 
optimization

QKD parameter 
control

Efficient  
decoders

Ground state 
Ansatz

Hybrid computation 
(AI)
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And then there’s Quantum-applied ML! 



control and 
optimization of 

qubits

high-energy

QIP 

Q. Phys

phase  
diagrams

order  
parameters

Metrology

NISQ optimization, 
QAOA & VQE

Adaptive error 
correction

Experiment 
synthesis

Circuit  
synthesis

Quantum network 
optimization

QKD parameter 
control

Efficient  
decoders

Ground state 
Ansatz

Hybrid computation 
(AI)

Reinforcement learning

Supervised learning

Reinforcement learning

Supervised learning

Supervised learning

Supervised learning

Reinforcement learning

Unsupervised learning

Neural 
networks
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