
Quantum-enhanced unsupervised (generative) learning
(with near-term devices)

Learning P(labels|data) given
samples from P(data,labels)
(also regression)

-generative models
-clustering (discriminative)
-feature extraction

Machine Learning: the WHAT

or

Learning structure in P(data)
give samples from P(data)

?

“What I cannot create, I do not understand”
R. Feynman

D = {xi} ∼ P×|D|

x ∈ S ⊆ ℝn

P(x)
(algorithmically) generate new samples
(approximately) distributed according to P

x

arXiv:1710.10196
arXiv:1802.07228

2014 2017

Generative models

https://arxiv.org/abs/1710.10196

source: twitter

Name one thing in this photo

Why care about generative models

• generating new data; e.g. new drugs

• completing missing data; image recovery

• modality translation

• …modelling reality…predict the future?

arxiv.org/pdf/1703.10593.pdf
arxiv.org/pdf/1804.07723.pdf

medicinal

http://arxiv.org/pdf/1703.10593.pdf

Full generative problems strictly more general than supervised learning

Let Z = X × Y

SL: Given approximate D ∼ P(X, Y), P(Y |X)

UL: Given approximate D ∼ P(X, Y), P(X, Y)

Given access to the conditional can be derived….P(X, Y),

(Also: distributions generalize functions)

Let Z = X × Y

SL: Given approximate D ∼ P(X, Y), P(Y |X)

UL: Given approximate D ∼ P(X, Y), P(X, Y)

Given access to the conditional can be derived….P(X, Y),

In generative models we find parameters that explain (“cause”) all of the data

In discriminative models we find parameters that explain only the (for SL) relevant aspects of data

Full generative problems strictly more general than supervised learning

D = {xi} ∼ P×|D|

x ∈ S ⊆ ℝn

P(x) (algorithmically) generate new samples
(approximately) distributed according to P

x

How (1): parametrized distribution family {dθ(x)}

Find such that θ dθ(x) ≈ Pdata(x)

Hard because we need to efficiently:
• represent
• sample from
• learn
complex and high dimensional probability distribution

How do we do it?

• How do we find such that θ dθ(x) ≈ Pdata(x)

How (2): the training and the metrics

• have parametrized distribution family {dθ(x)}

Rather: what does “ ” mean given that we have samples only!≈

1) Maximum likelihood estimation (MLE):

Likelihood L(θ, D) = ∏
x∈D

dθ(x)

 D = {xi}

Find θopt = argminθ{−log L(θ, D)}

*optimizing negative log-likelyhood is equivalent to optimizing the
so called Kullback–Leibler divergence (a.k.a. relative entropy, a measure of distinction between distributions)
between the source and target distribution

• How do we find such that θ dθ(x) ≈ Pdata(x)

How (2): the training and the metrics

• have parametrized distribution family {dθ(x)}

Rather: what does “ ” mean given that we have samples only!≈

1) Maximum likelihood estimation (MLE):

Likelihood L(θ, D) = ∏
x∈D

dθ(x)

 D = {xi}

Find θopt = argminθ{−log L(θ, D)}

Updates can go via (approximate) gradient descent…
 or derivative-free methods

Other options (2)

2) Maximum a-posteriori (MAP):

P(θ |D) =
P(D |θ)P(θ)

P(D)

θMAP = argmaxθ P(D |θ)P(θ)

= argmaxθ log P(D |θ)P(θ)

= argmaxθ log P(D |θ) + log P(θ)

• How do we find such that θ dθ(x) ≈ Pdata(x)

How (2): the training and the metrics

• have parametrized distribution family {dθ(x)}

 D = {xi}

Vladimir Vapnik

http://yann.lecun.com/ex/fun/index.html#allyourbayes

A number of options

3) Full Bayes:

P(θ |D) =
P(D |θ)P(θ)

P(D)

4) Adversarial methods (can be MLE)

All in general intractable, exaclty

• How do we find such that θ dθ(x) ≈ Pdata(x)

How (2): the training and the metrics

• have parametrized distribution family {dθ(x)}

 D = {xi}

…some require values we may not be able to compute ()dθ(x)
more on this in a second….

But which parametrized distribution family ?{dθ(x)}

How to specify distributions in general…

by characterizing the probabilities:

 f : [N] → ℝ+; d(x) =
f(x)

∑x f(x)
c.f. sqashing functions in ML

by characterizing a generating process

e.g. the stationary distribution of a Markov chain

But which parametrized distribution family ?{dθ(x)}

Boltzmann machines

-energy based models
-stochastic recurrent NNs

But which parametrized distribution family ?{dθ(x)}

Boltzmann machines

But which parametrized distribution family ?{dθ(x)}

Boltzmann machines

But which parametrized distribution family ?{dθ(x)}

Boltzmann Machines (BM)

Powerful but heavily intractable

CS: Low-temperature sampling NP-hard
Phys: Need to compute the partition function

Training requires conditional Gibbs sampling: intractable

Cannot run:

Cannot train:

Even approximating log-likelihood too hard

How do we use this? Run? Train?

But which parametrized distribution family ?{dθ(x)}

Enter Restricted Boltzmann Machines (RBM) More tractable!

Bipartite nature makes things conditionally factorize, e.g.

P(v) =

See “introduction to restricted boltzmann machines”, 10.1007/978-3-642-33275-3_2

Still “model “ is hard.
See “contrastive divergence”… approximation…

This allows for more tractable training algorithms

RBM is universal (Freund, Haussler, ’94) (analog of Cybenko theorem)

RBM vs BM is analogous to NN vs deep NN

https://arxiv.org/pdf/1701.05039.pdf

What we mean by deep BM (DBM):

FIXUP

RBM vs (D)BM (summary)

BM and RBM both energy models: distribution specified via an (bipartite) Ising model over
“visibe” and “hidden” units, by marginalizing over the hidden units

Both universal, but BM significantly more expressive for same number of units
(has to do with the independence of hidden variables)

Training much less costly in RBM case (but still very expensive)

In both cases, to even *run* the model, you need to use a sampler,
e.g. Markov Chain Monte Carlo

QC/QM meets (R)BM

(R)BMs can be used to parametrize quantum states (wavefunctions) [Carleo, Troyer ’16]
(weights allowed to be complex-valued)

Quantum computers can help train (R)BMs: key step in training is (approximate) sampling from
Gibbs (Boltzmann, P(v,h)) distribution; QCs help get those: Quantum walks; Q. semidefinite programs; Annealing.
Quantum Approximate Optimization algorithms

QM can generalize (R)BM: move away from classical Ising

arxiv:1606.02318
arxiv:1601.02036

Quantum-applied BMs:

Quantum-enhanced BMs:

QC/QM meets (R)BM

Quantum computers can help train (R)BMs: key step in training is (approximate) sampling from
Gibbs (Boltzmann, P(v,h)) distribution; QCs help get those: Quantum walks; Q. semidefinite programs; Annealing.
Quantum Approximate Optimization algorithms

QM can generalize (R)BM: move away from classical Ising

In all cases. The physical intuition is: encode distribution in density matrices: mixed states.

In the quantum world… already pure states encode (many) distributions!

arxiv:1606.02318
arxiv:1601.02036

Quantum-enhanced BMs:

Next: quantum circuit Born machine

Boltzmann machine ➡ distribution is a (marginalized) Boltzmann distribution
(distr which maximizes the entropy, subject to mean energy condition)

Born machine ➡ distribution governed by the Born rule of quantum mechanics

statistical mechanics

PO(i | |ψ⟩) = |⟨i |ψ⟩ |2 = Tr[| i⟩⟨i | |ψ⟩⟨ψ |]

PO(i |ρ) = Tr[Piρ]

Advantage: sampling (inference) is (quantum) easy (no nasty MCMC or similar)

arxiv.org:1804.04168

Hypothesis family: parametrized circuit+
computational basis measurement

Plus: evaluation is easy, does not involve
hard sampling procedures

“Minus”: “implicit” model. No direct access to
likeihood, no way to compute
for a chosen x

dθ(x),

distance-
loss

Almost the same circuit as the feature map
from previous lecture

arxiv.org:1804.04168

How to measure distances between distributions based on sampling… deep waters.

MLE optimization/KL optimization?

Intractable

Here: Squared maximum mean discrepancy (MMD)

Squared maximum mean discrepancy (MMD)

�(~x)†.w + b = 0

~x
�! �(~x)

Feature map

Key point: express
differences of distributions
JUST in terms of expected
values (first moment)

Easier to measure. If
 is powerful enough…
zero iff same distribution.
Φ

Everything boils down to sampling and estimating the mean…

Gradients also can be expressed in terms of samples + parameter shift rule.

For parameter shift rule, recall 7.3.1 of
 http://liacs.leidenuniv.nl/~dunjkov/aQa/aQa-Lecture-3-vqe1.pdf

http://liacs.leidenuniv.nl/~dunjkov/aQa/aQa-Lecture-3-vqe1.pdf

https://arxiv.org/pdf/1804.04168.pdf

Some results (bottom line it works)

Quantum supremacy of IQP sampling

The "quantum supremacy" business..

Complexity theory (of decision problems)

The "quantum supremacy" business..

Complexity theory (of decision problems)

The "quantum supremacy" business..

Complexity theory (of decision problems)

Sampling problems v.s. decision problems

The "quantum supremacy" business..

BQP contains Factoring. Assume BQP in P.
Factoring is then in P. Unlikely but no other consequences

Sampling problems v.s. decision problems

The "quantum supremacy" business..

BQP contains Factoring. Assume BQP in P.
Factoring is then in P. Unlikely but no other consequences

Surprisingly: If we can sample from IQP circuits, PH collapses to 3rd level

Even though Sampling is not decision stuff! and PH is about that…

Sampling problems v.s. decision problems

The "quantum supremacy" business..

BQP contains Factoring. Assume BQP in P.
Factoring is then in P. Unlikely but no other consequences

Surprisingly: If we can sample from IQP circuits, PH collapses to 3rd level

Surprisingly: Even if the sampling is with multiplicative error and even additive error (worst case)

Open: Average case hardness for additive error; has unproven conjectures atop of PH collapse

Even though Sampling is not decision stuff! and PH is about that…

https://arxiv.org/pdf/1610.01808.pdf

Instantaneous Quantum Polynomial-time

These are our QML circuits…

The framework of Generative Adversarial Nets

Goodfellow et al. NIPS, ‘14

Elements of Generative models:

a) model
(something that can generate samples from distributions / specification of distribution)

b) distance measure (metric, divergence)
(something to tell you how “far we are from real data”, to define the loss)

c) computational method to to minimize loss

The framework of Generative Adversarial Nets

Goodfellow et al. NIPS, ‘14

Elements of Generative models:

a) model
(something that can generate samples from distributions / specification of distribution)

b) distance measure (metric, divergence)
(something to tell you how “far we are from real data”, to define the loss)

c) computational method to to minimize loss

Both b) and c) can be very problematic (involving likelihoods).
How to choose metric…

The framework of Generative Adversarial Nets

Generative models about distribution P(X)…
when are we faking it well?

Lost Van Gogh?

https://www.groundai.com/project/automated-deep-photo-style-transfer/1

Mebbe: When an expert cannot tell real from fake…

Who is the relevant expert?
How about ML itself?

The framework of Generative Adversarial Nets

real-world

data/images

Generator

Discriminator
(e.g neural net)

“Real"

“Fake”

Loss

D D(x)

D(G(r))

G
“randomness”

r

The framework of Generative Adversarial Nets

real-world

data/images

Generator

Discriminator
(e.g neural net)

“Real"

“Fake”

Loss

D D(x)

D(G(r))

G
“randomness”

r

The framework of Generative Adversarial Nets

real-world

data/images

Generator

Discriminator
(e.g neural net)

“Real"

“Fake”

Loss

D D(x)

D(G(r))

G
“randomness”

r

The framework of Generative Adversarial Nets

real-world

data/images

Generator

Discriminator
(e.g neural net)

“Real"

“Fake”

Loss

D D(x)

D(G(r))

G
“randomness”

r

Google “Meow generator”…

The framework of Generative Adversarial Nets

real-world

data/images

Generator

Discriminator
(e.g neural net)

“Real"

“Fake”

Loss

D D(x)

D(G(r))

G
“randomness”

r

Training
Phase: training discriminator

Train using e.g.
backprop

Makes D an expert counterfeit sensor against current G

The framework of Generative Adversarial Nets

real-world

data/images

Generator

Discriminator
(e.g neural net)

“Real"

“Fake”

Loss

D D(x)

D(G(r))

G
“randomness”

r

Training
Phase: training generator

Train using e.g.
backprop

Makes G an expert counterfeiter against current D

The framework of Generative Adversarial Nets

real-world

data/images

Generator

Discriminator
(e.g neural net)

“Real"

“Fake”

Loss

D D(x)

D(G(r))

G
“randomness”

r

NB: The entire purpose of this is just to train the generator

The framework of Generative Adversarial Nets

Phases are iterated

Sequential solution to a minimax game; V(D,G) is success of D

Train D

Train G

The framework of Generative Adversarial Nets

Theory says it works:

The Nash equilibrium is achieved at:

•
• D(x) = 1/2 (random guess)

pdata(x) = pG(x)

The framework of Generative Adversarial Nets

Practice says it sometimes works.

Advantages:

• Works with models where sampling is easy (to train feed-forward NN with noise input)
• No need to compute Maximum Likelihood estimation
• Could be robust to overfitting
• Empirical success

https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

From GANs to Q. GANS

Note GANs is a framework which can in principle work with (almost)
any pair of supervised learner and a generator.

Any part can be made quantum

Lloyd, Dallaire-Demers, Killoran

https://arxiv.org/pdf/1804.08641
https://arxiv.org/abs/1804.09139

The entire formalism generalizes to quantum systems

measurement…of density operators (mixed states)

specification of density operator (mixed states)…

Fixed-point theorems can be proven in a vastly generalized setting, and they are actually simpler.
(theory of optimal measurements was developed by Helstrom in ’76)

Quantum cases allow speed-ups, applications in many-body physics and chemistry

QML — the rest

Fun with variational circuits

quantum convolutional NNs
data reuploading
quantum transfer learning
quantum reinforcement learning

Then there is all the rest…

 54

Machine learning is not one thing.
AI is not even a few things.

AI

supervised learning

unsupervised learning

online learning

generative models

reinforcement
learning

deep learning

statistical learning

non-parametric
learning

parametric learning

local search

Symbolic AI

computational learning theory
control theory

non-convex
optimization

sequential
decision
theory

ML
big data analysis

 55

Quantum-enhanced ML

AI

supervised learning

unsupervised learning

online learning

generative models

reinforcement
learning

deep learning

statistical learning

non-parametric
learning

parametric learning

local search

Symbolic AI

computational learning theory
control theory non-convex

optimization

sequential
decision
theory

ML
big data analysis

Quantum
linear algebra

Shallow quantum
circuits

Quantum oracle
identification

Quantum
walks & search

Adiabatic QC/
Quantum optimization

Quantum
COLT

control and
optimization of

qubits

high-energy

QIP

Q. Phys

phase
diagrams

order
parameters

Metrology

NISQ optimization,
QAOA & VQE

Adaptive error
correction

Experiment
synthesis

Circuit
synthesis

Quantum network
optimization

QKD parameter
control

Efficient
decoders

Ground state
Ansatz

Hybrid computation
(AI)

 56

And then there’s Quantum-applied ML!

control and
optimization of

qubits

high-energy

QIP

Q. Phys

phase
diagrams

order
parameters

Metrology

NISQ optimization,
QAOA & VQE

Adaptive error
correction

Experiment
synthesis

Circuit
synthesis

Quantum network
optimization

QKD parameter
control

Efficient
decoders

Ground state
Ansatz

Hybrid computation
(AI)

Reinforcement learning

Supervised learning

Reinforcement learning

Supervised learning

Supervised learning

Supervised learning

Reinforcement learning

Unsupervised learning

Neural
networks

 57

