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1. Strongly-correlated systems

In computational chemistry and physics, we are interested in predicting the outcome of ex-

periments, which involve systems that may be defined by the action of a Hamiltonian.

A strongly-correlated, or strongly interacting quantum system is a quantum system of

many particles acting in an external force-field, where the interactions between particles

(described by their Hamiltonian) cannot be treated perturbatively.

• The quantum state of an n particle system is a function of the positions ~ri ∈ R3 of

the individual particles and (if necessary) their internal states si = {0, . . . , NS−1}

(also known as quantum numbers).

|Ψ〉 ≡ Ψ(~r1, s1, ~r2, s2, . . .) (1.1)

• In quantum computing we like to think of the vector |Ψ〉 — remember that nor-

malized wavefunctions are also vectors. As a simple example, consider a single

particle in a cube of length L with an internal spin s = ±1.

Notation 1. Note here we have switched between s = 0, 1 and s = +1,−1. This

occurs very often throughout the literature — be aware! Note also that when this

switch is made, we always associate 0 ↔ +1 and 1 ↔ −1. This can be achieved

as s+1,−1 = −1s0,1, or s+1,−1 = 2s0,1 − 1, and backwards as s0,1 = (1− s+1,−1)/2.

Then, we may write

Ψ(~r, s) =
1

N

∞∑
λx,λy ,λz=1

∑
σ=±1

aλx,λy ,λz ,σδs,σ sin(πrxλx/L) sin(πryλy/L) sin(πrzλz/L), (1.2)
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and our function may be represented as well by the vector

|Ψ〉 ≡ ~a =
(
a1,1,1,−1, a1,1,1,1, a1,1,2,−1, . . . aλx,λy ,λz ,s . . .

)
. (1.3)

• An interacting Hamiltonian is one that contains particle-particle interactions (equiv-

alently, its action on one particle depends on another).

• For example, the Hamiltonian

H0 =
∑
i

−~2

2mi

∇2
i +

∑
i

V (~ri), (1.4)

but in the presence of electrostatic repulsion

H = H0 +
∑
i,j

ZiZj
4πε0|ri − rj|

, (1.5)

this becomes interacting.

• Non-interacting Hamiltonians may typically be solved quite well on classical com-

puters for any potential V (~ri) — namely an efficient representation (or good ap-

proximation) may be written down by solving the Schrödinger equation for indi-

vidual particles, and combining:

aλ11λ12λ13s1λ21λ22λ23s2 = aλ11λ12λ13s1aλ21λ22λ23s2 . (1.6)

• Interacting Hamiltonians, by comparison, are typically incredibly difficult to solve,

as the above equation no longer holds.

• Note that the number of indices in a grows with the number of particles, and so

the number of coefficients grows exponentially.

Quantum computers are finite, so we must truncate an infinite-dimensional Hilbert space

to (just) an exponentially large one.
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• We cannot store an infinite dimensional Hilbert space in any computer, so we have

to truncate the above Hilbert space by removing some basis vectors.

• This can be done by projection

Definition 1. A projector is an operator R that satisfies R2 = R. When this is

true, note (1−R)2 = (1−R) also.

• We can approximate the error in our Hamiltonian eigenstates PHP |Ẽj〉 = Ẽj|Ẽj〉

by considering the effect of re-adding the missing terms in the Hamiltonian as a

perturbation λV = PH(1− P ) + (1− P )HP .

• Assume that we have removed all basis vectors above some K, and let |Ek〉 be

the eigenstates on the projected-out system (with Hamiltonian (1−R)H(1−R)),

then

|E0〉 − |Ẽ0〉 = λ
∑
k>K

〈Ẽk|V |Ẽ0〉
Ẽk − Ẽ0

+O(λ2). (1.7)

• We see the error in the representation (commonly called basis-set error) scales

inversely with the energy of the states that we are removing. Typically, as long as

this is done carefully it is ok, but as always, be careful.

1.1. First and second quantization

In a first-quantized representation, one stores the position of individual particles on sep-

arate quantum registers.

• The above representation of a η-particle state |Ψ〉 was in first-quantized notation

— each quantum register stored data about individual particles.

• Basis states of an η-particle system take the form

|φ1〉|s1〉|φ2〉|s2〉 . . . |φη〉|sη〉, (1.8)
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where here, φi is a label of our basis — i.e. it might convey some information about

the system, but we don’t require it to. We could say have φi = (λ
(i)
x , λ

(i)
y , λ

(i)
z ), or

it could just be an integer.

Definition 2. Remember that individual states |φi〉 correspond to single-particle

wavefunctions φi(~r). These are known in the literature as ‘spin-orbitals’, ‘basis

vectors’, ‘single-particle wavefunctions’, or ‘orbitals’. For simplicity, we will use

the term ‘orbital’.

• If the above system has Nb possible orbitals for each particle (including both φ

and s variables), the total number of states is Nη
b — this requires η log2(Nb) qubits

to store.

• Hamiltonians of the above system tend to take the form

H =
∑

φ1,s1,...φηsη

∑
φ′1,s

′
1,...,φ

′
ηs
′
η

Hφ1,s1,...,φ′1s
′
1,...
|φ1〉|s1〉 . . . |φη〉|sη〉〈s′η|〈φ′η| . . . 〈s′1|〈φ′1|. (1.9)

• This representation is a bit cumbersome, but luckily it is sparse — interactions

between only k particles will only change at most k indices, so only O
((
η
k

)
Nk
b

)
of

the H coefficients will be non-zero.

• In physical systems, η,Nb grow with the size of the system, but k remains constant;

polynomial scaling of the representation of the Hamiltonian (this is an example of

something critical to check in any given problem).

• Hamiltonian simulation may be performed e.g. by LCU methods or qubitization.

• Oracular cost here is highly non-trivial — this is probably not available for the

near-term.

• Need to consider particle-exchange symmetry (to be discussed later) — aφ1,φ2 =

±aφ2,φ1 .
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In the second-quantized representation, one stores the occupation of a given single-particle

wavefunction. This necessitates that particles are identical.

• It makes just as much sense to ask ‘which particles lie in this orbital’ as opposed

to ‘which orbital does this particle lie in’.

• If particles are identical, we can further reduce the question by asking ‘how many

particles lie in this orbital’.

• Basis states take the form

|n1〉|n2〉|n3〉 . . . |nNb〉, (1.10)

where ni is the number of particles in the ith orbital.

• Need to truncate ni to a maximum number of particles per orbital, χ ≤ η.

• Particle symmetry/antisymmetry automatically implicit (shows up in commuta-

tion relations of operators) — note that antisymmetry fixes χ = 2.

• One advantage of this rephrasing — no longer need to conserve particle number.

• Number of states χNb — need Nb log2(χ) qubits (= Nb for fermionic systems).

• Terms in the Hamiltonian are now no longer k-body (i.e. involving up to k par-

ticles), but 2k-local (i.e. involving up to 2k orbitals). The factor of 2 here comes

as each term in the Hamiltonian removes a particle from at most one orbital and

places it in at most one orbital.

• This implies that the total number of terms in the Hamiltonian scales as O(N2k
b ).

• If we need χ = η (e.g. for bosonic systems), at large Nb and low η the first-

quantized representation is far more compressed than the second — but number

of terms in the Hamiltonian are still large.

Spin systems may be considered either in the first or second quantized representation
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• If the position of all particles is fixed, then states in the first-quantized represen-

tation reduce to

|s1〉|s2〉 . . . |sη〉, (1.11)

where si is the internal (i.e. spin) degree of freedom.

• This representation is equivalent to the above, but with Nb → η, and the maximum

number of particles χ set equal to the number of internal states NS defined before.

• Physically, in the second representation we are considering a spin flip to be an

‘excitation’, rather than considering the spin as a property of a fixed particle.

• In this situation, if χ = NS = 2 the problem maps identically to the dynamics of

an interacting set of qubits, making representing the system on η qubits trivial —

we can use our old favourite Pauli matrices {I,X, Y, Z}⊗N .

1.2. Ground and excited state energies

Ground and excited state energies are a critical property to calculate for many quantum

systems.

• One of the most important quantities to obtain from a quantum system is the

low-energy spectra; the ground and low-level excited state energies.

• Energy differences ∆E are immediately correlated to spectroscopy peaks.

• Reaction rates scale by the Arrhenius law: k = Ae−Ea/RT , where Ea is the reaction

energy barrier — the difference between the ground state energy and the barrier

as a molecule rearranges.

• Note that for molecular problems atomic nuclei are typically fixed and treated

classically (so this requires obtaining energies of two different Hamiltonians).

• Similarly, the difference between the energy of individual atoms and a molecular

ground state energy will tell us whether or not the molecule is stable.
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• Quantum phase transitions correspond to gap closings as parameters in the system

are tuned.

• Thermodynamic properties of a system depend on the number of states (density

of states) near to 0 energy.

• Construction of thermal states is possible via the quantum Metropolis algorithm

— this is an active area of research and not covered in this course.

Energies may be estimated via quantum phase estimation or direct state tomography of a

prepared state |Ψ〉

• Recall from earlier that state tomography requires O(ε−2) measurements to esti-

mate the expectation value 〈H〉.

• A useful mathematical object to store physically-relevant tomographic information

is the (particle) reduced density matrix, or RDM.

Definition 3. The k-local qubit RDM, or qubit k-RDM, is the collection

DA(1),...,A(k)

i1,...,ik
= 〈Ψ|A(1)

i1
. . . A

(k)
ik
|Ψ〉. (1.12)

of expectation values of all k-local qubit operators.

For an N-qubit system, this may be measured in log(N)eO(k) or even constant time

(in N — the eO(k) factor remains), depending on what extra resources are needed.

• Note that this is a reduction over the number of particles, not the number of sites.

• By comparison, QPE can obtain energies with an error scaling as O(ε−1).

• QPE has the additional advantage of returning eigenstates of the Hamiltonian (up

to simulation error); state tomography only tells the energy of the state you have.

• However, QPE requires far longer coherence times than state tomography.

• QPE further does not return the entire RDM (which may be of further use itself).
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1.3. Beyond eigenvalues

Energy derivatives correspond to various physical properties, and are crucial in mapping

parameter spaces.

• Many properties of interest may be written as derivatives of the energy as a func-

tion of parameters of the Hamiltonian

∂n1+...+nNlE

∂λn1
1 . . . ∂λNlnNl

. (1.13)

• For example, the ith component of the electric dipole of a system may be calculated

as ∂E
Fi

, where Fi is the ith component of an applied electric field.

• First derivatives may be easily calculated by the Hellman-Feynman theorem, for

eigenstates |Ej〉 of the system

∂

∂λ
〈Ej|H|Ej〉 =

(
∂〈Ej|
∂λ

)
H|Ej〉+ 〈Ej|

∂H

∂λ
|Ej〉+ 〈Ej|H

∂|Ej〉
∂λ

(1.14)

= 〈Ej|
∂H

∂λ
|Ej〉+ E

∂

∂λ
〈Ej|Ej〉 (1.15)

= 〈Ej|
∂H

∂λ
|Ej〉. (1.16)

• Terms in ∂H∂λ may be determined classically, and so the quantity may be calcu-

lated via state tomography.

• Indeed, if H may be tomographed from a k-RDM, ∂H
∂λ

almost always may be also

(with similar cost estimates).

• Higher-order derivatives cannot be esimated so easily, and must be approximated

through perturbation theory or similar. However, these retain polynomial scaling

for their estimation.

Many properties of material systems may be written in terms of response/correlation func-

tions.
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• Many properties of interest in physical systems involve static correlations —

e.g. magnetism, which can be calculated as 〈
∑

i Zi〉.

• Local static correlations may be extracted from the qubit k-RDM, making it a

useful mathematical object here as well.

• Some properties of interest involve correlations in time of the form

〈Ψ(t)|E|Ψ(0)〉 = 〈Ψ(0)|eiHtE|Ψ(0)〉, (1.17)

which may be generated by time evolution and subsequent measurement of |Ψ(0)〉,

conditional on an ancilla qubit, using the following circuit (these are not contained

in the RDM).

• Alternatively, some properties of interest involve response measurements

〈Ψ(0)|O(t)|Ψ(0)〉, (1.18)

Which may be generated by time evolution and subsequent measurement of |Ψ(0)〉

using the following circuit. Note that there is no ancilla needed, but these are

similarly not contained in the RDM, unless |Ψ(0)〉 is an eigenstate.

2. Spin systems

2.1. Lattices

A common set of systems to study are lattice systems with local interactions

• A d-dimensional lattice is series of points, or sites, in d-dimensional space with

translational symmetry defined by d lattice vectors ~ai: if there exists a site at

point ~p, there also exists a site at point ~p+ ~ai.

• As an example, a square lattice with a lattice size 1 has lattice vectors (1, 0) and

(0, 1).
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• It is not necessary to be able to get from every point on a lattice to every point

by using the lattice vectors; just every equivalent point. E.g. a hexagonal lattice

has two inequivalent points.

• We define a quantum system on a lattice by defining a quantum degree of freedom

(i.e. a Hilbert space) on each site.

• As before, we may think of a lattice system in both a first or second quantized

representation, and have the freedom to define the symmetry under exchange /

commutation relations between different sites.

• For example, a qubit lattice is defined by attaching a copy of the Pauli operators

I~p, X~p, Y~p, Z~p to each site, and combining via the tensor product.

• A Hamiltonian is typically defined locally on a lattice; using either nearest-neighbour

(〈i, j〉) or next-nearest-neighbour (〈〈i, j〉〉) coupling terms (or similar).

• Such Hamiltonians are geometrically local, which is advantageous for simulating

on a quantum computer.

2.2. Symmetries and order parameters

Following the theory of Landau, different phases of matter may be identified by the emer-

gence of a symmetry, or conserved quantity.

• A (unitary) symmetry of a system is an operator Ŝ that commutes with the Hamil-

tonian Ĥ.

• This implies that if |Ej〉 is an eigenstate of Ĥ, so is Ŝ|Ej〉, and Ŝ|Ej〉 has the same

energy as |Ej〉.

• This in turn means that either Ŝ|Ej〉 = s|Ej〉, or Ej is degenerate.

• In the first case, 〈Ej|Ŝ|Ej〉 = s 6= 0, but in the second case, 〈Ej|Ŝ|Ej〉 = 0 may

be achieved.
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• The ‘may’ here is important; we are usually concerned with the response of the

expectation value as a perturbation breaking the symmetry is added (i.e. the

susceptibility). This requires measuring first derivatives ∂E
∂F

(and second derivatives

∂E
∂F

) for some external field F As F → 0 (recall the last lecture).

• As symmetries themselves are static correlations they may be measured themselves

by direct tomography (recall the last lecture).

• As we can study finite systems only, need to be careful to study a large enough

system (and worry about boundary conditions).

2.3. Ising model

By adding a transverse magnetic field, we make the Ising model quantum

• We have already encountered the Hamiltonian for the Ising model in previous

lectures:

H = −
∑
〈i,j〉

Ji,jZiZj −
∑
i

hiZi. (2.1)

• With arbitrary choice of Ji,j this problem is QMA-hard (maps to 3-SAT); we do

not expect a quantum computer to provide a speedup in finding the ground state.

• With Ji,j = J and hi = h, in three-dimensions at finite temperature this model

is still not yet solved, but numerics are accurate to below 10−6 (and system does

not have a sign problem).

• Ground state at Ji,j = J , hi = h is either |~0〉 or |~1〉 (depending on sign of h);

magnetic ordering!

• With Ji,j = −J , system is either anti-ferromagnetic or frustrated, depending on

the lattice used.

• For example, a square lattice is anti-ferromagnetic with symmetry
∑

i∈A Zi −∑
i∈B Zi, but a triangular lattice is a spin liquid.
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• Note that as the total spin is still a good quantum number, in both cases the

ground states must be degenerate.

• To make the model quantum, we can add a transverse field instead of an in-line

field:

H = −J
∑
〈i,j〉

ZiZj − h
∑
i

Xi. (2.2)

• Although the Z magnetism is no longer conserved,
∏

iXi is!.

• When h >> J , the ground state is a non-degenerate eigenstate of
∏

iXi.

• When J >> h, the ground state is a denegrate non-eigenstate of
∏

iXi.

2.4. Heisenberg model

The Heisenberg model is a quantum model for magnetism

• The Heisenberg model is known as the ‘quantum Ising model’, as we measure the

correlation of the spin in all three directions

H = −
∑
〈i,j〉

(JxXiXj + JyYiYj + JzZiZj)− h
∑
i

Zi. (2.3)

• Like the Ising model, the Heisenberg model has an anti-ferromagnetic and a fer-

romagnetic phase. It has two symmetries -
∏

i Zi is always a symmetry, while the

magnetism
∑

i Zi is a symmetry when Jx = Jy.

• However, all excitations in the Ising model require finite energy, while the minimum

excitation energy of the ferromagnetic Heisenberg model decreases with system size

(spin wave).

• Exact solutions for the Heisenberg model are not known in more than 1 dimension.

• Depending on the values of the couplings, and on the lattice, this model has a rich

phase diagram which is still a very active area of study.
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3. Fermionic systems

3.1. Fermionic operators

Fermions are antisymmetric particles, so local operators need different commutation rela-

tions

• A fermionic wavefunction on η (identical) particles must satisfy the equation

Ψ(~R1, . . . , ~Ri, . . . , ~Rj, . . . , ~Rη) = −Ψ(~R1, . . . , ~Rj, . . . , ~Ri, . . . , ~Rη). (3.1)

• Given a set of η orthogonal single-particle wavefunctions ψi(~R), a Slater determi-

nant

Ψ(~R1, . . . , ~Rη) =
1√
η!

Det


ψ1(~R1) ψ1(~R2) . . . ψ1(~Rη)

ψ2(~R1) ψ2(~R2) . . . ψ2(~Rη)

...
...

...

ψη(~R1) ψη(~R2) . . . ψη(~Rη)


, (3.2)

has the correct antisymmetry relations required.

• Note here that the index i contains both the spatial details of the orbital and the

spin of the electron — these are often known as ‘spin-orbitals’.

• If we are restricted to just η particles in η orbitals, the above is the only allowed

wavefunction, as two fermionic particles cannot occupy the same spin-orbital.

• If we have η particles in N > η orbitals {ψ1, . . . , ψN}, then for each unique com-

bination of η orbitals {ψi1 , . . . , ψiη} we may define a Slater determinant |Ψi1,...,iη〉.

• (Note that following the above, |Ψi1,...,ip,...,iq ,...,iη〉 = −|Ψi1,...,iq ,...,ip,...,iη〉.)

• This gives a total of (
(
N
η

)
) basis states, which form an orthonormal basis on the

entire allowed anti-symmetric Hilbert space, as long as the initial spin-orbitals are

similarly orthonormal.
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• The single Slater determinant with the lowest energy is known as the Hartree-Fock

solution, and may be calculated classically relatively quickly; this is both used as

a common starting state for a quantum computer and a (relatively easy) target to

beat for many quantum and classical methods.

• We may map between Slater determinants via creation and annihilation operators

in the second-quantized picture: ĉj removes the index j from a Slater determinant

|Ψi1,...,iη〉 (and sends the state to 0 if it does not contain orbital j).

• (Note that having a term in a Hamiltonian that ‘sends an orbital to 0’ is not an

issue physically — i.e. for normalization — as we have to exponentiate H to get

a unitary. If H|Ψ〉 = 0, eiHt|Ψ〉 = |Ψ〉.)

• However, to preserve the anti-symmetry, we need the action of ĉj to account for

the sign of the removed operator:

ĉj|Ψi1,...,iη〉 =

η∑
p=1

δip,j(−1)p|Ψi1,...,ip−1,ip+1...,iη〉. (3.3)

• One can check that this implies the ĉi operators must satisfy the anti-commutation

relations

{ĉi, ĉj} = 0, {ĉ†i , ĉ
†
j} = 0, {ĉi, ĉ†j} = δi,j, (3.4)

where {A,B} = AB +BA.

• Each operator ĉ†i has a corresponding number operator n̂i = ĉ†i ĉi, which counts the

number of particles in orbital i.

• Typically (at low energies), systems conserve total particle number
∑

i n̂i; this

is ensured by making sure that every term in a Hamiltonian contains an equal

number of creation and annihilation operators.

• The above set of operators allow us to define the fermionic k-body RDM:

Di1,...,ik
j1,...,jk

= 〈Ψ|ĉ†i1 . . . ĉ
†
ik
ĉj1 . . . ĉjk |Ψ〉 (3.5)
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The fermionic equivalent of the qubit operator is the Majorana operator

• The creation and annihilation operators ĉ†j and ĉj provide great physical intuition.

However, they are not so nice for quantum computing — they are not unitary, nor

Hermitian, and indeed, they are nilpotent (square to 0)!

• A ‘nicer’ set of operators are the Majorana operators

γ2j = ĉj + ĉ†j, γ2j+1 = i(ĉj − ĉ†j). (3.6)

• One can check that these operators are Hermitian, unitary, and traceless, implying

that their eigenvalues are either +1 or −1.

• This is similar to the Pauli operators, however distant Majoranas anti-commute

rather than commuting: {γi, γj} = 2δi,j.

• Note that this implies a product of k Majorana operators is not necessarily Her-

mitian; we require that k = 0, 1 mod 4.

• Also note that symmetries such as number conservation in this representation

become more difficult to observe.

3.2. The electronic structure problem

Particles in molecules and material systems obey the Coloumb Hamiltonian

• Recall the Coulomb Hamiltonian from a few lectures previous in the first-quantized

representation

H =
∑
i

−~2

2mi

∇2
i +

∑
i

V (~ri) +
∑
i,j

ZiZj
4πε0|~ri − ~rj|

. (3.7)

• Here, ~ri are the positions of both electrons and atomic nuclei (which may be

considered point particles).
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• Atomic nuclei tend to be quite large, and electrons quite small, so we can treat

the atomic particles classically; i.e. consider their positions as fixed numbers, and

study the problem of the electrons around them.

• Let us rewrite the electronic positions using capital ~Ri to emphasize the difference:

H = Hnuc(~ri) +
∑
i

−~2

2me

∇2
i +

∑
i,j

eZj

4πε0|~Ri − ~rj|
+
∑
i,j

e2

4πε0|~Ri − ~Rj|
= Hnuc + T + U + V

(3.8)

• This is known as the electronic structure Hamiltonian.

In second quantization form, the Coulomb Hamiltonian becomes a sum of one-body (two-

operator) and two-body (four-operator) terms.

• To encode the above Hamiltonian on a quantum computer, we should start by

choosing a basis set of single-particle wavefunctions ψi, and combine them to form

Slater determinants as before.

• In the new representation, the Hamiltonian takes the form

H =
∑
i,j

ti,j ĉ
†
i ĉj +

∑
i,j,k,l

Vi,j,k,lĉ
†
i ĉ
†
j ĉkĉl. (3.9)

• Here, the ti,j and Vi,j,k,l are given by the integrals

ti,j =

∫
d3 ~Rψ∗i (~R)(T + U)ψj(~R), Vi,j,k,l =

∫
d3 ~R1d

3 ~R2ψ
∗
i (~R1)ψ∗j (~R2)V ψk(~R)ψl(~R).

(3.10)

• These integrals may be calculated to high accuracy classically once we have chosen

the ψi.

• Note that the expectation value of the Hamiltonian

〈Ψ|H|Ψ〉 =
∑
i,j

ti,j〈Ψ|ĉ†i ĉj|Ψ〉+
∑
i,j,k,l

Vi,j,k,l〈Ψ|ĉ†i ĉ
†
j ĉkĉl|Ψ〉, (3.11)

may be calculated entirely from the fermionic 2-RDM of a given state.
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• Note also that when Vi,j,k,l = 0 the ground state of the Hamiltonian may be found

in polynomial time on a classical computer by diagonalizing the matrix ti,j.

3.3. The Hubbard model

The Hubbard model is possibly the most famous example of a strongly-correlated fermionic

lattice model

• The terms in the electronic structure problem have a physical interpretation. ĉ†i ĉj

involves an electron ‘hopping’ from orbital j to i, while ĉ†i ĉ
†
j ĉkĉl terms are ‘scat-

tering’ processes — electrons from orbitals k and l bounce off each other and into

orbitals i and j.

• If i = k and j = l (or i = l and j = k), this is known as ‘repulsion’; electrons do

not scatter off each other as they do not move, but an electron in orbital i incurs

a penalty due to the presence of an electron in orbital j.

• If orbitals are separated in space then these terms will dominate — ψi and ψk

need some spatial overlap in order for a particle to scatter from k to i.

• Moreover, the size of Vijij decreases quadratically with the separation between ψi

and ψj.

• This implies that the dominant interaction are the terms Vijij where i and j cor-

respond to the same spatial function, but with different spin.

• Taking these terms and the hopping terms leads to the Hubbard Hamiltonian —

with spin explicitly specified:

H =
∑
i,j,σ

ti,j ĉ
†
iσ ĉjσ +

∑
i

Uin̂i↑n̂i↓ (3.12)

• (Here, ↑= +1 and ↓= −1 are chosen to make the labels prettier — this is very

common in the literature.)
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• The number of terms in the Hubbard model Hamiltonian is reduced to O(N2),

making simulation easier.

• The Hubbard model is additionally often studied on a lattice, in which case the

Hamiltonian is reduced to O(N).

• Despite its relative simplicity, the Hubbard model is both interesting and chal-

lenging to solve; in two-dimensions or more no good solution is known, but it is

thought to be a good model for high-temperature superconductivity.

3.4. Mapping fermions to qubits

Fermion-to-qubit transforms must preserve the commutation relations of all relevant op-

erators.

• On a single orbital/qubit, we have no particle exchange statistics, and one can see

that γ0 ∼ X, γ1 ∼ Y .

• To map a fermionic system onto a qubit system we can either map the basis states

or the operators (one will follow from the other).

• When mapping operators, we need to make sure that we preserve the algebra

between them; it suffices to make sure we preserve the eigenspectrum and the

commutation relations between different operators.

• This implies that a mapping is simply an association from each Majorana oper-

ator γi to a Pauli operator in PN such that the anti-commutation relations are

conserved.

The Jordan-Wigner transformation tracks anti-commutation relations by attaching a ‘Jordan-

Wigner’ string to each operator

• The Jordan-Wigner transformation is defined by the mapping

γ2j → ⊗k<jZkXj, γ2j+1 → ⊗k<jZkYj. (3.13)
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• For those of you more used to creation and annihilation operators, this corresponds

to a mapping

ĉj → ⊗k<jZk(Xj + iYj), ĉ†j → ⊗k<jZk(Xj − iYj) (3.14)

• On the states, the Slater determinant |Ψi1,i2,...iη〉 is mapped to |~i〉.

• The ‘Jordan-Wigner string’
∏

k<j Zk can be thought of as keeping track of the par-

ity of adding/removing a fermion to site j (or of keeping track of the commutation

relations).

• This string extends the locality of terms in most Hamiltonians to O(N) (minimiz-

ing the additional cost of Hamiltonian simulation and tomography from this has

been a research topic for a lot of the last few years).

The Bravyi-Kitaev transformation and JKMN transformation compress the JW string

into a log-depth encoding, but at the cost of requiring non-locality

• Let us consider how to minimize the locality of Majoranas following a transform

onto qubits. One way to do this is to start by assigning a nominal qubit to each

orbital, mapping γ2j → XjPj,0, γ2j+1 → YjPj,1, and choosing the Pauli strings Pj,0

and Pj,1 so that everything anti-commutes.

• Non-local Pauli strings always commute, so there must be some overlap. One way

to enforce this overlap is by drawing a tree, and connecting everything up to the

origin (say by adding a set of Xi operators to each Pj,0 and Pj,1).

• Now all γ2j+1 operators anti-commute with Majoranas from all of their children.

If we add Zk to all Pj,0 whenever k is a child of j then all γ2j operators also

anti-commute with all Majoranas from their children.

• Finally, for each j, as we go up the string to the root node, let us add a Zk to all

children of every node that we pass that are to the right of our current node. This
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guarantees that we commute with everything to the right (and the left nodes will

similarly anti-commute with us)! Problem solved.

• We are free to set up our tree as we see fit for this problem; it turns out that the

optimal construction to minimize the weight of the resulting Majoranas is known

as a Fenwick tree, although others have been studied.

• The resulting operator weight is dlog2(N) + 1e.

• Note that under this transformation the occupation of an orbital is mapped non-

locally across its children — iγ2jγ2j+1 = Zj ⊗k child of j Zk.

• Another tree-based method for constructing a set of non-commuting Pauli opera-

tors is the JKMN transform, which relies on constructing a terniary tree (where

each node has 3 children).

• In this method, each node with children corresponds to a qubit j, and each edge

below this node to the operators Xj, Yj, Zj.

• Nodes without children correspond to Majoranas; each Majorana is assigned the

tensor product of Pauli operators along the path leading to the root node.

• This method achieves a weight log3(N), which is provably optimal; however, oc-

cupancies are mapped to highly non-local objects.

4. State preparation for strongly correlated systems

• We have previously discussed what properties to measure of quantum states that

are interesting in strongly-correlated physics and chemistry problems, and how to

map those problems onto a physical system.

• However, actually preparing/ obtaining a representation of the states on a quan-

tum computer is a critical challenge for quantum computing.

• Critical point: preparation of ground states of arbitrary Hamiltonians is QMA-

hard. Even arbitrary 2-local Hamiltonians — even even geometrically-local 2-local
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Hamiltonians. We don’t know about the type of Hamiltonians which I’ve described

earlier in the text. So, we expect each of these methods to fail at some point.

4.1. Quantum phase estimation

As previously mentioned, QPE has the ability to prepare eigenstates

• Performing QPE with a full ancilla register projects a starting state
∑

j aj|Ej〉

into an eigenstate |Ej〉 with probability |aj|2.

• (In many cases the full projection is not necessary, as terms such as 〈Ej|V |Ek〉

may be obtained in post-processing.)

• If the largest time evolution is for eiHT , separate a window of approximately 1
T

states - need to ensure either this is sufficiently small or aj is chosen appropriately

in starting state for required purpose.

• Can ‘choose’ aj via e.g. symmetry or particle number constraints (if respected by

H).

• Critical failure - if we can’t find a starting state with some overlap with the ground

state, QPE won’t help us!

4.2. Adiabatic state preparation

By deforming a system’s Hamiltonian from a Hamiltonian with a known ground state to

a target, one evolves the known ground state to the ground state of the target — if the

evolution is slow enough.

• Let us consider evolving a system by the time-dependent Hamiltonian H(t) =

(T − t)H0 + tH1, as t goes from 0 to T . Let |Ej(t)〉 be the instantaneous eigenstate

of H(t) at time t.

• The ground state |E0(0)〉 is not necessarily an eigenstate of the Hamiltonian H(t)

for t 6= 0, so it will evolve in time; let us define |Ẽ0(t)〉 as the evolution after time
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t. Formally

|Ẽj(t)〉 = T ei
∫ t
0 dt
′H(t′)|Ej(0)〉, (4.1)

where T is the time-ordering operator.

• The adiabatic theorem states (roughly) that |〈Ej(t)|Ẽj(t)〉|2 ∼ 1 − δE
T

, where δE

is the minimum gap between |Ej(t)〉 and |Ej±1(t)〉 as t : 0→ T . (This is only true

in the small δE/T limit.)

• If H0 is a Hamiltonian for which we know the ground state, and H1 is the target

Hamiltonian, if we simulate slow enough time evolution we can prepare approxi-

mate states with reasonable overlap with the ground state.

• Cost estimates for realistic systems scale as O(N5.5∆E−3) (with some assump-

tions); very costly. Provable upper bounds scale as O(N12+o(1)∆E−2); even worse

(ArXiv:1605.03590).

• Critical failure - orthogonality catastrophe, gap size.

4.3. The unitary coupled cluster ansatz

VQE recap

• Recall that a variational algorithm/variational quantum eigensolver consists of

(1) A parameterized quantum circuit U(~θ), or ‘variational ansatz’; a circuit with

input to some gates left as classical free parameters ~θ.

(2) A starting state |~0〉 on which to act the quantum circuit.

(3) A classical cost function E(θ). In our case E(θ) is the expectation value of a

target Hamiltonian H:

E(~θ) = 〈~0|U †(~θ)HU(~θ)|~0〉 (4.2)

(4) A classical optimization algorithm to minimize the cost function E(θ) in terms

of the parameters θ.
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(5) A protocol to estimate E(~θ) (and optionally derivatives ∇θE(~θ)) from the

quantum hardware at each required point θ.

• VQEs are attractive for the near term as they can be made as low-depth as possible

+ adapted to any given hardware.

• Unlike QPE or other methods, VQEs do not typically promise to outperform

classical algorithms / solve BQP-complete problems (or even problems not in P!).

The cluster operator generates excitations from the Hartree-Fock state to low-lying non-

interacting higher energy states.

• As discussed previously, we typically expect the ground state of an interacting

problem to be a linear combination of low-energy excitations of the corresponding

non-interacting problem.

• In the electronic structure problem, this corresponds to excitations of a few parti-

cles from the Hartree-Fock state |ΨHF〉.

• These excitations may be captured by the cluster operator

T = T (1) + T (2) + T (3) + . . . (4.3)

T (1) =
∑

i empty, a filled

θiaĉ
†
i ĉa (4.4)

T (2) =
∑

i,j empty, a,b filled

θi,ja,bĉ
†
i ĉ
†
j ĉaĉb. (4.5)

• Here, θia and θi,ja,b are the free parameters of the problem.

• eT |ΨHF〉 may be evaluated classically as the series terminates quickly (we may only

excite each electron once). This is a powerful classical chemistry method known

as coupled cluster.
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• By comparison, eT−T
†

is a unitary operator, and eT−T
†|ΨHF〉 cannot be simply

truncated — terms allow for the excitation and subsequent de-excitation of elec-

trons.

• However, eT−T
†

may be implemented (approximately) on a quantum computer —

e.g. by Trotterization.

• The key issue here is truncation. In theory, using all T (n) operators up to n = η

(where η is the number of electrons) will allow the ansatz to capture the exact

ground state (both via UCC and CC); however the gate-count for implementing

T (n) for a system with N spin-orbitals scales as

O

((
η

n

)(
N − η
n

))
∼ O(N2n). (4.6)

In practice, we expect to need aggressive truncation of the cluster operator (even

as much as taking only a few operators within T (1) and T (2)).
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