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Notation 1. Throughtout this course (and when clear), I will use |E;) to represent the

ergen.

states of a Hamiltonian H — H|E;) = E;|E;).

0.1. Phase kickback

Quantum phase estimation relies fundamentally on the idea of phase kickback

e Recall that in quantum computing we transform the state of a quantum register

by unitary operations, which correspond to gates in a quantum circuit.

e Recall that every unitary operator U is generated by some Hermitian operator H

as U = e'ft,

e This implies that U shares the same eigenstates |E;) as H

U|E;) = ™| Ey). (0.1)
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e When we apply a unitary U to a state |¥), we can work in the basis of eigenstates

|E;) of U just as well as we can work in the computational basis:

W) =) 0B = U= a;eE;). (0.2)

J J

e If U is a unitary operator, so is the operator I & U, defined as

I 0
ToU = : (0.3)
0 U

e This is the quantum action of applying U conditional on or controlled by an ancilla
qubit (i.e. we do nothing if the ancilla qubit is in 0, and apply U if the ancilla

qubit is in 1, and we do this coherently).

e In operator form, the combined states of the ancilla and system take the form

|0)| W) and |1)|W¥), and (I & U)|0)|¥) = |0)| V), but (I & U)|1)|¥) = |1)U|¥).

e Then, if the ancilla qubit is prepared in the \%(!O} + [1)) state, and the system
register in W) = 3. a;|Ej), applying (I & U) produces the state

Z%IE 5(10) )+ e L)), (0.4)

e We see that the phases are ‘kicked back’ onto the ancilla qubit. This is the basis

for quantum phase estimation; our goal is now to extract the E; from the ancilla.
It 1s simple to extend the circuits from last week to allow control by an ancilla

e One may perform a controlled unitary operation by controlling each of the indi-

vidual gates.

e This may be compressed further; in the decomposition of ei? from last week, only
the final R.(0) rotation need to be controlled, as without this the remaining gates

evaluate to the identity.
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e A controlled R, gate may be constructed by a controlled-phase gate and single

qubit rotation on the ancilla.

e A controlled CNOT gate is a Toffoli gate, which is much harder to decompose

(preferable to avoid).

0.2. Single-ancilla QPE for eigenstates

If the initial state is an eigenstate, one may estimate the eigenvalue with an error scaling

as M~1/%1,

e Let us consider the case when |¥) = |E;). Then, the state post-controlled-U is

separable

1 1
(L@ U)—=(10) + [1)|E)) = NG

7 (10) + (1)) | E). (0.5)

e Consider a measurement of the ancilla qubit in the X basis (achievable by per-

forming a Hadamard and measuring in the computational basis):

PM@X—Oy—;1+mM@ﬂ) (0.6)

e Similarly, consider a measurement of the ancilla qubit in the Y basis (achievable

by performing a S gate before the Hadamard)

P@@Yzm:%@—gm@@) (0.7)

e Now, suppose E; (and thus P(M, x = 0)) are unknown. We can estimate P(M, x =
0) by repeating the circuit M times and counting the number Mj of 0’s recorded;

the estimator ]—ﬁ’(MaL x=0)~ Mﬁ converges to the true result with variance

P<M3,X - 0)(1 — P(Ma,X = 0))
Vi .

(0.8)
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e Let us now introduce the convenient term

1 —2P(M,y = 0)

O P (Mx—0) 1

~ tan(Bjt). (0.9)

e We can propagate variances through to Q

. 2
A PM,x=0)(1—-P(M,x =0 1—-2P(M,y =0 ~
Var[Q] — ( ,X )( ( 1X )) _ ( 1Y ) 2P(Ma,,X — O)
M (2P(M, x) =0) — 1)2
2
P(M,y =0)(1 = P(M,y = 2
L P(May =0)(1 = P(May =0)) | (0.10)
M 2P(M,x =0)—1
e Then, the estimator
. 1 A
E; =~ tan”! [Q] , (0.11)
converges with variance
1 .
Var[Q] ~ O(t2M ™). (0.12)

2(1 +Q2)2

As the phase is only known modulo 2w, one cannot simply make t arbitrarily large to

achieve Heisenberg scaling.

e The cost of implementing e’#* M times scales as O(Mt), so in theory we would

want to make t as large as possible and M as small as possible.

e This is known as Heisenberg scaling — a scheme that achieves Var[E;] ~ T2 after

total time spent T' (here, T = Mt), or error scaling as T~

A

e However, the above analysis ignored the fact that tan[@)] only obtains an estimate

of Ejt modulo 27.
e We can avoid this by the following

(1) Estimate QZEjt mod 27 for [ = 1,2,3,...,L from M; measurements using
the above scheme, with ¢ chosen to ensure E;t < 2.

. 5 (1) 5
(2) Estimate £; = 1Ejt.

Tt
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(1) A (1) )

~ (2
— 5, E;  + %) so that 2tEj(

(3) Choose Ej(2) as the number in [E; = 2Et.

(4) Repeat for higher | — choose Ej(l) € [Ej(l_l) — %,EA]-(Z_I) + 37) such that

e One may check that by choosing M; = «(L — [) +  measurements, we retain

Heisenberg scaling; Var[E}] ~ T 1.

0.3. Multi-ancilla QPE for mixed states
By using phase kickback on multiple ancilla qubits, one may extract phases via the quan-
tum Fourier transform, which has the advantage of directly projecting a system on an

etgenstate.

e Instead of processing the data for QPE on a classical computer, we can perform

this via the quantum fourier transform.
e Let us take L ancilla qubits, and perform controlled-¢™2 #t on the [th qubit.

o If we write the ancilla state as |n) for n =0,...,2% — 1, then we send the state

In)|Ej) — et |n)| E;). (0.13)

e Then, if we start from

1 .
WZWZ%@ B Ey), (0.14)
n J

applying controlled-U 2l, and following with a quantum Fourier transform on the

ancilla register sends the state to
1 —g2mnm L ~
SE DD D e M m)| ) ~ Y || E), (0.15)
7 m n j

where here, Ej is a L-bit representation of the true energy ;.

e Importantly here, measuring the ancilla register projects the state register from a

mixed state into an eigenstate.
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e However, the error in the above approximation scales as 2~%/2, and not the optimal

2L

e It turns out that this is caused by the construction of the ancilla state 5775 >, [n).
To achieve Heisenberg scaling we need to optimize the coefficients of |n) in this

preparation; unfortunately we don’t have time to cover this here.

0.4. Single-ancilla QPE for mixed states
Separating phases with single ancilla qubits may be achieved in a similar method to ex-

tracting single notes from a chord.

e Let us recall the state of our system following a controlled-e*# (on a mixed-starting

state ). a;|Ej))

V(1) = %Z%IEﬁ(IOHe’E"WD)- (0.16)

J

e Now, let us re-calculate the probability of measuring M = 0,1 on the ancilla qubit

after rotating into the X and Y bases as before

1 1 .
P(Max =0t) = S(1+ > la;? cos(Ejt)), P(My = 0]t) = 51— > la;[* sin(E;t))
J J

(0.17)
e We may now define a useful function
g(t) == P(M,x =0[t) — P(M,x = 1|t) +iP(M,y = 1|t) — iP(M,~y = 0|t) (0.18)

= (T()|X + iV [U(t)) (0.19)

= Z |a;[2e it (0.20)
J

e The eigenvalues E; may be estimated from ¢(j) via standard signal processing

techniques.
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e One such method is known as Prony’s method, or the matrix pencil technique: if

we define the K /2 x K /2 Hankel matrices G(©) and GV by

G\ = g(i+j+a), (0.21)

1,3
then eigenvalues of G(V[G(®]~! are the eigenvalues E; for sufficiently large K.
e (One can improve convergence by noting additionally that g(k)* = g(—k).)

e This method achieves a variance in the estimate of an eigenvalue E; of size
O(la;]™*K—2M~1) if M copies of the state are used to estimate each g(k) value
(and making some assumptions on the gap between eigenvalues). This is optimal
in M and |a;|, but as we require estimation of each g(k), the cost to estimate

scales as K2 — this is not Heisenberg scaling.

The expectation values of operators in eigenstates may be additionally obtained during

single-ancilla QPE

e We can extend the above protocol by inserting additional unitaries in between

rounds of QPE.

e For example: consider controlled time evolution by H (for time ¢;), followed by
controlled application of a unitary V', followed by controlled time evolution by H

for time t5. The combined system plus ancilla state evolves to

S a5 (10)|E) + (BlVIE,) e 550 1) ). (022)

e We may then calculate

gt 1) =Y ajag(E;|V|Ey)e i =ibitz, (0.23)
7.k

e This is a two-dimensional wave with coeflicients a;a; (E;|V|Eg), which may be

extracted by a similar analysis to the above.
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