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Notation 1. Throughtout this course (and when clear), I will use |Ej〉 to represent the

eigenstates of a Hamiltonian H — H|Ej〉 = Ej|Ej〉.

0.1. Phase kickback

Quantum phase estimation relies fundamentally on the idea of phase kickback

• Recall that in quantum computing we transform the state of a quantum register

by unitary operations, which correspond to gates in a quantum circuit.

• Recall that every unitary operator U is generated by some Hermitian operator H

as U = eiHt.

• This implies that U shares the same eigenstates |Ej〉 as H

U |Ej〉 = eiEjt|Ej〉. (0.1)
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• When we apply a unitary U to a state |Ψ〉, we can work in the basis of eigenstates

|Ej〉 of U just as well as we can work in the computational basis:

|Ψ〉 =
∑
j

aj|Ej〉 → U |Ψ〉 =
∑
j

aje
iEjt|Ej〉. (0.2)

• If U is a unitary operator, so is the operator I ⊕ U , defined as

I ⊕ U =

 I 0

0 U

 . (0.3)

• This is the quantum action of applying U conditional on or controlled by an ancilla

qubit (i.e. we do nothing if the ancilla qubit is in 0, and apply U if the ancilla

qubit is in 1, and we do this coherently).

• In operator form, the combined states of the ancilla and system take the form

|0〉|Ψ〉 and |1〉|Ψ〉, and (I ⊕ U)|0〉|Ψ〉 = |0〉|Ψ〉, but (I ⊕ U)|1〉|Ψ〉 = |1〉U |Ψ〉.

• Then, if the ancilla qubit is prepared in the 1√
2
(|0〉 + |1〉) state, and the system

register in |Ψ〉 =
∑

j aj|Ej〉, applying (I ⊕ U) produces the state

∑
j

aj|Ej〉
1√
2

(|0〉+ eiEjt|1〉). (0.4)

• We see that the phases are ‘kicked back’ onto the ancilla qubit. This is the basis

for quantum phase estimation; our goal is now to extract the Ej from the ancilla.

It is simple to extend the circuits from last week to allow control by an ancilla

• One may perform a controlled unitary operation by controlling each of the indi-

vidual gates.

• This may be compressed further; in the decomposition of eiθP̂ from last week, only

the final Rz(θ) rotation need to be controlled, as without this the remaining gates

evaluate to the identity.
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• A controlled Rz gate may be constructed by a controlled-phase gate and single

qubit rotation on the ancilla.

• A controlled CNOT gate is a Toffoli gate, which is much harder to decompose

(preferable to avoid).

0.2. Single-ancilla QPE for eigenstates

If the initial state is an eigenstate, one may estimate the eigenvalue with an error scaling

as M−1/2t−1.

• Let us consider the case when |Ψ〉 = |Ej〉. Then, the state post-controlled-U is

separable

(I ⊕ U)
1√
2

(|0〉+ |1〉)|Ej〉 =
1√
2

(|0〉+ eiEjt|1〉)|Ej〉. (0.5)

• Consider a measurement of the ancilla qubit in the X basis (achievable by per-

forming a Hadamard and measuring in the computational basis):

P (Ma,X = 0) =
1

2
(1 + cos(Ejt)). (0.6)

• Similarly, consider a measurement of the ancilla qubit in the Y basis (achievable

by performing a S gate before the Hadamard)

P (Ma,Y = 0) =
1

2
(1− sin(Ejt)) (0.7)

• Now, suppose Ej (and thus P (Ma,X = 0)) are unknown. We can estimate P (Ma,X =

0) by repeating the circuit M times and counting the number M0 of 0’s recorded;

the estimator P̂ (Ma,X = 0) ∼ M0

M
converges to the true result with variance

P (Ma,X = 0)(1− P (Ma,X = 0))

M
. (0.8)
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• Let us now introduce the convenient term

Q̂ =
1− 2P̂ (Ma,Y = 0)

2P̂ (Ma,X = 0)− 1
∼ tan(Ejt). (0.9)

• We can propagate variances through to Q̂

Var[Q̂] =
P (Ma,X = 0)(1− P (Ma,X = 0))

M

∣∣∣∣∣ 1− 2P̂ (Ma,Y = 0)

(2P̂ (Ma,X) = 0)− 1)2
2P̂ (Ma,X = 0)

∣∣∣∣∣
2

+
P (Ma,Y = 0)(1− P (Ma,Y = 0))

M

∣∣∣∣∣ 2

2P̂ (Ma,X = 0)− 1

∣∣∣∣∣
2

. (0.10)

• Then, the estimator

Êj =
1

t
tan−1

[
Q̂
]
, (0.11)

converges with variance

1

t2(1 + Q̂2)2
Var[Q̂] ∼ O(t−2M−1). (0.12)

As the phase is only known modulo 2π, one cannot simply make t arbitrarily large to

achieve Heisenberg scaling.

• The cost of implementing eiHt M times scales as O(Mt), so in theory we would

want to make t as large as possible and M as small as possible.

• This is known as Heisenberg scaling — a scheme that achieves Var[Ej] ∼ T−2 after

total time spent T (here, T = Mt), or error scaling as T−1.

• However, the above analysis ignored the fact that tan[Q̂] only obtains an estimate

of Êjt modulo 2π.

• We can avoid this by the following

(1) Estimate ˆ2lEjt mod 2π for l = 1, 2, 3, . . . , L from Ml measurements using

the above scheme, with t chosen to ensure Ejt < 2π.

(2) Estimate Êj
(1)

= 1
t
Êjt.
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(3) Choose Êj
(2)

as the number in [Êj
(1)
− π

2
, Êj

(1)
+ π

2
) so that 2tÊj

(2)
= ˆ2Ejt.

(4) Repeat for higher l — choose Êj
(l)
∈ [Êj

(l−1)
− π

2l
, Êj

(l−1)
+ π

2l
) such that

2ltÊj
(l)

= ˆ2lEjt.

• One may check that by choosing Ml = α(L − l) + β measurements, we retain

Heisenberg scaling; Var[Êj] ∼ T−1.

0.3. Multi-ancilla QPE for mixed states

By using phase kickback on multiple ancilla qubits, one may extract phases via the quan-

tum Fourier transform, which has the advantage of directly projecting a system on an

eigenstate.

• Instead of processing the data for QPE on a classical computer, we can perform

this via the quantum fourier transform.

• Let us take L ancilla qubits, and perform controlled-ei2
lHt on the lth qubit.

• If we write the ancilla state as |n〉 for n = 0, . . . , 2L − 1, then we send the state

|n〉|Ej〉 → einEjt|n〉|Ej〉. (0.13)

• Then, if we start from

1

2L/2

∑
n

|n〉
∑
j

aje
iEjt|Ej〉, (0.14)

applying controlled-U2l , and following with a quantum Fourier transform on the

ancilla register sends the state to

1

2L

∑
j

∑
m

∑
n

aje
−i 2πnm

2L eiEjnt|m〉|Ej〉 ∼
∑
j

aj|Ẽj〉|Ej〉, (0.15)

where here, Ẽj is a L-bit representation of the true energy Ej.

• Importantly here, measuring the ancilla register projects the state register from a

mixed state into an eigenstate.
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• However, the error in the above approximation scales as 2−L/2, and not the optimal

2−L.

• It turns out that this is caused by the construction of the ancilla state 1
2L/2

∑
n |n〉.

To achieve Heisenberg scaling we need to optimize the coefficients of |n〉 in this

preparation; unfortunately we don’t have time to cover this here.

0.4. Single-ancilla QPE for mixed states

Separating phases with single ancilla qubits may be achieved in a similar method to ex-

tracting single notes from a chord.

• Let us recall the state of our system following a controlled-eiHt (on a mixed-starting

state
∑

j aj|Ej〉)

|Ψ(t)〉 =
1√
2

∑
j

aj|Ej〉(|0〉+ eiEjt|1〉). (0.16)

• Now, let us re-calculate the probability of measuring M = 0, 1 on the ancilla qubit

after rotating into the X and Y bases as before

P (Ma,X = 0|t) =
1

2
(1 +

∑
j

|aj|2 cos(Ejt)), P (Ma,Y = 0|t) =
1

2
(1−

∑
j

|aj|2 sin(Ejt))

(0.17)

• We may now define a useful function

g(t) := P (Ma,X = 0|t)− P (Ma,X = 1|t) + iP (Ma,Y = 1|t)− iP (Ma,Y = 0|t) (0.18)

:= 〈Ψ(t)|X + iY |Ψ(t)〉 (0.19)

=
∑
j

|aj|2eiEjt. (0.20)

• The eigenvalues Ej may be estimated from g(j) via standard signal processing

techniques.
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• One such method is known as Prony’s method, or the matrix pencil technique: if

we define the K/2×K/2 Hankel matrices G(0) and G(1) by

G
(a)
i,j = g(i+ j + a), (0.21)

then eigenvalues of G(1)[G(0)]−1 are the eigenvalues Ej for sufficiently large K.

• (One can improve convergence by noting additionally that g(k)∗ = g(−k).)

• This method achieves a variance in the estimate of an eigenvalue Ej of size

O(|aj|−4K−3M−1) if M copies of the state are used to estimate each g(k) value

(and making some assumptions on the gap between eigenvalues). This is optimal

in M and |aj|, but as we require estimation of each g(k), the cost to estimate

scales as K2 — this is not Heisenberg scaling.

The expectation values of operators in eigenstates may be additionally obtained during

single-ancilla QPE

• We can extend the above protocol by inserting additional unitaries in between

rounds of QPE.

• For example: consider controlled time evolution by H (for time t1), followed by

controlled application of a unitary V , followed by controlled time evolution by H

for time t2. The combined system plus ancilla state evolves to

∑
j,k

aj
(
|0〉|Ej〉+ 〈Ek|V |Ej〉eiEjt1+iEkt2|1〉|Ek〉

)
. (0.22)

• We may then calculate

g(t1, t2) =
∑
j,k

aja
∗
k〈Ej|V |Ek〉e−iEjt1−iEkt2 . (0.23)

• This is a two-dimensional wave with coefficients aja
∗
k〈Ej|V |Ek〉, which may be

extracted by a similar analysis to the above.
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