APPLIED QUANTUM ALGORITHMS LECTURE: QUANTUM PHASE ESTIMATION

THOMAS O'BRIEN

Contents

0.1. Phase kickback 1
0.2. Single-ancilla QPE for eigenstates 3
0.3. Multi-ancilla QPE for mixed states 5
0.4. Single-ancilla QPE for mixed states 6

Notation 1. Throughtout this course (and when clear), I will use $\left|E_{j}\right\rangle$ to represent the eigenstates of a Hamiltonian $H-H\left|E_{j}\right\rangle=E_{j}\left|E_{j}\right\rangle$.

0.1. Phase kickback

Quantum phase estimation relies fundamentally on the idea of phase kickback

- Recall that in quantum computing we transform the state of a quantum register by unitary operations, which correspond to gates in a quantum circuit.
- Recall that every unitary operator U is generated by some Hermitian operator H as $U=e^{i H t}$.
- This implies that U shares the same eigenstates $\left|E_{j}\right\rangle$ as H

$$
\begin{equation*}
U\left|E_{j}\right\rangle=\underset{1}{i E_{j} t}\left|E_{j}\right\rangle . \tag{0.1}
\end{equation*}
$$

- When we apply a unitary U to a state $|\Psi\rangle$, we can work in the basis of eigenstates $\left|E_{j}\right\rangle$ of U just as well as we can work in the computational basis:

$$
\begin{equation*}
|\Psi\rangle=\sum_{j} a_{j}\left|E_{j}\right\rangle \quad \rightarrow \quad U|\Psi\rangle=\sum_{j} a_{j} e^{i E_{j} t}\left|E_{j}\right\rangle \tag{0.2}
\end{equation*}
$$

- If U is a unitary operator, so is the operator $I \oplus U$, defined as

$$
I \oplus U=\left(\begin{array}{cc}
I & 0 \tag{0.3}\\
0 & U
\end{array}\right)
$$

- This is the quantum action of applying U conditional on or controlled by an ancilla qubit (i.e. we do nothing if the ancilla qubit is in 0 , and apply U if the ancilla qubit is in 1 , and we do this coherently).
- In operator form, the combined states of the ancilla and system take the form $|0\rangle|\Psi\rangle$ and $|1\rangle|\Psi\rangle$, and $(I \oplus U)|0\rangle|\Psi\rangle=|0\rangle|\Psi\rangle$, but $(I \oplus U)|1\rangle|\Psi\rangle=|1\rangle U|\Psi\rangle$.
- Then, if the ancilla qubit is prepared in the $\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$ state, and the system register in $|\Psi\rangle=\sum_{j} a_{j}\left|E_{j}\right\rangle$, applying $(I \oplus U)$ produces the state

$$
\begin{equation*}
\sum_{j} a_{j}\left|E_{j}\right\rangle \frac{1}{\sqrt{2}}\left(|0\rangle+e^{i E_{j} t}|1\rangle\right) \tag{0.4}
\end{equation*}
$$

- We see that the phases are 'kicked back' onto the ancilla qubit. This is the basis for quantum phase estimation; our goal is now to extract the E_{j} from the ancilla.

It is simple to extend the circuits from last week to allow control by an ancilla

- One may perform a controlled unitary operation by controlling each of the individual gates.
- This may be compressed further; in the decomposition of $e^{i \theta \hat{P}}$ from last week, only the final $R_{z}(\theta)$ rotation need to be controlled, as without this the remaining gates evaluate to the identity.
- A controlled R_{z} gate may be constructed by a controlled-phase gate and single qubit rotation on the ancilla.
- A controlled CNOT gate is a Toffoli gate, which is much harder to decompose (preferable to avoid).

0.2. Single-ancilla QPE for eigenstates

If the initial state is an eigenstate, one may estimate the eigenvalue with an error scaling as $M^{-1 / 2} t^{-1}$.

- Let us consider the case when $|\Psi\rangle=\left|E_{j}\right\rangle$. Then, the state post-controlled-U is separable

$$
\begin{equation*}
(I \oplus U) \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)\left|E_{j}\right\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+e^{i E_{j} t}|1\rangle\right)\left|E_{j}\right\rangle . \tag{0.5}
\end{equation*}
$$

- Consider a measurement of the ancilla qubit in the X basis (achievable by performing a Hadamard and measuring in the computational basis):

$$
\begin{equation*}
P\left(M_{\mathrm{a}, X}=0\right)=\frac{1}{2}\left(1+\cos \left(E_{j} t\right)\right) . \tag{0.6}
\end{equation*}
$$

- Similarly, consider a measurement of the ancilla qubit in the Y basis (achievable by performing a S gate before the Hadamard)

$$
\begin{equation*}
P\left(M_{\mathrm{a}, Y}=0\right)=\frac{1}{2}\left(1-\sin \left(E_{j} t\right)\right) \tag{0.7}
\end{equation*}
$$

- Now, suppose E_{j} (and thus $P\left(M_{\mathrm{a}, X}=0\right)$) are unknown. We can estimate $P\left(M_{\mathrm{a}, X}=\right.$ 0) by repeating the circuit M times and counting the number M_{0} of 0 's recorded; the estimator $\hat{P}\left(M_{\mathrm{a}, X}=0\right) \sim \frac{M_{0}}{M}$ converges to the true result with variance

$$
\begin{equation*}
\frac{P\left(M_{\mathrm{a}, X}=0\right)\left(1-P\left(M_{\mathrm{a}, X}=0\right)\right)}{M} . \tag{0.8}
\end{equation*}
$$

- Let us now introduce the convenient term

$$
\begin{equation*}
\hat{Q}=\frac{1-2 \hat{P}\left(M_{\mathrm{a}, Y}=0\right)}{2 \hat{P}\left(M_{\mathrm{a}, X}=0\right)-1} \sim \tan \left(E_{j} t\right) . \tag{0.9}
\end{equation*}
$$

- We can propagate variances through to \hat{Q}

$$
\begin{align*}
\operatorname{Var}[\hat{Q}] & =\frac{P\left(M_{\mathrm{a}, X}=0\right)\left(1-P\left(M_{\mathrm{a}, X}=0\right)\right)}{M}\left|\frac{1-2 \hat{P}\left(M_{\mathrm{a}, Y}=0\right)}{\left.\left(2 \hat{P}\left(M_{\mathrm{a}, X}\right)=0\right)-1\right)^{2}} 2 \hat{P}\left(M_{a, X}=0\right)\right|^{2} \\
& +\frac{P\left(M_{\mathrm{a}, Y}=0\right)\left(1-P\left(M_{\mathrm{a}, Y}=0\right)\right)}{M}\left|\frac{2}{2 \hat{P}\left(M_{\mathrm{a}, X}=0\right)-1}\right|^{2} \tag{0.10}
\end{align*}
$$

- Then, the estimator

$$
\begin{equation*}
\hat{E}_{j}=\frac{1}{t} \tan ^{-1}[\hat{Q}], \tag{0.11}
\end{equation*}
$$

converges with variance

$$
\begin{equation*}
\frac{1}{t^{2}\left(1+\hat{Q}^{2}\right)^{2}} \operatorname{Var}[\hat{Q}] \sim O\left(t^{-2} M^{-1}\right) \tag{0.12}
\end{equation*}
$$

As the phase is only known modulo 2π, one cannot simply make t arbitrarily large to achieve Heisenberg scaling.

- The cost of implementing $e^{i H t} M$ times scales as $O(M t)$, so in theory we would want to make t as large as possible and M as small as possible.
- This is known as Heisenberg scaling - a scheme that achieves $\operatorname{Var}\left[E_{j}\right] \sim T^{-2}$ after total time spent T (here, $T=M t$), or error scaling as T^{-1}.
- However, the above analysis ignored the fact that $\tan [\hat{Q}]$ only obtains an estimate of $\hat{E}_{j} t$ modulo 2π.
- We can avoid this by the following
(1) Estimate $2^{l} \hat{E}_{j} t \bmod 2 \pi$ for $l=1,2,3, \ldots, L$ from M_{l} measurements using the above scheme, with t chosen to ensure $E_{j} t<2 \pi$.
(2) Estimate $\hat{E}_{j}^{(1)}=\frac{1}{t} \hat{E_{j}} t$.
(3) Choose $\hat{E}_{j}^{(2)}$ as the number in $\left[\hat{E}_{j}^{(1)}-\frac{\pi}{2}, \hat{E}_{j}^{(1)}+\frac{\pi}{2}\right)$ so that $2 t \hat{E}_{j}^{(2)}=2 \hat{E}_{j} t$.
(4) Repeat for higher $l-$ choose $\hat{E}_{j}^{(l)} \in\left[\hat{E}_{j}^{(l-1)}-\frac{\pi}{2^{l}}, \hat{E}_{j}^{(l-1)}+\frac{\pi}{2^{l}}\right)$ such that $2^{l} t \hat{E}_{j}^{(l)}=2^{l} \hat{E}_{j} t$.
- One may check that by choosing $M_{l}=\alpha(L-l)+\beta$ measurements, we retain Heisenberg scaling; $\operatorname{Var}\left[\hat{E}_{j}\right] \sim T^{-1}$.

0.3. Multi-ancilla QPE for mixed states

By using phase kickback on multiple ancilla qubits, one may extract phases via the quantum Fourier transform, which has the advantage of directly projecting a system on an eigenstate.

- Instead of processing the data for QPE on a classical computer, we can perform this via the quantum fourier transform.
- Let us take L ancilla qubits, and perform controlled- $e^{i 2^{l} H t}$ on the l th qubit.
- If we write the ancilla state as $|n\rangle$ for $n=0, \ldots, 2^{L}-1$, then we send the state

$$
\begin{equation*}
|n\rangle\left|E_{j}\right\rangle \rightarrow e^{i n E_{j} t}|n\rangle\left|E_{j}\right\rangle . \tag{0.13}
\end{equation*}
$$

- Then, if we start from

$$
\begin{equation*}
\frac{1}{2^{L / 2}} \sum_{n}|n\rangle \sum_{j} a_{j} e^{i E_{j} t}\left|E_{j}\right\rangle, \tag{0.14}
\end{equation*}
$$

applying controlled- $U^{2^{l}}$, and following with a quantum Fourier transform on the ancilla register sends the state to

$$
\begin{equation*}
\frac{1}{2^{L}} \sum_{j} \sum_{m} \sum_{n} a_{j} e^{-i \frac{2 \pi n m}{2^{L}}} e^{i E_{j} n t}|m\rangle\left|E_{j}\right\rangle \sim \sum_{j} a_{j}\left|\tilde{E}_{j}\right\rangle\left|E_{j}\right\rangle \tag{0.15}
\end{equation*}
$$

where here, \tilde{E}_{j} is a L-bit representation of the true energy E_{j}.

- Importantly here, measuring the ancilla register projects the state register from a mixed state into an eigenstate.
- However, the error in the above approximation scales as $2^{-L / 2}$, and not the optimal 2^{-L}.
- It turns out that this is caused by the construction of the ancilla state $\frac{1}{2^{L / 2}} \sum_{n}|n\rangle$. To achieve Heisenberg scaling we need to optimize the coefficients of $|n\rangle$ in this preparation; unfortunately we don't have time to cover this here.

0.4. Single-ancilla QPE for mixed states

Separating phases with single ancilla qubits may be achieved in a similar method to extracting single notes from a chord.

- Let us recall the state of our system following a controlled- $e^{i H t}$ (on a mixed-starting state $\left.\sum_{j} a_{j}\left|E_{j}\right\rangle\right)$

$$
\begin{equation*}
|\Psi(t)\rangle=\frac{1}{\sqrt{2}} \sum_{j} a_{j}\left|E_{j}\right\rangle\left(|0\rangle+e^{i E_{j} t}|1\rangle\right) . \tag{0.16}
\end{equation*}
$$

- Now, let us re-calculate the probability of measuring $M=0,1$ on the ancilla qubit after rotating into the X and Y bases as before

$$
\begin{equation*}
P\left(M_{a, \mathrm{X}}=0 \mid t\right)=\frac{1}{2}\left(1+\sum_{j}\left|a_{j}\right|^{2} \cos \left(E_{j} t\right)\right), P\left(M_{a, \mathrm{Y}}=0 \mid t\right)=\frac{1}{2}\left(1-\sum_{j}\left|a_{j}\right|^{2} \sin \left(E_{j} t\right)\right) \tag{0.17}
\end{equation*}
$$

- We may now define a useful function

$$
\begin{align*}
g(t) & :=P\left(M_{a, \mathrm{X}}=0 \mid t\right)-P\left(M_{a, \mathrm{X}}=1 \mid t\right)+i P\left(M_{a, \mathrm{Y}}=1 \mid t\right)-i P\left(M_{a, \mathrm{Y}}=0 \mid t\right) \tag{0.18}\\
& :=\langle\Psi(t)| X+i Y|\Psi(t)\rangle \tag{0.19}\\
& =\sum_{j}\left|a_{j}\right|^{2} e^{i E_{j} t} . \tag{0.20}
\end{align*}
$$

- The eigenvalues E_{j} may be estimated from $g(j)$ via standard signal processing techniques.
- One such method is known as Prony's method, or the matrix pencil technique: if we define the $K / 2 \times K / 2$ Hankel matrices $G^{(0)}$ and $G^{(1)}$ by

$$
\begin{equation*}
G_{i, j}^{(a)}=g(i+j+a), \tag{0.21}
\end{equation*}
$$

then eigenvalues of $G^{(1)}\left[G^{(0)}\right]^{-1}$ are the eigenvalues E_{j} for sufficiently large K.

- (One can improve convergence by noting additionally that $g(k)^{*}=g(-k)$.)
- This method achieves a variance in the estimate of an eigenvalue E_{j} of size $O\left(\left|a_{j}\right|^{-4} K^{-3} M^{-1}\right)$ if M copies of the state are used to estimate each $g(k)$ value (and making some assumptions on the gap between eigenvalues). This is optimal in M and $\left|a_{j}\right|$, but as we require estimation of each $g(k)$, the cost to estimate scales as K^{2} - this is not Heisenberg scaling.

The expectation values of operators in eigenstates may be additionally obtained during single-ancilla QPE

- We can extend the above protocol by inserting additional unitaries in between rounds of QPE.
- For example: consider controlled time evolution by H (for time t_{1}), followed by controlled application of a unitary V, followed by controlled time evolution by H for time t_{2}. The combined system plus ancilla state evolves to

$$
\begin{equation*}
\sum_{j, k} a_{j}\left(|0\rangle\left|E_{j}\right\rangle+\left\langle E_{k}\right| V\left|E_{j}\right\rangle e^{i E_{j} t_{1}+i E_{k} t_{2}}|1\rangle\left|E_{k}\right\rangle\right) \tag{0.22}
\end{equation*}
$$

- We may then calculate

$$
\begin{equation*}
g\left(t_{1}, t_{2}\right)=\sum_{j, k} a_{j} a_{k}^{*}\left\langle E_{j}\right| V\left|E_{k}\right\rangle e^{-i E_{j} t_{1}-i E_{k} t_{2}} \tag{0.23}
\end{equation*}
$$

- This is a two-dimensional wave with coefficients $a_{j} a_{k}^{*}\left\langle E_{j}\right| V\left|E_{k}\right\rangle$, which may be extracted by a similar analysis to the above.

Instituut Lorentz, Leiden University
Email address: obrien@lorentz.leidenuniv.nl

