
Variational Algorithms

Xavier Bonet-Monroig, Casper Gyurik and Thomas O’Brien

February 26, 2020

Contents

1 Introduction 2

2 The variational paradigm 3

3 The variational algorithm protocol 4

4 Continuously parametrized unitaries 5

5 Constructing suitable trial states 7

5.1 Perturbative ansatzes . 8

5.2 The quantum alternating operator ansatz 8

5.3 Swap networks and other banded ansatzes 9

5.4 Hardware-efficient ansatzes . 9

6 Extracting classical information and the cost function 9

6.1 Definition of our cost function . 11

6.2 Estimating the cost function . 13

6.2.1 Chebyshev’s inequality . 14

6.2.2 Measurement optimization . 15

1

7 Optimizing the cost function 16

7.1 Gradient-based methods . 16

7.2 Gradient-free methods . 17

7.3 Minimizing the VQE cost function fÔ(~θ) 18

7.3.1 Estimating the gradient of fÔ(~θ) 18

7.3.2 Barren plateaus and parameter initialization 19

7.3.3 Dealing with noise . 20

References 20

1 Introduction

Quantum computing is currently in the ‘NISQ’, or Noisy, Intermediate-Scale Quantum

era. State of the art hardware currently sits at qubit counts of 10-100, and error

rates of 10−2-10−3 (and that’s with hiding a lot under the rug). By comparison, the

lowest-cost known useful (i.e. better than what we can do classically and of interest

to the wider world) algorithms require qubit counts of 100-200, and error rates of

10−6-10−9, depending on how optimistic we are. Quantum error correction allows

us to sacrifice qubits for improved performance - the lowest-cost error corrected

algorithms currently require around 105 qubits. The future dream is to achieve

quantum error corrected devices of one million (insert Dr.Evil-like finger in mouth)

qubits or beyond, but this requires we improve the state of the art by about a factor

of a thousand or so, which realistic estimates place in the 10-20 year timeframe. In

the meantime, before we achieve the ‘promised land’ of large-scale fault-tolerant

devices, we are left trying to answer the question of whether there might be any

applications for noisy quantum computers before then - hence the name NISQ. We

will touch a little bit on the state of the art and quantum error correction in the last

few lectures of the class.

2

Variational methods have emerged in the last few years as a promising way to

utilize NISQ-era quantum computers. They can be made as low-cost as the user

desires, although this requires sacrificing algorithm performance. The hope is that by

balancing this trade-off, we can find some problem + variational algorithm solution

that can outperform classical methods without breaking the error budget. As is

the case throughout this course, both finding applications and designing variational

algorithms are active, open areas of research — the field is only 5 years old! This

means that the state-of-the-art in what we are about to cover in many cases could

most likely be improved on.

2 The variational paradigm

The variational principle states that, given a quantum state |Ψ〉 and an observable

Ô (e.g. a Hamiltonian Ô = Ĥ of a quantum system), the expectation value

〈
Ô
〉
|Ψ〉

= 〈Ψ|Ô|Ψ〉
〈Ψ|Ψ〉 > O0, (1)

where O0 is the lowest eigenvalue of Ô. Moreover, if
〈
Ô
〉
|Ψ〉

= O0, then |Ψ〉 is the

ground state |O0〉 of Ô (if Ô has multiple eigenstates with the same eigenvalue O0,

|Ψ〉 lives in the space spanned by these states). This suggests a simple method for

finding |O0〉 - prepare a lot of different ‘trial states’ |Ψ〉, measure their expectation

value, and choose the state where this is minimized. More generally (as Casper will

cover later in this lecture), if we have any cost function that is easy to compute on

|Ψ〉, we can equally well optimize using this cost function.

To ‘prepare a lot of different trial states and minimize a cost function’, it helps if

we can parameterize our state. We can make this parametrization classical - i.e, given

a list of parameters ~θ ∈ RNparams , we can prepare a different trial state |Ψ(~θ)〉 for

each ~θ. One might worry that the classical parameterization makes the calculation

of
〈
Ô
〉
easy classically, but we avoid this by using the angles to control a quantum

3

circuit. That is, we use the parameters to define a set of unitaries Û(~θ) that we

apply to a starting state |~0〉 to generate the trial state

|Ψ(~θ)〉 = Û(~θ)|~0〉. (2)

We call the combination (Û(~θ), |~0〉) the ‘variational ansatz’. Assuming that the

vectors ~θ are continuously (or approximately continuously) defined, a variational

ansatz sweeps out a (possibly open) manifold in the Hilbert space of states — that

is, it explores some smooth space that lies within the set of allowable Hilbert space.

With the exception of possible boundaries, the dimension of this manifold is precisely

Nparams. This shows the limit of the variational paradigm; to explore the entire

2N -dimensional Hilbert space and guarantee that we find the ground state we would

require O(2N) parameters (more precisely, 2×2N−2), and a similarly-scaling amount

of time. This is hardly surprising; as we learnt in the previous lectures, performing

such a task is a known QMA-hard problem, so if we thought we had an exponential

speedup we would either have won a million dollars or made a mistake. Instead, the

‘art’ of variational algorithm design is in choosing a manifold that contains points

‘sufficiently close’ to the true ground state, and the ‘art’ of application design is in

choosing a problem so that ‘sufficiently close’ is achievable.

3 The variational algorithm protocol

As defined above, the variational ansatz is not an algorithm to solve a problem; we

also need to describe how we will evaluate the cost function, and how we will choose

our parameters based on the cost function. When the full protocol is defined, it has

a few names, but possibly the most general is ’variational algorithm’, so let’s stick

with this. The full protocol consists of (Fig. 1):

1. an initial state preparation,

4

Figure 1: Scheme for a variational algorithm. Picture taken from Xanadu quantum
machine learning toolbox documentation.

2. a parametrized quantum circuit

3. a cost function and a method to evaluate/estimate it.

4. a classical optimization routine to optimize the parameters based on the cost

function input.

4 Continuously parametrized unitaries

In previous lectures we have discussed gates as discrete objects, e.g. H, CNOT, X, T.

Let us now consider how we can construct a generic quantum gate, and in particular,

how one could be parameterized.

An incredibly useful set of operators in quantum computing are the Pauli matrices

P = {I,X, Y, Z}, or more generally the Pauli basis, P = {I,X, Y, Z}⊗N . The Pauli

basis contains all possible tensor products of the Pauli matrices acting on N -qubits,

for a total of 4N elements. Elements of the Pauli basis are typically written without

explicit tensor products - e.g. ZZ ≡ Z ⊗ Z. Moreover, instead of writing a lot of

I’s, we often drop them, and instead index operators with which qubits they act on -

e.g. Z1X3 ≡ ZIX ≡ Z ⊗ I ⊗X.

The Pauli matrices are both unitary and hermitian. Given a Pauli operator

5

P̂ ∈ PN

P̂ †P̂ = I (3)

P̂ = P̂ † (4)

→ P̂ 2 = I. (5)

Note that this implies a Pauli operator can only have eigenvalues ±1. Also, Pauli

operators are traceless, and indeed trace-orthogonal — Trace[P̂i, P̂j] = 2Nδi,j. As

Pauli operators are Hermitian, they may be exponentiated to construct unitary

operations:

U(P̂) = e−iθP̂ . (6)

Now, typically exponentiated operators are quite scary to deal with, but the properties

of the Pauli operator make this far nicer: let us Taylor expand the above

UP̂ (θ) = e−iθP̂ =
∑
k

(−iθP̂)k
k! =

∑
k

(−iθP̂)2k

2k! + (−iθP̂)2k+1

(2k + 1)! =

∑
k

(−i)2k θ
2k

2k!P
2k
i + (−i)2k+1 θ2k+1

(2k + 1)!P
2k+1
i =

∑
k

(−1)k θ
2k

2k!I + (−i) θ2k+1

(2k + 1)!Pi,

(7)

and we find

UP̂ (θ) = cos(θ)I − i sin(θ)P̂ . (8)

Note here that critically, although P̂ when acting as a unitary operator by itself does

not generate any entanglement between qubits, UP̂ (θ) is an entangling gate! Indeed,

as we will cover in the next lecture, every possible operation on a quantum computer

may be approximated by a series of UP̂i(θ) for different operators Pi.

Physically, the expectation value of a Pauli operator acting on a single qubit

can be thought of as the splitting of the two eigenstates of that qubit for a period

6

of time, and typically on NISQ devices some gate similar to eiθZi may be achieved.

(We will cover this in more detail later in the course.) How can we extend this to a

multi-qubit gate? It turns out we only need two little tricks. The first is to note that

sandwiching a Pauli-Z rotation between CNOT gates extends it to additional qubits:

CNOTn−1,ne
iθZ1...Zn−1CNOTn−1,n = eiθZ1...Zn−1Zn , (9)

while the second is to note that sandwiching a Pauli-Z rotation between single-qubit

rotations changes the axis of the tensor factor on the targetted qubit, e.g.

e−i
π
4 YieiθZ1...Zi...Znei

π
4 Yi = exp

(
iθZ1 . . . e

−iπ4 YiZie
iπ4 Yi . . . Zn

)
= eiθZ1...Xi...Zn . (10)

Using this, a generic rotation of the form e−iθP̂ may be constructed (give circuit

here). Note that this circuit has depth equal to the number of terms in P̂ , which

may be quite a high cost for many applications.

5 Constructing suitable trial states

Variational ansatz design (and performance evaluation) is a very active and unfinished

field of research. This is perhaps because the problem to solve here is hard — in

most cases finding the (absolutely) optimal ansatz for a given problem is harder

than solving the problem itself. Moreover, given the exponentially small fraction

of the Hilbert space that we expect to explore (in order to maintain a quantum

advantage), we do not expect randomly generated ansatze to be ‘good enough’. (This

is made worse by the difficulties encountered in optimizing an arbitrary ansatz, that

Casper will describe later today.) In this lecture I will describe four common ways

of motivating variational ansatzes. During the rest of the course some of these and

others will be discussed in detail.

7

5.1 Perturbative ansatzes

A common theme in quantum computing (and quantum mechanics in general) is to

take a Hamiltonian Ĥ0 that we know the ground state of, and a Hamiltonian Ĥ1

that we do not know the ground states of, and try to get from the ground states

of Ĥ0 to those of Ĥ1. Many quantum mechanical systems of interest take the form

Ĥ1 = Ĥ0 + ∑
i λiV̂i. When λ is small, the ground state of Ĥ1 is connected to the

ground state of Ĥ0 by applications of the V̂i. This may be formally expanded around

using perturbation theory, but the number of terms needing calculation grows quite

quickly, and the approximation also typically breaks down at some point. However,

on a quantum device, this motivates perturbing the system by the individual V̂i,

leading to variational ansatze of the form

Û(~θ) =
∏
i

eiθiVi . (11)

When Vi are Pauli operators, this can be implemented using the circuits from

the previous section. These ansatze have the advantage of being reasonably well-

motivated (we will discuss this in a few weeks), but are often rather expensive;

optimizing over these circuits remains an active area of research.

5.2 The quantum alternating operator ansatz

In keeping with the above idea of deforming from known states of Ĥ0 to unknown

states of Ĥ1, one popular technique is to repeatedly alternate between applying the

two Hamiltonians for variational time t.

Û(~θ) =
∏
n

eiĤ0θ2neiĤ1θ2n+1 . (12)

This is commonly known as the ’quantum alternating operator ansatz’ or QAOA.

This has additional physical motivation based on adiabaticity - the idea that slowly

8

deforming from H0 → H1 should preserve the ground state. We will cover the

physical motivation later in the course, as well as going into applications of this

ansatz in discrete optimization in tutorials.

5.3 Swap networks and other banded ansatzes

5.4 Hardware-efficient ansatzes

A more realistic approach to generate random quantum circuits is the so-called

hardware-efficient ansatzes proposed in [1]. The idea is to generate random parametrized

quantum circuits but only using those gates that the hardware performs better. By

doing so one expects to reduce errors during the computation while (hopefully) being

able to generate meaninful quantum states.

In the original proposal by Kandala et al. the circuits are built by alternating

layers of parametrized single-qubit gates and two-qubit entangling gates. The choice

of the single-qubit rotations is made at random, assigning an angle to each one of

them. Ideally, one would expect to be able to perform entangling gates between all

pairs of qubits. Hoowever the reality is that only some qubits are connected between

them, thus limiting the ability to perform two-qubit entangling gate.

6 Extracting classical information and the cost

function

The next stop on our journey through variational quantum algorithms is the discussion

of cost functions. Although constructing quantum states is an interesting undertaking

in itself, it does not provide us with any useful classical information. The final steps

of a variational quantum algorithms are concerned with extracting this useful classical

information from the quantum state. To this end, we are going to have to measure

our quantum state.

9

In quantum mechanics, one has the ability to measure so-called “observables”. In

mathematical terms, an observable Ô is an Hermitian operator (i.e., Ô† = Ô). The

set of all N -qubit Hermitian operators is denoted by Herm(C2N). This set is in fact

a real vector space (i.e., it is closed under linear combinations with real coefficients)

and we can equip it with the Hilbert-Schmidt inner product given by

〈A,B〉 = tr(A†B).

An interesting subset of Herm(C2N) is the set of all so-called Pauli strings given

by {I,X, Y, Z}⊗N . That is, a Pauli string is an Hermitian operator of the form

P1 ⊗ · · · ⊗ PN , where Pi ∈ {I,X, Y, Z}. What makes these Pauli strings such an

interesting set, among other things, is the following lemma.

Lemma 1. The Pauli strings are a basis of the real vector space Herm(C2N).

Proof. The space of all 2N × 2N complex matrices has dimension 2N · 2N = 4N over

the complex numbers. Because the complex numbers have dimension 2 over the real

numbers (i.e., C ' R2), we find that the space of all 2N × 2N complex matrices has

dimension 2 · 4N over the real numbers. Because Hermitian matrices have the extra

property that A† = A, we find that the space of 2N × 2N Hermitian matrices has

dimension 2 · 4N/2 = 4N over the real numbers.

Next, we notice that #{I,X, Y, Z}⊗N = 4N and that all Pauli strings are linearly

independent as they are orthogonal under the Hilbert-Schmidt inner product. There-

fore, we may indeed conclude that the Pauli strings {I,X, Y, Z}⊗N form a basis of

the real vector space Herm(C2N).

An important consequence of this lemma is that any Hermitian operator can

be written as the linear combination of Pauli strings with real coefficients, i.e., any

10

Ô ∈ Herm(C2N) can be written as

Ô =
4N∑
i=1

hiPi, (13)

with Pi ∈ {I,X, Y, Z}⊗N and hi ∈ R.

6.1 Definition of our cost function

Now that we know more about the structure of Herm(C2N), we have all the necessary

ingredients to delve further into the study of cost functions. The standard definition

of a VQE cost function, denoted fÔ(~θ), is the expectation value of an observable

Ô ∈ Herm(C2N), that is,

fÔ(~θ) = 〈ψ(~θ)|Ô|ψ(~θ)〉. (14)

Let us look at a couple of examples of cost functions.

• Example 1: Approximating the ground state energy of an Hamiltonian.

In physics, one is often interested in computing the ground state energy E0 of a

Hamiltonian H. In mathematical terms, this is given by the smallest eigenvalue of

H, i.e.,

E0 = min
|ψ〉

〈ψ|H|ψ〉
〈ψ|ψ〉

.

In this case it is clear that the corresponding cost function is given by

fH(~θ) = 〈ψ(~θ)|H|ψ(~θ)〉.

• Example 2: Approximating the MaxCut of a graph.

11

Let G = (V,E) be a graph. The MaxCut of this graph, denoted MaxCut(G), is the

maximal size of a cut. A cut is a partitioning of the vertices into two disjoint subsets

V1, V2 and the size of this cut is given by the number of edges between V1 and V2.

That is,

MaxCut(G) = max{#(V1 × V2) ∩ E | disjoint V1, V2 ⊂ V with V1 ∪ V2 = V }.

Figure 2: An example of a MaxCut (source:
https://en.wikipedia.org/wiki/Maximum_cut).

An interesting observation is the MaxCut of a graph G can be encoded into a

cost function as defined in equation 14. Namely, let V = {1, . . . , N} and consider

the N -qubit observable

Ôcut = 1
2

∑
(i,j)∈E

(I⊗N − ZiZj), (15)

where Zi denotes the Pauli-string with a Z on the i-th qubit and I everywhere else.

Then, one can show that

MaxCut(G) = λmin(Ôcut),

and we find that minθ fÔcut(~θ) could potentially be a good approximation of MaxCut(G)

for a well-chosen ansatz.

• Example 3: Kullback-Leibler divergence for generative modelling.

12

https://en.wikipedia.org/wiki/Maximum_cut

Another application of variational quantum algorithms is generative modelling, a

branch of machine learning where the goal is to mimic a given probability distribution

p. That is, given a bunch of samples from a probability distribution p, generate new

samples from a distribution close to p.

A quantum state |Ψ(~θ)〉 together with an observable Ô induces a probability

distribution, let’s denote this distribution by qθ. The goal would be to prepare

a quantum state |Ψ(~θ)〉 such that when measuring the observable Ô, we get a

distribution that closely mimics p. A well-known cost function for this is the so-

called Kullback-Leibler divergence, which serves as a measure of how one probability

distribution is different from a second, and is given by

fDKL(~θ) = DKL(p, qθ) =
∑
x

p(x) log
(
p(x)
qθ(x)

)
.

A problem with the Kullback-Leibler divergence is that it is hard to evaluate

since we do not know the probabilities p(x) or qθ(x), as we can only generate samples

from these distributions. More on variational quantum algorithms for generative

modelling will be discussed during the quantum machine learning part of the course.

6.2 Estimating the cost function

Let us now adress the question of how to evaluate the VQE cost functions defined

in Equation 14. As we have shown in Lemma 1, any N -qubit observable Ô can be

written as a linear combination of at most 4N Pauli strings with real coefficients,

as in Equation 13. It turns out however, that most interesting observables Ô can

be written as a linear combination of polynomially many Pauli strings with real

coefficients, i.e.,

Ô =
poly(N)∑
i=1

hiPi. (16)

13

For example, most physically motivated Hamiltonians are k-local. That is, each

of the Pauli strings that appear in the decomposition of such Hamiltonians, acts

nontrivially on at most k of the qubits. As there are
(
n
k

)
∼ nk possible subsets of k

qubits, the number of Pauli strings that appear in the decomposition of a k-local

Hamiltonian is bounded by a polynomial.

When implementing Equation 16 into Equation 14 we find that

fÔ(~θ) = 〈ψ(~θ)|Ô|ψ(~θ)〉 =
poly(N)∑

i

〈ψ(~θ)|hiPi|ψ(~θ)〉 =
poly(N)∑

i

hi〈ψ(~θ)|Pi|ψ(~θ)〉. (17)

From this we deduce that evaluating our cost function fÔ(~θ) comes down to evaluating

the expectation value of the relevant Pauli-strings 〈ψ(~θ)|Pi|ψ(~θ)〉, multiplying them

with the real coefficients hi and finally summing them up. Note that we assume here

that the decomposition in Equation 16 is given, that is, the hi are known beforehand.

6.2.1 Chebyshev’s inequality

Suppose we want to estimate E = 〈ψ(~θ)|P|ψ(~θ)〉, for some Pauli string P, up to

precision ε > 0. To do so, let P = ∑2N
k=1 λk|ϕk〉〈ϕk| denote the spectral decomposition

of P. In the first tutorial we showed that E is the expected value of the random

variable X with possible outcomes {λi}2N
i=1 and

P(X = λk) = |〈ϕk|ψ(~θ)〉|2.

That is, X is the random variable representing the outcome of measuring Ô on the

state |ψ(~θ)〉.

A well-known result in probability theory is the so-called Chebyshev’s inequality,

which states that if we take M copies of our random variable X, which we denote

14

X1, . . . , XM , then

P
(∣∣∣∣∣
∑M
i=1Xi

M
− E

∣∣∣∣∣ > ε

)
6

σ2

Mε2
, (18)

where σ denotes the variance of X. From Equation 18, we deduce that for

M = σ2

ε20.01 ,

we find that

P
(∣∣∣∣∣
∑M
i=1Xi

M
− E

∣∣∣∣∣ > ε

)
6 0.01,

As the variance of X can usually assumed to be bounded above by a constant,

Equation 18 tells us that we need to perform a number of measurements that scales

as

M ∼ 1
ε2

to obtain, with high probability, an estimate of E to within additive precision ε.

A very important caveat is that most of the current quantum circuits that we can

run suffer from noise. This has severe implications on how well the above strategy

allows us to estimate the energies E, as our measurement outcomes will be noisy

(i.e., our samples from X are noisy). We will come back to the consequences of this

when discussing the optimization of our cost function.

6.2.2 Measurement optimization

A recent and active area of research within variational quantum algorithms is that

of optimizing measurement strategies. Our previous strategy is a very naive way of

estimating the cost function, we sample every Pauli string seperately and use the

15

outcome statistics to estimate the corresponding expectation values. However, if

we know that two or more of our Pauli strings commute, then we know that we

can measure them simultaneously. The problem is then to divide our Pauli strings

into the smallest number of commuting subsets. It turns out that this problem is

equivalent to finding the smallest clique cover of a graph, which is known to be

NP-complete. Researchers have tried using approximation algorithms for the clique

cover problem as a grouping strategy, with various degrees of success.

7 Optimizing the cost function

The final stop on our journey through variational quantum algorithms is at the

classical optimization routine. When choosing our ansatz, the hope is that it allows

us to explore a region of the Hilbert space in which the minimum min~θ fÔ(~θ) is close

to the actual ground state energy of Ô. Thus, after having choosing our ansatz,

the challenge that remains is finding a ~θ that minimizes our cost function fÔ. To

this end, we will employ a classical optimization routine. It is an open question

which classical optimization routine works best for variational quantum algorithms.

Broadly speaking, classical optimization algorithms can be split into two groups:

gradient-based methods and gradient-free methods.

7.1 Gradient-based methods

As the name suggests, gradient-based methods employ the gradient of the cost

function

∇~θfÔ(~θ) =


∂fÔ(~θ)
∂~θ1
...

∂fÔ(~θ)
∂~θNparams

 .

16

Because the gradient points along the direction of the fastest increase, by following

the gradient in the opposite direction one is able to find (local) minima.

Pros:

• Works incredibly well when your cost function landscape is nicely smooth.

• Convergence properties are very well established.

Cons:

• Unreliable under noisy gradient evaluations.

• Suffers greatly in the presence of vanishing and exploding gradients (i.e., when

your cost function landscape is barren or rigid).

• Can take very long if gradient evaluation is expensive.

When to use: If you have the prior knowledge that your landscape is smooth

and you can efficiently evaluate the gradient.

7.2 Gradient-free methods

As the name suggests, gradient-free methods usually do not employ the gradient of

the cost function. They generally depend on evaluating the function on many points

in your landscape and inferring a minimum from these evaluations.

Pros:

• Works decently well even when your landscape is barren or rigid.

• Does not require the ability to (efficiently) evaluate the gradient.

17

Cons:

• Does not converge as quick as gradient-based methods when the landscape is

nice and smooth.

• Requires a lot of function evaluations in general.

When to use: If you have no prior knowledge that your landscape is smooth

(or you know that your landscape is very barren or rigid) or when evaluating the

gradient is very expensive.

7.3 Minimizing the VQE cost function fÔ(~θ)

Let us now look at the special case where the cost function is the VQE cost function

fÔ(~θ), as defined in Equation 14. We will discuss two ways in which to estimate the

gradient of fÔ(~θ) together with some results relating to the landscape of this cost

function.

7.3.1 Estimating the gradient of fÔ(~θ)

Parameter-shift rule It turns out that for most ansatzes you can evaluate ∇~θfÔ

at ~θ by evaluating the function fÔ at two different values ~θ+ and ~θ−. Namely, the

parameter-shift rule states that

∂fP(~θ)
∂~θj

=
fP(~θ + π

2 ej) + fP(~θ − π
2 ej)

2 (19)

For a detailed derivation see1. The downside of the parameter-shift rule is that it

requires you to estimate the cost function twice for each parameter ~θj , resulting in a

total of 2Nparams evaluations of the cost function per gradient evaluation.
1https://arxiv.org/abs/1811.11184

18

Stochastic finite difference approximation One way to get around having to

do a lot of function evaluations per gradient evaluation is to use a stochastic finite

difference approximation of the gradient. For example, one can sample a random

pertubation vector ∆ ∈ {±1}Nparams , such that P(∆i = 1) = P(∆i = −1) = 0.5, and

one uses the approximation

∂fP(~θ)
∂~θj

≈ fP(~θ + c∆) + fP(~θ − c∆)
2c∆j

. (20)

for some small c > 0. The advantage of using Equation 20 is that it only requires

you to evaluate the cost function twice in total. However, the disadvantage is that

Equation 20 only gives an approximation of the gradient, whereas Equation 19

gives you a way to compute the analytic gradient exactly. It has been shown that

techniques based on Equation 20 perform well in the noisy experimental setting2.

7.3.2 Barren plateaus and parameter initialization

When looking at the landscape of cost functions that arise in variational quantum

algorithms, it has been shown that they contain a number of barren plateaus. To be

precise, it has been shown that for a wide class of reasonable ansatzes and observables,

the probability that the gradient along any reasonable direction is non-zero to some

fixed precision is exponentially small as a function of the number of qubits3.

This raises the question of parameter initialization. That is, can we initialize our

parameters in such a way as to avoid these barren plateaus? Unfortunately, due to

the lack of known structure of the landscape for many interesting problems, this is a

hard problem.
2https://arxiv.org/abs/1804.11326
3https://www.nature.com/articles/s41467-018-07090-4

19

7.3.3 Dealing with noise

As mentioned before, the noise in our current quantum hardware causes our cost

function evaluations to be noisy and therefore to contain errors. As a final remark it

is important to mention that variational quantum algorithms have been shown to

be somewhat resilient to this noise. This is due to the ability to counteract errors

in the evaluation by varying the parameter, that is, if an error slightly moves our

minimum, then it could be possible to still find this minimum by changing the

parameters correspondingly. In the NISQ (i.e., noisy intermediate scale quantum) era

the ability to deal with noise is an important challenge in order to find applications

where quantum computers can provide advantage over classical computers. It is

therefore an interesting research question which classical optimizers deal best with

the quantum noise in our function evaluations.

References

[1] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow, and

J. M. Gambetta, “Hardware-efficient variational quantum eigensolver for small

molecules and quantum magnets,” Nature, vol. 549, no. 7671, p. 242, 2017.

20

	Introduction
	The variational paradigm
	The variational algorithm protocol
	Continuously parametrized unitaries
	Constructing suitable trial states
	Perturbative ansatzes
	The quantum alternating operator ansatz
	Swap networks and other banded ansatzes
	Hardware-efficient ansatzes

	Extracting classical information and the cost function
	Definition of our cost function
	Estimating the cost function
	Chebyshev's inequality
	Measurement optimization

	Optimizing the cost function
	Gradient-based methods
	Gradient-free methods
	Minimizing the VQE cost function f()
	Estimating the gradient of f()
	Barren plateaus and parameter initialization
	Dealing with noise

	References

