Outline

This assignment consists of 12 questions, each carrying 1 or 2 points (16 in total). It constitutes 50% of your total take-home assignment mark (25% of the overall mark for this course).

Deadline: the beginning of the lecture 28th of February 2020.

Math background

1. (1 point) Consider the following two vectors:

$$
|\psi\rangle=\left[\begin{array}{c}
1 \tag{1}\\
-1 \\
i \\
\exp (i 3 \pi / 2)
\end{array}\right],|\phi\rangle=\left[\begin{array}{c}
\sqrt{2} \\
\sqrt{2} \\
\exp (i \pi / 2) \\
i
\end{array}\right]
$$

where $i=\sqrt{-1}$.
Compute their (a) sum, (b) inner product $\langle\psi \mid \phi\rangle$, and (c) the Euclidean norm of each; (d) are they orthogonal, orthonormal or neither? Be careful, the inner product over complex spaces is sesquilinear.
2. (1 point) Prove that matrix-vector multiplication is a linear operation in two dimensions, i.e. prove the following holds by explicitly computing the products:

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \tag{2}\\
a_{21} & a_{22}
\end{array}\right]\left(\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]+\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]\right)=\left(\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]\right)+\left(\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]\right)
$$

Naturally, the same property holds for all dimensions.
3. (2 points) Consider the following two matrices:

$$
V=\left[\begin{array}{cc}
1 & -1 \tag{3}\\
-1 & 1
\end{array}\right] ; W=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

Answer the following: (a) do V and W commute; (b) are they unitary, (c) are they hermitian; (d) what is their trace; (e) what is their rank; (f) provide the spectral decomposition of V and W; (g) what are their eigenvectors and eigenvalues?
4. (1 point) Provide the Taylor series expansion for $\exp (x), \sin (x)$ and $\cos (x)$. Using these (and absolute convergence properties) show that $\exp (i x)=\cos (x)+i \sin (x)$.

Postulates of quantum mechanics

5. (1 point) (a) Specify the state space (Hilbert space) of a system of $n=3$ qubits; (b) provide the general state vector of a (pure) quantum state in that space, and (c) explicitly specify the normalization constraint.
6. (2 points) Let $H=V+\mathbf{1}$, where $\mathbf{1}$ is the identity matrix, and V the 2×2 matrix from Question 3. (a) Specify the evolution of the system under H for time t. (b) Check that the time-integrated evolution $U(t)$ is unitary for all t. You can use the spectral decomposition of H to solve this. N.B.: in the following questions you can work in "natural units", i.e., $\hbar=1$.
7. (2 points) Let H as given in the above question be an observable.
(a) Compute the spectral decomposition of H , and identify the eigenvectors $\left|\lambda_{1}\right\rangle$ and $\left|\lambda_{2}\right\rangle$, and the corresponding eigenvalues λ_{1}, λ_{2}.

Consider the state $|\psi\rangle=U(\pi)|0\rangle$ for U as defined in Question 6. Note, now the state $|\psi\rangle$ can be explicitly computed, as all matrices are known.
(b) Suppose we measure the observable H on the quantum state $|\psi\rangle$. Compute the outcome probabilities $p_{\lambda_{1}}$ and $p_{\lambda_{2}}$, associated to the eigenvalues of H explictily.
(c) Compute the expectation value $\langle\psi| H|\psi\rangle$ explicitly. Express the expectation value in terms of the probabilities $p_{\lambda_{1}}, p_{\lambda_{2}}$ and the eigenvalues.
8. (1 point) Let

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right], B=\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right],|\psi\rangle=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right],|\phi\rangle=\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right] .
$$

Prove that $(A \otimes B)(|\psi\rangle \otimes|\phi\rangle)=(A|\psi\rangle) \otimes(B|\phi\rangle)$, by explicitly computing the tensor and matrix products.
9. (1 point) Is the tensor product commutative? Prove or give a counterexample.
10. (1 point) If A has eigenvalues λ_{j} and corresponding eigenvectors $\left|\lambda_{j}\right\rangle$, and B has eigenvalues ω_{j} and corresponding eigenvectors $\left|\omega_{j}\right\rangle$, what are the eigenvalues and eigenvectors of $A \otimes B$? Use the results of the previous question.
11. (1 point) Write down the commutation relations $\left[P_{1}, P_{2}\right.$] for the three Pauli matrices $P_{i} \in\{X, Y, Z\}$. (No need to compute the symmetric cases e.g. if you compute $[X, Y]$ no need to provide $[Y, X]$)
12. (2 points) Prove that $e^{i \theta P}=\cos (\theta) I+i \sin (\theta) P$ for a Pauli operator P. Use the results of Question 4.

