
Quantum Algorithms homework
Take-home assignment 2

November 21st, 2019

• Each student should provide and come up with their solutions independently.

• You are allowed to use any literature/source you want, but don’t forget to add
references when required.

• There are 5 problems in total.

Problem 1. (Mathematical background).
Consider the following Hermitian matrix

H =

(
−1

2
1

1 −1
2

)
.

Note that |+〉 and |−〉 are the eigenvectors of H.

(a) Write down the spectral decomposition of H.

(b) What are the eigenvalues of the unitary U = e2πiH =
∑∞

k=0
(2πiH)k

k!
?

Remark.

• Use the knowledge that the eigenvectors of H are also the eigenvectors of U .

• You may use that for any vector |v〉 ∈ C2 the following holds:(
∞∑
k=0

(2πiH)k

k!

)
· |v〉 =

∞∑
k=0

(2πiH)k |v〉
k!

.

• You do not have to derive eigenvalues using the characteristic polynomial,
just give them and show why they are correct.

(c) Compute the matrix of U using its spectral decomposition.

(d) Show that U is unitary.

Problem 2. (Circuit logic 1 [Controlled application of labeled gates]).
Consider a collection of n-qubit unitaries {V1, . . . , Vk} and let m = log2(k) (you may
assume k is a power of two). Suppose you are given access to the controlled-Vi gates,
i.e., for j ∈ {0, 1} and |ψ〉 ∈ (C2)

⊗n
mapping

(controlled-Vi) |j〉 |ψ〉 =

{
|j〉Vi |ψ〉 if j = 1,

|j〉 |ψ〉 otherwise.
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(a) Show that having access to (any of the) controlled-Vi gates suffices to construct
m-qubit controlled-Vi gates, i.e., for ~j ∈ {0, 1}m and |ψ〉 ∈ (C2)

⊗n
mapping

(m-controlled-Vi) |~j〉 |ψ〉 =

{
|~j〉Vi |ψ〉 if ~j = 1m = 11 . . . 1,

|~j〉 |ψ〉 otherwise.

Note, you may need to use ancillas for this, and don’t forget to “collect your
garbage”. Of course you are allowed to use other Vi-independent gates (controlled
and otherwise).

(b) Let ~j∗ ∈ {0, 1}m be some fixed (known) m-bit string. Give a circuit that imple-
ments the following unitary transformation, for a given i:

|~j〉 |ψ〉 7→

{
|~j〉Vi |ψ〉 if ~j = ~j∗,

|~j〉 |ψ〉 otherwise.
∀~j ∈ {0, 1}m and ∀ |ψ〉 ∈

(
C2
)⊗n

(c) Give a circuit that implements the following unitary transformation:

|~j〉 |ψ〉 7→ |~j〉Vj |ψ〉 , ∀~j ∈ {0, 1}m and ∀ |ψ〉 ∈
(
C2
)⊗n

.

Remark. You may use the circuits of questions (a) as a (primitive) gate in the
new circuits. Note the final circuit in question (a) activates the gate Vi if and
only only if the controlling bitstring is “all ones”. The final circuit in question
(b) activates the gate Vi if and only only if the controlling bitstring is ~j∗. The
circuit in question (c) activates Vj if the control wires are in the state |~j〉, where
~j is the binary representation of j. Note the last circuit can activate all the gates
Vi.

Problem 3. (Circuit logic 2 [3SAT formula evaluation]).
Consider an n-variable 3SAT formula C(x1, . . . , xn) =

∧k
i=1Ci(x1, . . . , xn), where each

clause Ci is a disjunction of 3 variables. For example, Ci(x) = (xi1 ∨¬xi2 ∨ xi3), where
the symbol ¬ denotes the negation, i.e., ¬1 = 0 and ¬0 = 1.

(a) Give a circuit that implements the following unitary transformation:

|x1, x2, x3〉 |b〉 7→ |x1, x2, x3〉 |b⊕ (x1 ∨ x2 ∨ x3)〉 , ∀x1, x2, x3, b ∈ {0, 1}.

Remark.

• Throughout this problem you are allowed to use arbitrary multi-controlled
NOT gates.

• It might be useful to recall De Morgan’s laws for boolean logic.
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(b) Using the circuit from question (a) it is easy to construct a circuit that implements
the following unitary transformation:

UCi
: |x1, . . . , xn〉 |b〉 7→ |x1, . . . , xn〉 |b⊕ Ci(x1, . . . , xn)〉 , ∀xi, b ∈ {0, 1}. (1)

for say Ci(x) = (x1 ∨ ¬x2 ∨ x4). Provide this construction.

Remark. Note there are more wires in the input than variables in the clause.
Take care how to incorporate negated literals, and do not forget to “clean up”
after your gates (the first register containing all the variables is not perturbed in
the end).

(c) Finally we evaluate the entire formula, where all the clauses must be satisfied:
give a circuit that implements the following unitary transformation:

|x1, . . . , xn〉 |0k〉 |b〉 7→ |x1, . . . , xn〉 |0k〉 |b⊕ C(x1, . . . , xn)〉 , ∀xi, b ∈ {0, 1}.

Remark.

• You are allowed to use the UCi
gates as defined in Equation 1 as “primitive

gates” for question (c).

• Bonus: implement the required unitary using only O (log(k)) ancillary qubits
instead of k. For this you are allowed to use a (controlled) version of the
l-qubit ”incrementer” unitary: Uinc|k〉 = |k + 1 mod 2l〉.

Problem 4. (Circuit logic 3 [Controlled rotation]).
Let θ̃ ∈ {0, 1}d represent a d-bit number in [0, 1), that is, θ̃ =

∑d
i=1 θ̃i2

−i. Consider the
controlled-rotation unitary Uθ that acts as

Uθ : |θ̃〉 |0〉 7→ |θ̃〉
(

cos(2πθ̃) |0〉+ sin(2πθ̃) |1〉
)
. (2)

In this problem you will construct a circuit that implements the unitary Uθ using
controlled-Ui gates, where Ui is defined as

Ui =

(
cos(2π · 2−i) − sin(2π · 2−i)
sin(2π · 2−i) cos(2π · 2−i)

)
, for i = 1, . . . , d.
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(a) Consider the following circuit:

|θ̃1〉 |θ̃1〉

|0〉 U1 |ϕa〉

Compute the output state of the circuit (the state |ϕa〉 suffices).

(b) Consider the following circuit:

|θ̃2〉 |θ̃2〉
|θ̃1〉 |θ̃1〉

|0〉 U1 U2 |ϕb〉

Compute the output state of the circuit, (the state |ϕb〉 suffices).

(c) Give a circuit that implements the unitary Uθ, as defined in Equation 2.

Remark. You may assume you are given access to controlled-Ui gates.

Problem 5. (Quantum algorithms [Preparing ground states of Hamiltonians]).
Let H ∈ CN×N be a Hermitian matrix with eigenvalues 0 = λ0 < λ1 < · · · < λN−1 < 1
and corresponding (normalized) eigenvectors |ψ0〉 , . . . , |ψN−1〉.

In this problem we will prepare the so-called ground state of H, i.e., the state |ψ0〉,
using Hamiltonian simulation and quantum phase estimation. Preparing ground states
of Hamiltonians is a central problem in quantum simulation and quantum chemistry.

Remark. Throughout this problem you may use that the eigenvectors of H, i.e., the
vectors |ψ1〉 , . . . , |ψN−1〉, are also the eigenvectors of the unitary U = e2πiH .

(a) What is the relationship between the eigenphases e2πiφj (with 0 ≤ φj < 1) of the
unitary U = e2πiH and the eigenvalues λj of the Hermitian matrix H?

Remark. You may use results from the tutorials here (you don’t have to prove
anything).

Suppose we can efficiently implement the unitary U = e2πiH using Hamiltonian
simulation. Using this, consider the following circuit:

|0t〉
QPE(U)

=⇒ λj

|ϕ〉 |ψj〉
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Suppose the measurement of the eigenvalue register after the quantum phase esti-
mation yields λj, that is, the best t-bit approximation (actually, the best t-bit approx-
imation that is smaller than the actual angle) of the eigenvalue λj (as depicted in the
above circuit), then the postulates of quantum mechanics tell us that the eigenvector
register must be in the corresponding eigenstate |ψj〉 after this measurement. Note
QPE does not actually achieve exactly this (for t bit precision, something like t+2 are
required, see remark), but it illustrates our point.

(b) Argue why at least t = log2 (1/λ1) bits are required to guarantee that the eigen-
vector register is in the state |ψ0〉 when the measurement outcome is λj = 0t.

(c) Suppose |ϕ〉 =
∑N−1

j=0 αj |ψj〉. What is the probability that the above circuit
produces the state |ψ0〉 in the eigenvector register when t ≥ log2 (1/λ1)?

Remark. In reality, QPE on its own is not guaranteed to output the best t−bit ap-
proximation of the eigenvalue as in general the output is probabilistic. One can achieve
arbitrarily high probability > 1− ε of outputting the best approximation that is smaller
than the angle by using t + dlog(2 + 1/(2ε))e ancillary qubits in QPE. See N&C, p.g.
223 for more on this. For simplicity, we assume this output is actually guaranteed.
In the problems above, it will be convenient to consider the scenarios where all the
eigenvalues can be exactly represented using binary fractions.

5


