Quantum Algorithms tutorial

Hamiltonian simulation and the HHL algorithm

Casper Gyurik

Leiden Institute of Advanced Computer Science November 7th, 2019

HHL

What does it do?

Hamiltonian simulation (HS)

Given access to a Hermitian matrix $H: (\mathbb{C}^2)^{\otimes n} \to (\mathbb{C}^2)^{\otimes n}$ and some t > 0. Construct a quantum circuit that implements the unitary e^{iHt} .

What does it do?

Hamiltonian simulation (HS)

Given access to a Hermitian matrix $H: (\mathbb{C}^2)^{\otimes n} \to (\mathbb{C}^2)^{\otimes n}$ and some t > 0. Construct a quantum circuit that implements the unitary e^{iHt} .

► Have to consider special access, since H is an exponentially large matrix.
• k-local H = ∑_j H_j, where each H_j acts nontrivially on at most k qubits.

• Sparse oracle access, i.e., can query nonzero entries of each collumn.

<ロト < 回 > < 注 > < 注 > … 注 … … 注 …

What does it do?

Hamiltonian simulation (HS)

Given access to a Hermitian matrix $H: (\mathbb{C}^2)^{\otimes n} \to (\mathbb{C}^2)^{\otimes n}$ and some t > 0. Construct a quantum circuit that implements the unitary e^{iHt} .

- ► Have to consider special access, since H is an exponentially large matrix. • k-local $H = \sum_{j} H_{j}$, where each H_{j} acts nontrivially on at most k qubits.
 - Sparse oracle access, i.e., can query nonzero entries of each collumn.

For any Hermitian H and t > 0, the operator

$$e^{iHt} = \sum_{j=0}^{\infty} \frac{(iHt)^j}{j!}$$

is unitary \implies it can be implemented as a quantum circuit.

<ロト < 回 > < 注 > < 注 > … 注 …

What does it do?

Hamiltonian simulation (HS)

Given access to a Hermitian matrix $H: (\mathbb{C}^2)^{\otimes n} \to (\mathbb{C}^2)^{\otimes n}$ and some t > 0. Construct a quantum circuit that implements the unitary e^{iHt} .

- ► Have to consider special access, since H is an exponentially large matrix. • k-local $H = \sum_{j} H_{j}$, where each H_{j} acts nontrivially on at most k qubits.
 - Sparse oracle access, i.e., can query nonzero entries of each collumn.

▶ For any Hermitian *H* and *t* > 0, the operator

$$e^{iHt} = \sum_{j=0}^{\infty} \frac{(iHt)^j}{j!}$$

is unitary \implies it can be implemented as a quantum circuit.

In physics Hermitian matrices represent Hamiltonians which, via the Schrödinger equation, tell you how a quantum system evolves over time.

What does it do?

Hamiltonian simulation (HS)

Given access to a Hermitian matrix $H: (\mathbb{C}^2)^{\otimes n} \to (\mathbb{C}^2)^{\otimes n}$ and some t > 0. Construct a quantum circuit that implements the unitary e^{iHt} .

- ► Have to consider special access, since H is an exponentially large matrix. • k-local $H = \sum_{j} H_{j}$, where each H_{j} acts nontrivially on at most k qubits.
 - Sparse oracle access, i.e., can query nonzero entries of each collumn.
- For any Hermitian H and t > 0, the operator

$$e^{iHt} = \sum_{j=0}^{\infty} \frac{(iHt)^j}{j!}$$

is unitary \implies it can be implemented as a quantum circuit.

In physics Hermitian matrices represent Hamiltonians which, via the Schrödinger equation, tell you how a quantum system evolves over time.

Exercise: how to use HS to sample from eigenvalues of a Hermitian matrix.

What does it do?

The HHL algorithm solves the so-called "quantum linear system" problem.

The quantum linear system (QLS) problem

Given some quantum state $|b\rangle \propto \sum_{i=1}^{N} b_i |i\rangle$ and sparse access to $A \in \mathbb{C}^{N \times N}$. Prepare the quantum state $|x\rangle \propto A^{-1} \sum_{i=1}^{N} b_i |i\rangle$.

What does it do?

The HHL algorithm solves the so-called "quantum linear system" problem.

The quantum linear system (QLS) problem

Given some quantum state $|b\rangle \propto \sum_{i=1}^{N} b_i |i\rangle$ and sparse access to $A \in \mathbb{C}^{N \times N}$. Prepare the quantum state $|x\rangle \propto A^{-1} \sum_{i=1}^{N} b_i |i\rangle$.

- \blacktriangleright Here the symbol \propto stands for "proportional to"
 - Note: $\sum_{i=1}^{N} b_i |i\rangle$ is not necessarily a unit vector.

What does it do?

The HHL algorithm solves the so-called "quantum linear system" problem.

The quantum linear system (QLS) problem

Given some quantum state $|b\rangle \propto \sum_{i=1}^{N} b_i |i\rangle$ and sparse access to $A \in \mathbb{C}^{N \times N}$. Prepare the quantum state $|x\rangle \propto A^{-1} \sum_{i=1}^{N} b_i |i\rangle$.

- \blacktriangleright Here the symbol \propto stands for "proportional to"
 - Note: $\sum_{i=1}^{N} b_i |i\rangle$ is not necessarily a unit vector.
- We say $|b\rangle$ is an "amplitude encoding" of $\vec{b} = (b_i)_{i=1}^N \in \mathbb{C}^N$.
- Likewise, we prepare $|x\rangle$ which is an "amplitude encoding" of $\vec{x} = A^{-1}\vec{b}$.

What does it do?

The HHL algorithm solves the so-called "quantum linear system" problem.

The quantum linear system (QLS) problem

Given some quantum state $|b\rangle \propto \sum_{i=1}^{N} b_i |i\rangle$ and sparse access to $A \in \mathbb{C}^{N \times N}$. Prepare the quantum state $|x\rangle \propto A^{-1} \sum_{i=1}^{N} b_i |i\rangle$.

- Here the symbol \propto stands for "proportional to"
 - Note: $\sum_{i=1}^{N} b_i |i\rangle$ is not necessarily a unit vector.
- We say $|b\rangle$ is an "amplitude encoding" of $\vec{b} = (b_i)_{i=1}^N \in \mathbb{C}^N$.
- Likewise, we prepare $|x\rangle$ which is an "amplitude encoding" of $\vec{x} = A^{-1}\vec{b}$.
- ▶ Note that this is different from the "classical linear system" problem.
 - Have to prepare the input $|b\rangle$, how to do it from classical description of \vec{b} ?
 - $\,\circ\,$ Don't get a classical description of \vec{x} , how to get it from $|x\rangle?$

How does it work? A brief refresher on "spectral decompositions".

To understand how HHL works, one should consider "spectral decompositions".

How does it work? A brief refresher on "spectral decompositions".

To understand how HHL works, one should consider "spectral decompositions".

Theorem (Spectral theorem for Hermitian matrices)

Any Hermitian matrix $A \in \mathbb{C}^{N \times N}$ has N orthogonal eigenvectors $\{|\psi_j\rangle\}_{j=1}^N$ that form a basis of \mathbb{C}^N .

How does it work? A brief refresher on "spectral decompositions".

To understand how HHL works, one should consider "spectral decompositions".

Theorem (Spectral theorem for Hermitian matrices)

Any Hermitian matrix $A \in \mathbb{C}^{N \times N}$ has N orthogonal eigenvectors $\{|\psi_j\rangle\}_{j=1}^N$ that form a basis of \mathbb{C}^N .

• Moreover, one can write $H = \sum_{j=1}^{N} \lambda_j |\psi_j\rangle \langle \psi_j|$, where λ_j denotes the eigenvalue of $|\psi_j\rangle$.

▶ This is often called the "spectral decomposition" of *H*.

How does it work? A brief refresher on "spectral decompositions".

To understand how HHL works, one should consider "spectral decompositions".

Theorem (Spectral theorem for Hermitian matrices)

Any Hermitian matrix $A \in \mathbb{C}^{N \times N}$ has N orthogonal eigenvectors $\{|\psi_j\rangle\}_{j=1}^N$ that form a basis of \mathbb{C}^N .

• Moreover, one can write $H = \sum_{j=1}^{N} \lambda_j |\psi_j\rangle \langle \psi_j |$, where λ_j denotes the eigenvalue of $|\psi_j\rangle$.

▶ This is often called the "spectral decomposition" of *H*.

• Since $\{|\psi_j\rangle\}_{j=1}^N$ is a basis of \mathbb{C}^N , any vector $|v\rangle \in \mathbb{C}^N$ can be written as

$$\left|v\right\rangle = \sum_{j=1}^{N} \alpha_{j} \left|\psi_{j}\right\rangle.$$

• This is often called the "spectral decomposition" of $|v\rangle$ w.r.t. H.

How does it work? A brief refresher on "spectral decompositions".

To understand how HHL works, one should consider "spectral decompositions".

Theorem (Spectral theorem for Hermitian matrices)

Any Hermitian matrix $A \in \mathbb{C}^{N \times N}$ has N orthogonal eigenvectors $\{|\psi_j\rangle\}_{j=1}^N$ that form a basis of \mathbb{C}^N .

• Moreover, one can write $H = \sum_{j=1}^{N} \lambda_j |\psi_j\rangle \langle \psi_j |$, where λ_j denotes the eigenvalue of $|\psi_j\rangle$.

This is often called the "spectral decomposition" of H.

• Since $\{|\psi_j\rangle\}_{j=1}^N$ is a basis of \mathbb{C}^N , any vector $|v\rangle\in\mathbb{C}^N$ can be written as

$$\left|v\right\rangle = \sum_{j=1}^{N} \alpha_{j} \left|\psi_{j}\right\rangle.$$

• This is often called the "spectral decomposition" of $|v\rangle$ w.r.t. H.

Exercise: Show that $A^{-1} |v\rangle = \sum_{j=1}^{N} \lambda_j^{-1} \alpha_j |\psi_j\rangle$. **Remark:** HHL solves QLS problem using the above decomposition, HS & QPE.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 二臣 - のへで