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The postulates of quantum mechanics

Postulate 1: State space

Associated to any physical system is a complex vector space CV called the
state space. The system is completely described by the state vector, which is a
unit vector in the state space |¢) € CV.
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The postulates of quantum mechanics

Postulate 1: State space

Associated to any physical system is a complex vector space CV called the
state space. The system is completely described by the state vector, which is a
unit vector in the state space |¢) € CV.

The state spaces and state vectors we will work with are
» A qubit system, who is completely described by the state vector

[¥) = al0) +B[1) € C*.
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The postulates of quantum mechanics

Postulate 1: State space

Associated to any physical system is a complex vector space CV called the
state space. The system is completely described by the state vector, which is a
unit vector in the state space |¢) € CV.

The state spaces and state vectors we will work with are
» A qubit system, who is completely described by the state vector

[¥) = al0) +B[1) € C*.

» An n-qubit system, which is completely described by the state vector

W)= 3 ajli)e (@) =c”

je{0,1}™
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The postulates of quantum mechanics

Postulate 2: Evolution

The evaluation of a quantum system is described by unitary transformation.
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The postulates of quantum mechanics

Postulate 2: Evolution
The evaluation of a quantum system is described by unitary transformation.

That is, the state of a qubit system |¢)) at some time ¢; is related to the
state |1)’) of the same system at some time t» > t; by a unitary matrix U via

') =U¥).
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The postulates of quantum mechanics

Postulate 2: Evolution
The evaluation of a quantum system is described by unitary transformation.

That is, the state of a qubit system |¢)) at some time ¢; is related to the
state |1)’) of the same system at some time t» > t; by a unitary matrix U via

') =U¥).

So, we are only allowed to apply unitary matrices to qubits during computation.
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The postulates of quantum mechanics

Postulate 2: Evolution
The evaluation of a quantum system is described by unitary transformation.

That is, the state of a qubit system |¢)) at some time ¢; is related to the
state |1)’) of the same system at some time t» > t; by a unitary matrix U via

') =Ulv).
So, we are only allowed to apply unitary matrices to qubits during computation.

Characterizations of unitary matrices

» U is unitary <= U is norm-preserving.
» U is unitary <= the columns of U form orthonormal basis for C".

> Uis unitary <= U'U = UU' = I, where I is the identity and UT =T " .
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The postulates of quantum mechanics

Postulate 2: Evolution
The evaluation of a quantum system is described by unitary transformation.

That is, the state of a qubit system |¢)) at some time ¢; is related to the
state |1)’) of the same system at some time t» > t; by a unitary matrix U via

') =Ulv).
So, we are only allowed to apply unitary matrices to qubits during computation.

Characterizations of unitary matrices

» U is unitary <= U is norm-preserving.

» U is unitary <= the columns of U form orthonormal basis for C".
> Uis unitary <= U'U = UU' = I, where I is the identity and UT =T " .

Exercise: U norm-preserving = U is invertible.
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The postulates of quantum mechanics

Postulate 3: Measurement in the computational basis

If the system is in state |¢)) immediately before a measurement, then the
probability that result ¢ occurs is given by the Born rule:

Prip) =I{e | )%,
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The postulates of quantum mechanics

Postulate 3: Measurement in the computational basis

If the system is in state |¢)) immediately before a measurement, then the
probability that result ¢ occurs is given by the Born rule:

Prip) =I{e | )%,

E.g., for a single qubit state |¢)) = a |0) + 8|1) we recover that

Pr(0) =1 (0 | 9) [* = |of™.

Discover the world at Leiden University



The postulates of quantum mechanics

Postulate 3: Measurement in the computational basis

If the system is in state |¢)) immediately before a measurement, then the
probability that result ¢ occurs is given by the Born rule:

Prip) =I{e | )%,

E.g., for a single qubit state |¢)) = a |0) + 8|1) we recover that
Pr(0) =1 (0 | 9) [* = |of™.

Moreover, for an n-qubit state [¢)) = >, (o 13 @ |j) we recover that

Pr() =[G | 9) 1" = lay*.
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The postulates of quantum mechanics

Postulate 3: Measurement in the computational basis

If the system is in state |¢)) immediately before a measurement, then the
probability that result ¢ occurs is given by the Born rule:

Prip) =I{e | )%,
E.g., for a single qubit state |¢)) = a |0) + 8|1) we recover that
Pr(0) =1 (0 | 9) [* = |of™.

Moreover, for an n-qubit state [¢)) = >, (o 13 @ |j) we recover that

Pr() =[G | 9) 1" = lay*.

Note: this motivates these a's being called probability amplitudes.
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The postulates of quantum mechanics

Postulate 3: Measurement in the computational basis

If the system is in state |¢)) immediately before a measurement, then the
probability that result ¢ occurs is given by the Born rule:

Prip) =I{e | )%,

E.g., for a single qubit state |¢)) = a |0) + 8|1) we recover that
Pr(0) = {0 | ¢) |* = |a™.

Moreover, for an n-qubit state [¢)) = >, (o 13 @ |j) we recover that
Pr(j) =[G 1 9) I = lay|™.

Note: this motivates these a's being called probability amplitudes.

More on the postulates in N&C chapters 2.2.1-2.2.3
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Working with different bases

For single qubit states, we know the following two bases:

Computational basis: Hadamard basis:

{10), 1)} {1}
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Working with different bases

For single qubit states, we know the following two bases:

Computational basis: Hadamard basis:

{10), 1)} {1}

» Consider an arbitrary single qubit state
) = a0 |0) + ax [1).
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Working with different bases

For single qubit states, we know the following two bases:

Computational basis: Hadamard basis:

{10), 1)} {1}

» Consider an arbitrary single qubit state
) = a0 |0) +ax [1).
» We can rewrite this vector in the Hadamard basis as
) = oy [+) +a-|-).
where we can compute the values a4 and a_ using

ar = (+|v) and a_ = (~ | v).
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Working with different bases

For single qubit states, we know the following two bases:

Computational basis: Hadamard basis:

{10), 1)} {1}

» Consider an arbitrary single qubit state
) = a0 |0) +ax [1).
» We can rewrite this vector in the Hadamard basis as
) = oy [+) +a-|-).
where we can compute the values a4 and a_ using

ar = (+|v) and a_ = (~ | v).

Example
Consider [¢) = |1), then (+ | ¢) = 5 and (— | ¥) = — 5 and thus
1 1
|1>_ﬁ|+>_ﬁl_>'
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Working with different bases

For n-qubit states, we know the following two bases:

Computational basis: Hadamard basis:

{li) |7 €{0,13"}. {lolce{+ 1"}
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Working with different bases

For n-qubit states, we know the following two bases:

Computational basis: Hadamard basis:

{li) |7 €{0,13"}. {lolce{+ 1"}

» Consider an arbitrary n-qubit state

Wy= > ali.

je{o,1}m
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Working with different bases

For n-qubit states, we know the following two bases:

Computational basis: Hadamard basis:

{li) |7 €{0,13"}. {lolce{+ 1"}

» Consider an arbitrary n-qubit state

Wy= > ali.

je{o,1}m

» We can rewrite this vector in the Hadamard basis as

W= 3 acld,

cel+,—}n

where we can compute the values a. using

ac={(c|).
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Working with different bases

For n-qubit states, we know the following two bases:

Computational basis: Hadamard basis:

{li) |7 €{0,13"}. {lolce{+ 1"}

» Consider an arbitrary n-qubit state

Wy= > ali.

je{o,1}m

» We can rewrite this vector in the Hadamard basis as

W= 3 acld,

ce{+,—}"
where we can compute the values a. using
ae = (c| ).
Exercise: rewrite |¢)) = 5 [00) — 5 [01) + —5 [11) in the Hadamard basis.
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Evaluating a quantum circuit

Initial state: |¢)) = |0) ® |0) ® |0) = |000).
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Evaluating a quantum circuit

Initial state: ) = |0) ® |0) ® |0) = |000).
After first layer of gates:
lv) = (HeI®1)(|0)®0)®|0)) = H|0)® [0) ® |0)
1 1

\/§(|0>+|1>)®|0>®|0> =/

(]000) + |100))
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Evaluating a quantum circuit

0) .7

0) b

0)

Initial state: ) = |0) ® |0) ® |0) = |000).
After first layer of gates:

) = (H® I I)(|0)®[0)®[0)) = H|0) ®|0) ®[0)

1 1
= ﬁ(\()) +1)®]0)®|0) = \ﬁ(lOOO) +[100))

After second layer of gates:

[v) = (CNOT ® I)—=(]000) + |100)) = (|000> +|110)).

S\

7
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Evaluating a quantum circuit

0) .7

0)

0)

Initial state: ) = |0) ® |0) ® |0) = |000).
After first layer of gates:

) = (HOI®ID)(|0)®[0)®|0)) =

1
= 0+ el el =

After second layer of gates:

W) = (CNOT ® I)

Sl

After final layer of gates:

vy =(I® C’NOT) (|OOO) +1]110)) =

Sl

(000) + [100)) =

H0) ®10) ©0)

iz(|ooo> + [100))

(1000) + [110)).

Sl -

(|000> 4 [111)).

%\

Discover the world at Leiden University



Evaluating a quantum circuit

After final layer of gates:

[v) = (I ® CNOT)——(|000) + [110)) = —(|000> + |111)).

7 V2

Measurement outcome probabilities:

Pr(000) = Pr(111) = |£ 2= 5
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Evaluating a quantum circuit

After final layer of gates:

[v) = (I ® CNOT)——(|000) + [110)) = —(|000> + |111)).

7 V2

Measurement outcome probabilities:

15
Pr(000) = Pr(111) = | —=|" = =.
(000) = Pr(111) = | 7= = 5
Matrix corresponding to the above circuit:

U=(I®CNOT)-(CNOT®I)- (HRI®I).

Discover the world at Leiden University



Evaluating a quantum circuit

After final layer of gates:

[v) = (I ® CNOT)——(|000) + [110)) = —(|000> + |111)).

7 V2

Measurement outcome probabilities:

1
Pr(000) = Pr(111) = |% ?= 5
Matrix corresponding to the above circuit:
U=(I®CNOT) - (CNOT®I)-(H®I®I).
More on quantum circuits in N&C chapters 1.2-1.3, 4.1-4.4 and 4.6
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Solovay Kitaev theorem

For classical computation, we have the following universality statement.

Universality of a set of logical gates

Any Boolean function can be computed by a Boolean circuit that only involves
fanouts and the logical gates AND, OR and NOT.
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Solovay Kitaev theorem

For classical computation, we have the following universality statement.

Universality of a set of logical gates

Any Boolean function can be computed by a Boolean circuit that only involves
fanouts and the logical gates AND, OR and NOT.

In quantum computation we have the following counterpart.

Universality of a set of quantum gates

Any unitary operation can we approximated to arbitrary accuracy by a quantum
circuit only involving single qubit gates and CNOT.
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Solovay Kitaev theorem

For classical computation, we have the following universality statement.

Universality of a set of logical gates

Any Boolean function can be computed by a Boolean circuit that only involves
fanouts and the logical gates AND, OR and NOT.

In quantum computation we have the following counterpart.

Universality of a set of quantum gates

Any unitary operation can we approximated to arbitrary accuracy by a quantum
circuit only involving single qubit gates and CNOT.

This implies that for quantum computation it is sufficient to only consider
quantum circuits involving single qubit gates and CNOT..
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Solovay Kitaev theorem

For classical computation, we have the following universality statement.

Universality of a set of logical gates

Any Boolean function can be computed by a Boolean circuit that only involves
fanouts and the logical gates AND, OR and NOT.

In quantum computation we have the following counterpart.

Universality of a set of quantum gates

Any unitary operation can we approximated to arbitrary accuracy by a quantum
circuit only involving single qubit gates and CNOT.

This implies that for quantum computation it is sufficient to only consider
quantum circuits involving single qubit gates and CNOT..
Moreover, it turns out that the set {H, R, /s} is universal for single qubit gates.
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