Quantum Algorithms tutorial 2

Postulates of quantum mechanics and circuit evaluation

Universiteit
Leiden
The Netherlands

Postulates of quantum mechanics

Refresher: how to work with different bases

Evaluating a quantum circuit

Solovay Kitaev theorem

The postulates of quantum mechanics

What are the rules of quantum computing?

Postulate 1: State space
Associated to any physical system is a complex vector space \mathbb{C}^{N} called the state space. The system is completely described by the state vector, which is a unit vector in the state space $|\psi\rangle \in \mathbb{C}^{N}$.

The postulates of quantum mechanics

Postulate 1: State space

Associated to any physical system is a complex vector space \mathbb{C}^{N} called the state space. The system is completely described by the state vector, which is a unit vector in the state space $|\psi\rangle \in \mathbb{C}^{N}$.

The state spaces and state vectors we will work with are

- A qubit system, who is completely described by the state vector

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle \in \mathbb{C}^{2}
$$

The postulates of quantum mechanics

What are the rules of quantum computing?

Postulate 1: State space

Associated to any physical system is a complex vector space \mathbb{C}^{N} called the state space. The system is completely described by the state vector, which is a unit vector in the state space $|\psi\rangle \in \mathbb{C}^{N}$.

The state spaces and state vectors we will work with are

- A qubit system, who is completely described by the state vector

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle \in \mathbb{C}^{2}
$$

- An n-qubit system, which is completely described by the state vector

$$
|\psi\rangle=\sum_{j \in\{0,1\}^{n}} \alpha_{j}|j\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes n} \cong \mathbb{C}^{2^{n}}
$$

The postulates of quantum mechanics

What are the rules of quantum computing?

Postulate 2: Evolution

The evaluation of a quantum system is described by unitary transformation.

The postulates of quantum mechanics

What are the rules of quantum computing?

Postulate 2: Evolution

The evaluation of a quantum system is described by unitary transformation.
That is, the state of a qubit system $|\psi\rangle$ at some time t_{1} is related to the state $\left|\psi^{\prime}\right\rangle$ of the same system at some time $t_{2}>t_{1}$ by a unitary matrix U via

$$
\left|\psi^{\prime}\right\rangle=U|\psi\rangle .
$$

The postulates of quantum mechanics

What are the rules of quantum computing?

Postulate 2: Evolution

The evaluation of a quantum system is described by unitary transformation.
That is, the state of a qubit system $|\psi\rangle$ at some time t_{1} is related to the state $\left|\psi^{\prime}\right\rangle$ of the same system at some time $t_{2}>t_{1}$ by a unitary matrix U via

$$
\left|\psi^{\prime}\right\rangle=U|\psi\rangle .
$$

So, we are only allowed to apply unitary matrices to qubits during computation.

The postulates of quantum mechanics

Postulate 2: Evolution

The evaluation of a quantum system is described by unitary transformation.
That is, the state of a qubit system $|\psi\rangle$ at some time t_{1} is related to the state $\left|\psi^{\prime}\right\rangle$ of the same system at some time $t_{2}>t_{1}$ by a unitary matrix U via

$$
\left|\psi^{\prime}\right\rangle=U|\psi\rangle
$$

So, we are only allowed to apply unitary matrices to qubits during computation.
Characterizations of unitary matrices

- U is unitary $\Longleftrightarrow U$ is norm-preserving.
- U is unitary \Longleftrightarrow the columns of U form orthonormal basis for \mathbb{C}^{n}.
$\downarrow U$ is unitary $\Longleftrightarrow U^{\dagger} U=U U^{\dagger}=I$, where I is the identity and $U^{\dagger}=\bar{U}^{T}$.

The postulates of quantum mechanics

What are the rules of quantum computing?

Postulate 2: Evolution

The evaluation of a quantum system is described by unitary transformation.
That is, the state of a qubit system $|\psi\rangle$ at some time t_{1} is related to the state $\left|\psi^{\prime}\right\rangle$ of the same system at some time $t_{2}>t_{1}$ by a unitary matrix U via

$$
\left|\psi^{\prime}\right\rangle=U|\psi\rangle
$$

So, we are only allowed to apply unitary matrices to qubits during computation.
Characterizations of unitary matrices

- U is unitary $\Longleftrightarrow U$ is norm-preserving.
- U is unitary \Longleftrightarrow the columns of U form orthonormal basis for \mathbb{C}^{n}.
- U is unitary $\Longleftrightarrow U^{\dagger} U=U U^{\dagger}=I$, where I is the identity and $U^{\dagger}=\bar{U}^{T}$.

Exercise: U norm-preserving $\Longrightarrow U$ is invertible.

The postulates of quantum mechanics

What are the rules of quantum computing?

Postulate 3: Measurement in the computational basis
If the system is in state $|\psi\rangle$ immediately before a measurement, then the probability that result φ occurs is given by the Born rule:

$$
\operatorname{Pr}(\varphi)=|\langle\varphi \mid \psi\rangle|^{2},
$$

The postulates of quantum mechanics

What are the rules of quantum computing?

Postulate 3: Measurement in the computational basis
If the system is in state $|\psi\rangle$ immediately before a measurement, then the probability that result φ occurs is given by the Born rule:

$$
\operatorname{Pr}(\varphi)=|\langle\varphi \mid \psi\rangle|^{2},
$$

E.g., for a single qubit state $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$ we recover that

$$
\operatorname{Pr}(0)=|\langle 0 \mid \psi\rangle|^{2}=|\alpha|^{2} .
$$

The postulates of quantum mechanics

What are the rules of quantum computing?

Postulate 3: Measurement in the computational basis
If the system is in state $|\psi\rangle$ immediately before a measurement, then the probability that result φ occurs is given by the Born rule:

$$
\operatorname{Pr}(\varphi)=|\langle\varphi \mid \psi\rangle|^{2}
$$

E.g., for a single qubit state $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$ we recover that

$$
\operatorname{Pr}(0)=|\langle 0 \mid \psi\rangle|^{2}=|\alpha|^{2} .
$$

Moreover, for an n-qubit state $|\psi\rangle=\sum_{j \in\{0,1\}^{n}} \alpha_{j}|j\rangle$ we recover that

$$
\operatorname{Pr}(j)=|\langle j \mid \psi\rangle|^{2}=\left|\alpha_{j}\right|^{2} .
$$

The postulates of quantum mechanics

What are the rules of quantum computing?

Postulate 3: Measurement in the computational basis
If the system is in state $|\psi\rangle$ immediately before a measurement, then the probability that result φ occurs is given by the Born rule:

$$
\operatorname{Pr}(\varphi)=|\langle\varphi \mid \psi\rangle|^{2}
$$

E.g., for a single qubit state $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$ we recover that

$$
\operatorname{Pr}(0)=|\langle 0 \mid \psi\rangle|^{2}=|\alpha|^{2} .
$$

Moreover, for an n-qubit state $|\psi\rangle=\sum_{j \in\{0,1\}^{n}} \alpha_{j}|j\rangle$ we recover that

$$
\operatorname{Pr}(j)=|\langle j \mid \psi\rangle|^{2}=\left|\alpha_{j}\right|^{2} .
$$

Note: this motivates these α 's being called probability amplitudes.

The postulates of quantum mechanics

Postulate 3: Measurement in the computational basis
If the system is in state $|\psi\rangle$ immediately before a measurement, then the probability that result φ occurs is given by the Born rule:

$$
\operatorname{Pr}(\varphi)=|\langle\varphi \mid \psi\rangle|^{2}
$$

E.g., for a single qubit state $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$ we recover that

$$
\operatorname{Pr}(0)=|\langle 0 \mid \psi\rangle|^{2}=|\alpha|^{2}
$$

Moreover, for an n-qubit state $|\psi\rangle=\sum_{j \in\{0,1\}^{n}} \alpha_{j}|j\rangle$ we recover that

$$
\operatorname{Pr}(j)=|\langle j \mid \psi\rangle|^{2}=\left|\alpha_{j}\right|^{2} .
$$

Note: this motivates these α 's being called probability amplitudes.
More on the postulates in N\&C chapters 2.2.1-2.2.3

Working with different bases

Expressing vectors in different bases

For single qubit states, we know the following two bases:

Computational basis:
$\{|0\rangle,|1\rangle\}$.

Hadamard basis:

Working with different bases

Expressing vectors in different bases
For single qubit states, we know the following two bases:

Computational basis:

$$
\{|0\rangle,|1\rangle\} .
$$

Hadamard basis:

- Consider an arbitrary single qubit state

$$
|\psi\rangle=\alpha_{0}|0\rangle+\alpha_{1}|1\rangle .
$$

Working with different bases

Expressing vectors in different bases
For single qubit states, we know the following two bases:

Computational basis:

$$
\{|0\rangle,|1\rangle\}
$$

Hadamard basis:

- Consider an arbitrary single qubit state

$$
|\psi\rangle=\alpha_{0}|0\rangle+\alpha_{1}|1\rangle .
$$

- We can rewrite this vector in the Hadamard basis as

$$
|\psi\rangle=\alpha_{+}|+\rangle+\alpha_{-}|-\rangle .
$$

where we can compute the values α_{+}and α_{-}using

$$
\alpha_{+}=\langle+\mid \psi\rangle \text { and } \alpha_{-}=\langle-\mid \psi\rangle .
$$

Working with different bases

Expressing vectors in different bases
For single qubit states, we know the following two bases:

Computational basis:

$$
\{|0\rangle,|1\rangle\}
$$

Hadamard basis:

- Consider an arbitrary single qubit state

$$
|\psi\rangle=\alpha_{0}|0\rangle+\alpha_{1}|1\rangle .
$$

- We can rewrite this vector in the Hadamard basis as

$$
|\psi\rangle=\alpha_{+}|+\rangle+\alpha_{-}|-\rangle .
$$

where we can compute the values α_{+}and α_{-}using

$$
\alpha_{+}=\langle+\mid \psi\rangle \text { and } \alpha_{-}=\langle-\mid \psi\rangle .
$$

Example

Consider $|\psi\rangle=|1\rangle$, then $\langle+\mid \psi\rangle=\frac{1}{\sqrt{2}}$ and $\langle-\mid \psi\rangle=-\frac{1}{\sqrt{2}}$ and thus

$$
|1\rangle=\frac{1}{\sqrt{2}}|+\rangle-\frac{1}{\sqrt{2}}|-\rangle .
$$

Working with different bases

Expressing vectors in different bases

For n-qubit states, we know the following two bases:

Computational basis:

$$
\left\{|j\rangle \mid j \in\{0,1\}^{n}\right\} .
$$

Hadamard basis:

$$
\left\{|c\rangle \mid c \in\{+,-\}^{n}\right\} .
$$

Working with different bases

For n-qubit states, we know the following two bases:

Computational basis:

$$
\left\{|j\rangle \mid j \in\{0,1\}^{n}\right\}
$$

$$
\left\{|c\rangle \mid c \in\{+,-\}^{n}\right\}
$$

- Consider an arbitrary n-qubit state

$$
|\psi\rangle=\sum_{j \in\{0,1\}^{n}} \alpha_{j}|j\rangle .
$$

Working with different bases

For n-qubit states, we know the following two bases:

Computational basis:

$$
\left\{|j\rangle \mid j \in\{0,1\}^{n}\right\}
$$

Hadamard basis:

$$
\left\{|c\rangle \mid c \in\{+,-\}^{n}\right\} .
$$

- Consider an arbitrary n-qubit state

$$
|\psi\rangle=\sum_{j \in\{0,1\}^{n}} \alpha_{j}|j\rangle .
$$

- We can rewrite this vector in the Hadamard basis as

$$
|\psi\rangle=\sum_{c \in\{+,-\}^{n}} \alpha_{c}|c\rangle
$$

where we can compute the values α_{c} using

$$
\alpha_{c}=\langle c \mid \psi\rangle .
$$

Working with different bases

For n-qubit states, we know the following two bases:

Computational basis:

$$
\left\{|j\rangle \mid j \in\{0,1\}^{n}\right\} .
$$

Hadamard basis:

$$
\left\{|c\rangle \mid c \in\{+,-\}^{n}\right\}
$$

- Consider an arbitrary n-qubit state

$$
|\psi\rangle=\sum_{j \in\{0,1\}^{n}} \alpha_{j}|j\rangle .
$$

- We can rewrite this vector in the Hadamard basis as

$$
|\psi\rangle=\sum_{c \in\{+,-\}^{n}} \alpha_{c}|c\rangle
$$

where we can compute the values α_{c} using

$$
\alpha_{c}=\langle c \mid \psi\rangle
$$

Exercise: rewrite $|\psi\rangle=\frac{1}{2}|00\rangle-\frac{1}{2}|01\rangle+\frac{1}{\sqrt{2}}|11\rangle$ in the Hadamard basis.

Evaluating a quantum circuit

How do we compute its output?

Initial state: $|\psi\rangle=|0\rangle \otimes|0\rangle \otimes|0\rangle=|000\rangle$.

Evaluating a quantum circuit

How do we compute its output?

Initial state: $|\psi\rangle=|0\rangle \otimes|0\rangle \otimes|0\rangle=|000\rangle$.
After first layer of gates:

$$
\begin{aligned}
|\psi\rangle & =(H \otimes I \otimes I)(|0\rangle \otimes|0\rangle \otimes|0\rangle)=H|0\rangle \otimes|0\rangle \otimes|0\rangle \\
& =\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \otimes|0\rangle \otimes|0\rangle=\frac{1}{\sqrt{2}}(|000\rangle+|100\rangle)
\end{aligned}
$$

Evaluating a quantum circuit

How do we compute its output?

Initial state: $|\psi\rangle=|0\rangle \otimes|0\rangle \otimes|0\rangle=|000\rangle$.
After first layer of gates:

$$
\begin{aligned}
|\psi\rangle & =(H \otimes I \otimes I)(|0\rangle \otimes|0\rangle \otimes|0\rangle)=H|0\rangle \otimes|0\rangle \otimes|0\rangle \\
& =\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \otimes|0\rangle \otimes|0\rangle=\frac{1}{\sqrt{2}}(|000\rangle+|100\rangle)
\end{aligned}
$$

After second layer of gates:

$$
|\psi\rangle=(C N O T \otimes I) \frac{1}{\sqrt{2}}(|000\rangle+|100\rangle)=\frac{1}{\sqrt{2}}(|000\rangle+|110\rangle)
$$

Evaluating a quantum circuit

How do we compute its output?

Initial state: $|\psi\rangle=|0\rangle \otimes|0\rangle \otimes|0\rangle=|000\rangle$.
After first layer of gates:

$$
\begin{aligned}
|\psi\rangle & =(H \otimes I \otimes I)(|0\rangle \otimes|0\rangle \otimes|0\rangle)=H|0\rangle \otimes|0\rangle \otimes|0\rangle \\
& =\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \otimes|0\rangle \otimes|0\rangle=\frac{1}{\sqrt{2}}(|000\rangle+|100\rangle)
\end{aligned}
$$

After second layer of gates:

$$
|\psi\rangle=(C N O T \otimes I) \frac{1}{\sqrt{2}}(|000\rangle+|100\rangle)=\frac{1}{\sqrt{2}}(|000\rangle+|110\rangle)
$$

After final layer of gates:

$$
|\psi\rangle=(I \otimes C N O T) \frac{1}{\sqrt{2}}(|000\rangle+|110\rangle)=\frac{1}{\sqrt{2}}(|000\rangle+|111\rangle) .
$$

Evaluating a quantum circuit

How do we compute its output?

After final layer of gates:

$$
|\psi\rangle=(I \otimes C N O T) \frac{1}{\sqrt{2}}(|000\rangle+|110\rangle)=\frac{1}{\sqrt{2}}(|000\rangle+|111\rangle) .
$$

Measurement outcome probabilities:

$$
\operatorname{Pr}(000)=\operatorname{Pr}(111)=\left|\frac{1}{\sqrt{2}}\right|^{2}=\frac{1}{2}
$$

Evaluating a quantum circuit

How do we compute its output?

After final layer of gates:

$$
|\psi\rangle=(I \otimes C N O T) \frac{1}{\sqrt{2}}(|000\rangle+|110\rangle)=\frac{1}{\sqrt{2}}(|000\rangle+|111\rangle) .
$$

Measurement outcome probabilities:

$$
\operatorname{Pr}(000)=\operatorname{Pr}(111)=\left|\frac{1}{\sqrt{2}}\right|^{2}=\frac{1}{2}
$$

Matrix corresponding to the above circuit:

$$
U=(I \otimes C N O T) \cdot(C N O T \otimes I) \cdot(H \otimes I \otimes I)
$$

Evaluating a quantum circuit

How do we compute its output?

After final layer of gates:

$$
|\psi\rangle=(I \otimes C N O T) \frac{1}{\sqrt{2}}(|000\rangle+|110\rangle)=\frac{1}{\sqrt{2}}(|000\rangle+|111\rangle) .
$$

Measurement outcome probabilities:

$$
\operatorname{Pr}(000)=\operatorname{Pr}(111)=\left|\frac{1}{\sqrt{2}}\right|^{2}=\frac{1}{2}
$$

Matrix corresponding to the above circuit:

$$
U=(I \otimes C N O T) \cdot(C N O T \otimes I) \cdot(H \otimes I \otimes I)
$$

More on quantum circuits in N\&C chapters 1.2-1.3, 4.1-4.4 and 4.6

Solovay Kitaev theorem

Universality of set of quantum gates

For classical computation, we have the following universality statement.
Universality of a set of logical gates
Any Boolean function can be computed by a Boolean circuit that only involves fanouts and the logical gates AND, OR and NOT.

Solovay Kitaev theorem

For classical computation, we have the following universality statement.
Universality of a set of logical gates
Any Boolean function can be computed by a Boolean circuit that only involves fanouts and the logical gates AND, OR and NOT.

In quantum computation we have the following counterpart.
Universality of a set of quantum gates
Any unitary operation can we approximated to arbitrary accuracy by a quantum circuit only involving single qubit gates and $C N O T$.

Solovay Kitaev theorem

For classical computation, we have the following universality statement.
Universality of a set of logical gates
Any Boolean function can be computed by a Boolean circuit that only involves fanouts and the logical gates AND, OR and NOT.

In quantum computation we have the following counterpart.

Universality of a set of quantum gates

Any unitary operation can we approximated to arbitrary accuracy by a quantum circuit only involving single qubit gates and $C N O T$.

This implies that for quantum computation it is sufficient to only consider quantum circuits involving single qubit gates and $C N O T$.

Solovay Kitaev theorem

For classical computation, we have the following universality statement.
Universality of a set of logical gates
Any Boolean function can be computed by a Boolean circuit that only involves fanouts and the logical gates AND, OR and NOT.

In quantum computation we have the following counterpart.

Universality of a set of quantum gates

Any unitary operation can we approximated to arbitrary accuracy by a quantum circuit only involving single qubit gates and $C N O T$.

This implies that for quantum computation it is sufficient to only consider quantum circuits involving single qubit gates and $C N O T$.
Moreover, it turns out that the set $\left\{H, R_{\pi / 8}\right\}$ is universal for single qubit gates.

