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The postulates of quantum mechanics
What are the rules of quantum computing?

Postulate 1: State space
Associated to any physical system is a complex vector space CN called the
state space. The system is completely described by the state vector, which is a
unit vector in the state space |ψ〉 ∈ CN .

The state spaces and state vectors we will work with are
I A qubit system, who is completely described by the state vector

|ψ〉 = α |0〉+ β |1〉 ∈ C2.

I An n-qubit system, which is completely described by the state vector

|ψ〉 =
∑

j∈{0,1}n
αj |j〉 ∈

(
C2)⊗n ∼= C2n .
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The postulates of quantum mechanics
What are the rules of quantum computing?

Postulate 2: Evolution
The evaluation of a quantum system is described by unitary transformation.

That is, the state of a qubit system |ψ〉 at some time t1 is related to the
state |ψ′〉 of the same system at some time t2 > t1 by a unitary matrix U via

|ψ′〉 = U |ψ〉 .

So, we are only allowed to apply unitary matrices to qubits during computation.

Characterizations of unitary matrices

I U is unitary ⇐⇒ U is norm-preserving.
I U is unitary ⇐⇒ the columns of U form orthonormal basis for Cn.
I U is unitary ⇐⇒ U†U = UU† = I, where I is the identity and U† = U

T .

Exercise: U norm-preserving =⇒ U is invertible.
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The postulates of quantum mechanics
What are the rules of quantum computing?

Postulate 3: Measurement in the computational basis
If the system is in state |ψ〉 immediately before a measurement, then the
probability that result ϕ occurs is given by the Born rule:

Pr(ϕ) = | 〈ϕ | ψ〉 |2,

E.g., for a single qubit state |ψ〉 = α |0〉+ β |1〉 we recover that

Pr(0) = | 〈0 | ψ〉 |2 = |α|2.

Moreover, for an n-qubit state |ψ〉 =
∑

j∈{0,1}n αj |j〉 we recover that

Pr(j) = | 〈j | ψ〉 |2 = |αj |2.

Note: this motivates these α’s being called probability amplitudes.

More on the postulates in N&C chapters 2.2.1-2.2.3
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Working with different bases
Expressing vectors in different bases

For single qubit states, we know the following two bases:

Computational basis:
{|0〉 , |1〉}.

Hadamard basis:
{|+〉 , |−〉}.

I Consider an arbitrary single qubit state

|ψ〉 = α0 |0〉+ α1 |1〉 .

I We can rewrite this vector in the Hadamard basis as

|ψ〉 = α+ |+〉+ α− |−〉 .

where we can compute the values α+ and α− using

α+ = 〈+ | ψ〉 and α− = 〈− | ψ〉 .
Example
Consider |ψ〉 = |1〉, then 〈+ | ψ〉 = 1√

2
and 〈− | ψ〉 = − 1√

2
and thus

|1〉 = 1√
2
|+〉 − 1√

2
|−〉 .
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Working with different bases
Expressing vectors in different bases

For n-qubit states, we know the following two bases:

Computational basis:
{|j〉 | j ∈ {0, 1}n} .

Hadamard basis:
{|c〉 | c ∈ {+,−}n} .

I Consider an arbitrary n-qubit state

|ψ〉 =
∑

j∈{0,1}n
αj |j〉 .

I We can rewrite this vector in the Hadamard basis as

|ψ〉 =
∑

c∈{+,−}n
αc |c〉 ,

where we can compute the values αc using

αc = 〈c | ψ〉 .

Exercise: rewrite |ψ〉 = 1
2
|00〉 − 1

2
|01〉+ 1√

2
|11〉 in the Hadamard basis.
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Evaluating a quantum circuit
How do we compute its output?

Initial state: |ψ〉 = |0〉 ⊗ |0〉 ⊗ |0〉 = |000〉.

After first layer of gates:

|ψ〉 = (H ⊗ I ⊗ I)(|0〉 ⊗ |0〉 ⊗ |0〉) = H |0〉 ⊗ |0〉 ⊗ |0〉

=
1√
2
(|0〉+ |1〉)⊗ |0〉 ⊗ |0〉 = 1√

2
(|000〉+ |100〉)

After second layer of gates:

|ψ〉 = (CNOT ⊗ I)
1√
2
(|000〉+ |100〉) = 1√

2
(|000〉+ |110〉).

After final layer of gates:

|ψ〉 = (I ⊗ CNOT )
1√
2
(|000〉+ |110〉) = 1√

2
(|000〉+ |111〉).
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Evaluating a quantum circuit
How do we compute its output?

After final layer of gates:

|ψ〉 = (I ⊗ CNOT )
1√
2
(|000〉+ |110〉) = 1√

2
(|000〉+ |111〉).

Measurement outcome probabilities:

Pr(000) = Pr(111) = | 1√
2
|2 =

1

2
.

Matrix corresponding to the above circuit:

U = (I ⊗ CNOT ) · (CNOT ⊗ I) · (H ⊗ I ⊗ I).

More on quantum circuits in N&C chapters 1.2-1.3, 4.1-4.4 and 4.6
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Solovay Kitaev theorem
Universality of set of quantum gates

For classical computation, we have the following universality statement.

Universality of a set of logical gates
Any Boolean function can be computed by a Boolean circuit that only involves
fanouts and the logical gates AND, OR and NOT.

In quantum computation we have the following counterpart.

Universality of a set of quantum gates
Any unitary operation can we approximated to arbitrary accuracy by a quantum
circuit only involving single qubit gates and CNOT .

This implies that for quantum computation it is sufficient to only consider
quantum circuits involving single qubit gates and CNOT .
Moreover, it turns out that the set {H,Rπ/8} is universal for single qubit gates.
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